
Research Article
Motion Planning of Autonomous Mobile Robot Using Recurrent
Fuzzy Neural Network Trained by Extended Kalman Filter

Qidan Zhu, Yu Han , Peng Liu, Yao Xiao, Peng Lu, and Chengtao Cai

College of Automation, Harbin Engineering University, Harbin 15001, China

Correspondence should be addressed to Yu Han; hanyu@hrbeu.edu.cn

Received 10 October 2018; Revised 7 December 2018; Accepted 2 January 2019; Published 29 January 2019

Guest Editor: Fevrier Valdez

Copyright © 2019 Qidan Zhu et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.is paper proposes a novel motion planning method for an autonomous ground mobile robot to address dynamic surroundings,
nonlinear program, and robust optimization problems. A planner based on the recurrent fuzzy neural network (RFNN) is
designed to program trajectory and motion of mobile robots to reach target. And, obstacle avoidance is achieved. In RFNN,
inference capability of fuzzy logic and learning capability of neural network are combined to improve nonlinear programming
performance. A recurrent frame with self-feedback loops in RFNN enhances stability and robustness of the structure. .e
extended Kalman filter (EKF) is designed to train weights of RFNN considering the kinematic constraint of autonomous mobile
robots as well as target and obstacle constraints. EKF’s characteristics of fast convergence and little limit in training data make it
suitable to train the weights in real time. Convergence of the training process is also analyzed in this paper. Optimization
technique and update strategy are designed to improve the robust optimization of a system in dynamic surroundings. Simulation
experiment and hardware experiment are implemented to prove the effectiveness of the proposed method. Hardware experiment
is carried out on a tracked mobile robot. An omnidirectional vision is used to locate the robot in the surroundings. Forecast
improvement of the proposed method is then discussed at the end.

1. Introduction

In recent decades, unmanned ground mobile robots have
been widely applied in various areas of both indoor and
outdoor environments such as industry, mine, museum,
port, or some dangerous places for their excellent maneu-
verability [1–3]. Research about navigation which can fully
reflect artificial intelligence and automatic ability of un-
manned ground mobile robots has been an attractive topic
for a long time [4]. In order to achieve navigation, an ef-
fective motion planner should be designed [5]. Among the
existing solutions, planning techniques were classified in two
groups: nonheuristic methods and heuristic methods [6].
.e most important nonheuristic methods consist of the
potential field method (PFM) [7, 8], sampling-based planner
(SBP), and interpolating curve method (ICM). PFM and SBP
do not produce optimal paths and tend to be locked in some
local minima [9]. ICM generates trajectories by constructing
and inserting a new set of states considering reference

points, i.e., a given set of way points, which cannot deal with
dynamic surroundings well [10]. In order to solve the
problem mentioned above, heuristic approaches are pro-
posed. .e most popular heuristic methods contain hybrid-
heuristics A∗, neural network (NN), fuzzy logic (FL), genetic
algorithm (GA), particle swarm optimization (PSO), etc.
Contrasted to nonheuristic methods, heuristic methods are
more intelligent and advanced to deal with complex
problems [11]. However, the serious disadvantage is the
necessary learning phase. Much online or offline compu-
tation is needed. So, a more efficient method should be
proposed.

Fuzzy logic is well suited for programming mobile
robot’s motion for its accurate calculation capability and
inference capability under uncertainty [12]. Many re-
searchers have implemented this method to address the
navigation problem of unmanned mobile robots. Wang
and Liu [13] proposed a real-time fuzzy logic-based
navigation strategy in unknown environments. .e

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 1934575, 16 pages
https://doi.org/10.1155/2019/1934575

mailto:hanyu@hrbeu.edu.cn
http://orcid.org/0000-0003-3741-7072
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1934575

proposed approach employs a grid-based map that can
record environment information and experience. How-
ever, the method focuses on building a map that is
computationally expensive. .e structure of fuzzy logic is
so simple that it cannot deal with complex problems.
Neural network is widely used due to its strong nonlinear
approximation capability and self-learning capability [14].
Many researches have been done on the feedforward
multilayer perception neural network [15]. However,
feedforward NN methods require multilayer structures
with a lot of neurons to represent dynamical responses.
.is leads to divergence and is time-consuming [16]. .e
weights of them are updated without considering the
internal information and are sensitive to the training data.
So, recurrent neural network attracts more attention for its
superior dynamic capability. Recently, fuzzy logic and
recurrent neural network structure are combined to form a
new structure, i.e., recurrent fuzzy neural network
(RFNN). Many approaches have been proposed by using
RFNN and have shown superior performances. In [17],
Juang et al. proposed a recurrent self-evolving interval
type-2 fuzzy neural network for dynamic system pro-
cessing. .e structure forms a local internal feedback loop
by feeding the firing strength of each rule back to itself. All
rules are trained online via structure and parameter
learning. Lin et al. [18] proposed an interactively recurrent
fuzzy neural network for prediction and identification of
dynamic systems. .eir method is the same with Juang’s
method but employs a functional link neural network
(FLNN) to the consequent part of fuzzy rules..emapping
ability is promoted. Although the concept of RFNN is
investigated in detail, it has not been used in practical
navigation well. For example, in [19], optimization of the
result is not considered.

Back propagation (BP), evolutionary algorithm, and
extended Kalman filter (EKF) are the three most popular
training methods of supervised learning algorithms. In [20],
the BP method is used to train the fuzzy neural network to
achieve task planning and action selection of mobile robots.
But, it needs data base and is trained offline. To apply RFNN
to real-time nonlinear programs, an effective training
method should be adopted. .e extended Kalman filter is
famous for its training efficiency and accuracy [21]. Rubio
and Yu [22] applied EKF to train state-space recurrent
neural networks, and identification of the nonlinear system
is realized. And, the Lyapunov method is used to prove the
stability of system. Wang and Huang [23] developed an
effective RNN training approach based on EKF by using a
controllable training convergence on the basis of Rubio. By
adapting two artificial training noise parameters, i.e., the
covariance of measurement noise and covariance of process
noise, performance of EKF is improved. But, the proposed
method is used in RNN instead of RFNN. .e EKF algo-
rithm possesses good online learning ability. .erefore, it is
suitable for training RFNN to program the autonomous
mobile robot’s motion and achieving navigation.

Depending on the analysis above, the main contribution
of this paper is that a real-time program strategy in unknown

dynamic surroundings is proposed, i.e., without any pre-
vious offline computation. And, the optimal motion is
generated in a free-space, i.e., without previous map in-
formation. A simple but effective RFNN structure is
designed. A modified extended Kalman filter method is used
to train RFNN in real time. An autonomous mobile robot is
driven to reach the target and avoid obstacles. In the EKF
training algorithm, target and obstacle constraints in
practical situation are considered. Robustness of the pro-
posed method against disturbances is discussed. .en, a
numeric nonlinear optimization method and an update
strategy are designed to guarantee robust optimization of the
prediction. Besides the simulation experiment, our method
is also evaluated on a real tracked mobile robot. An om-
nidirectional vision is used to locate the robot by using
artificial landmarks on the basis of our previous work.

.e rest of this paper is structured as follows. Section 2
illustrates the modelling of the autonomous mobile robot
surrounded by the target and obstacles. Section 3 describes the
planner in detail, including RFNN structure, EKF online
learning algorithm, and convergence analysis. Section 4
constructs the cost function and update strategy to guarantee
optimization. Section 5 is simulation and hardware experiment
results. Finally, Section 6 concludes the proposed scheme.

2. Model of Autonomous Mobile Robot

Some programming methods ignore kinematic constraints
[24]; thus, the stability of the system in practical situation
cannot be guaranteed. An additional algorithm needs to be
designed to smooth the trajectories. .is leads to more
computation cost. And, control effect of driving actual
mobile robots to track the trajectory is not good. In order to
get good dynamics performance in the tracking process, a
natty kinematics of mobile robot is considered in motion
planning.

.e autonomous mobile robot favored in this paper is a
kind of tracked mobile platform. .ere are two caterpillar
tracks independently driven by actuators for the mobile
robot’s motion, and they are placed symmetrically on both
sides of the mobile robot. .e kinematics can be illustrated
as shown in Figure 1. C is the geometry center of a mobile
platform. 2b is the length between two tracks. O, X, Y{ } is the
global coordinate frame, and C, XC, YC􏼈 􏼉 is the local co-
ordinate frame.

Assume that the unmanned mobile robot is made up of a
rigid frame equipped with nondeformable caterpillar tracks.
.ere is no slip between tracks and actuator gears. And, they
are moving on a horizontal plane only in the direction
normal to the axis of driving.

.e posture is represented by three variables as

p � [x, y, θ]
T
, (1)

where x and y are the coordinates of the center point C in
O, X, Y{ } and θ is the angle of its heading direction XC taking
counterclockwise from the X-axis. .e motion state is

q � [v, w]
T
, (2)

2 Computational Intelligence and Neuroscience

where v is the linear velocity and w is the angular velocity of
the mobile robot. .en, p and q can be associated by the
following equitation:

p �

cos θ 0

sin θ 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦q. (3)

.r autonomous mobile robot is motivated by a pair of
independent caterpillar tracks, so

v �
vr + vl(􏼁

2
, (4)

w �
vr − vl(􏼁

2b
, (5)

R �
b vr + vl(􏼁

vr − vl(􏼁
, (6)

where vr is the right linear velocity, vl is the left linear ve-
locity, and R is the rotation radius of the mobile robot.

A simple discrete-time kinematic model is used in this
paper to illustrate the moving process. .e difference
equation can be illustrated as

pk+1 � pk + Δt

cos θk 0

sin θk 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦qk. (7)

.e positions of the target and obstacles in the global
coordinate frame need to be transformed to the local frame.
.e transformation matrix is

T �

cos θ sin θ −x cos θ−y sin θ

−sin θ cos θ x sin θ−y cos θ

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

3. Motion Planner Based on RFNN

A nonlinear program strategy is shown in Figure 2. It is
made up of four parts such as coordinate transformation,
RFNN structure, unmanned mobile robot model, and online
learning algorithm. .e coordinate transformation part
establishes the environment map. Target and obstacles’
information is then collected..e RFNN structure generates
desired velocities of the mobile robot. It is trained by the
extended Kalman filter that makes up the online learning
algorithm. Detailed information of each part is shown in
Figure 2.

3.1. RFNN Structure. A simple recurrent fuzzy neural
network is designed in this section for the purpose of
improving computation efficiency. Considering that the
navigation system is multiinput multioutput, RFNN is
made up of five layers as shown in Figure 3. .e structure is
first used in our previous work [25]. In this paper, detailed
information of the structure and training progress is in-
troduced. Convergence is analyzed. Furthermore, the
original structure is improved in this paper to achieve
nonlinear motion planning.

3.1.1. Layer 1 (Input Layer). Only the current state is traded
as the input in this layer. s � (s1, s2, s3, s4) � (dg, do, θg, θo) is
chosen as the input, so there are 4 nodes transmitting the
input variables to the next layer directly. dg is the distance
between mobile robot and goal. do is the distance between
mobile robot and the nearest obstacle. θg is the angle between
mobile robot’s front direction and goal. θo is the angle be-
tween mobile robot’s front direction and the nearest obstacle.

3.1.2. Layer 2 (Membership Layer). Each node in this layer
performs a membership function. In this paper, the input of
the membership layer is si (i � 1, 2, 3, 4). .e membership
function is defined with Gaussian MF as follows:

netj s
j
i􏼐 􏼑 � −

s
j
i − c

j
i􏼐 􏼑

2

σj
i􏼐 􏼑

2 , (9)

u
j
i netj s

j
i􏼐 􏼑􏽨 􏽩 � exp netj s

j
i􏼐 􏼑􏽨 􏽩, (10)

where exp[·] is the exponential function and c
j
i and σj

i (j is
the number of the linguistic variables with respect to each
input) are the mean and standard deviation of the Gaussian
function, respectively. .e values of them are initially set via
expert experience before the strategy begins.

According to the actual occasion, dg (do) can be divided
into far and near depending on the distance between mobile
robot and goal (the nearest obstacle). θg (θo) can be divided
into left and right depending on goal’s position (the nearest
obstacle’s position) related to the mobile robot’s front di-
rection. So, there are two linguistic variables of each input.

Obstacle

Obstacle Target

Y

XO x

y

2b

YC
vl

vr

XC

C
θ

v

w

Figure 1: Model of the autonomous mobile robot in dynamic
surroundings.

Computational Intelligence and Neuroscience 3

3.1.3. Layer 3 (Fuzzy Rule Layer). Each node in this layer
corresponds to one fuzzy rule. As shown in Figure 3, each input
has two membership values. Hence, there are 16 fuzzy rules.

.e firing strength of each rule at the current step is
determined by the outputs of layer 2 through an AND
operator. .e result of each rule is calculated as follows:

fn � 􏽙 u
j

i , (i � 1, 2, 3, 4, j � 1, 2, n � 1, 2, . . . , 16).

(11)

Moreover, a local internal feedback with a time delay is
added to each node of this layer forming a recurrent frame.
.e mathematical form is described as

ψnk � 1− λn(􏼁fn + λnψn(k−1), (12)

where λn is the constant representing weight of a self-
feedback loop and ψn(k−1) indicates the output of layer 3
in the previous time step.

3.1.4. Layer 4 (Consequent Layer). .is layer describes a
linear combination of functions in the consequent part,
and each node is called the consequent node. According
to the definition of TSK fuzzy rules, weight wo � (wo1,

wo2, . . . , won) can be obtained:

won � a
1
ons1 + a

2
ons2 + · · · + a

i
onsi. (13)

For the purpose of simplicity calculation, it is assumed
that aon � a1

on � · · · � ai
on. So, won � aon(s1 + s2 + s3 + s4),

and o � 1, 2.

.e output of this layer is

φo � 􏽘
n

wonψn. (14)

3.1.5. Layer 5 (Output Layer). .ere are two nodes in this
layer representing linear velocities of right and left caterpillar
tracks, respectively. An activation function is set at each
node:

vo �
φo

1 + α φo

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

, (15)

where α is a constant.

3.2. Online Training Algorithm Based on EKF. .e EKF
training algorithm can be summarized as parallel EKF and
parameter-based EKF [26]. In this paper, the parameter-
based EKF in [23] is modified to learn weights of RFNN.
Considering the practical condition in motion planning of
an autonomous mobile robot, a Jacobian matrix is designed.

At time step k, the EKF function has the following form:

ak+1 � ak −Kkek,

ek � ok − odk,

Kk � PkOk Rk + OT
kPkOk􏼐 􏼑

−1
,

Pk+1 � Qk + I−KkO
T
k􏼐 􏼑Pk,

(16)

where ak � (a11, . . . , a1,16, a21, . . . , a2,16)
T is the estimation

of weights, K is the Kalman gain matrix, e is the estimation
error, od is the desired value of o which is the observation
vector,O is the orderly derivative matrix, R is the covariance
matrix of the measurement error,Q is the covariance matrix
of the process noise, P is the covariance matrix of the es-
timation error, and I is the identity matrix.

In order to achieve navigation, both distance and angle
information need to be considered. So, the observation
vector can be represented as o � (dg, do, θg, θo)T.

.en, O can be calculated as

O �
zoT

za
. (17)

As the only one-step recurrence is considered here, we
take dg as an example to calculate O. .en, it is the same to
do, θg, and θo:

dgk �

�������������������

xk −xd(􏼁
2

+ yk −yd(􏼁
2

􏽱

�

��������

x′
2

dk + y′
2

dk

􏽱

, (18)

where (xd
′, yd
′, 1)T � T(xd, yd, 1)T is the target position in

the local frame.
.en,

zdgk

za
�

xk − xd(􏼁zxk/za + yk −yd(􏼁zyk/za􏼂 􏼃

dgk

, (19)

and according to (7),

RFNN
structure

Unmanned
vehicle

Online
learning

algorithm

Coordinate
transform

p

pd

e

o

a

q

Figure 2: Nonlinear program strategy based on RFNN.

Near

Far

Near

Far

Left

Right
Left
Right

vs

Figure 3: Structure of RFNN.

4 Computational Intelligence and Neuroscience

zxk

za
�

zxk−1
za

+ cos θk−1
zvk−1

za
− vk−1sin θk−1

zθk−1
za

,

zyk

za
�

zyk−1
za

+ sin θk−1
zwk−1

za
+ wk−1cos θk−1

zθk−1
za

,

zθk

za
�

zθk−1
za

+
zwk−1

za
,

(20)

and according to (4), (5), and (24),
zvk−1

za
�

ψn(k−1) 􏽐 sk−1

2 1 + αφo(k−1)􏼐 􏼑
2,

zwk−1
za

� ±
ψn(k−1) 􏽐 sk−1

2b 1 + αφo(k−1)􏼐 􏼑
2,

(21)

where o � 1, 2 and n � 1, 2, . . . , 16 corresponding to a �

(a11, . . . , a1,16, a21, . . . , a2,16)
T. If o � 1, the results are posi-

tive. Otherwise, the results are negative.
If the distance between obstacles is long enough for the

mobile robot to pass through without collision, do and θo
will not be considered in EKF. However, if the distance is
shorter than safe distance, the EKF algorithm should train
the weights of RFNN to avoid collision. do and θo are then
considered at this moment. .e flow diagram is shown in
Figure 4.

3.3. Convergence Analysis. In this section, we will prove that
the EKF proposed in the above section is effective to RFNN
in Section 3.1. And the designed Jacobian matrix O is
reasonable and feasible.

As shown in Figure 2, observation vector o is a function
of v, i.e., o � O(v). By calculating the first-order derivative of
a in (21), fuzzy logic inference and weights learning process
are clearly reflected inO. For the parameter-based EKF, only
weights are viewed as states to be estimated [23]. o is first
expanded at optimal weights ad as

ok � O ad(􏼁 + ak − ad(􏼁
zo
za

+ ξk, (22)

where ξk is the first-order approximation residue. .e error
of weights can be defined as eak � ak − ad.

.en, the Lyapunov function is written as

Ek � eT
akP

T
k eak,

ΔEk � Ek+1 −Ek.
(23)

.en,

ΔEk � eT
a(k+1)P

−1
k+1ea(k+1) − e

T
akP
−1
k eak < ea(k+1) − eak􏽨 􏽩

T
P−1k eak

− eT
a(k+1) Pk+1 −Qk􏼂 􏼃

−1PkOkB
−1
k ξk.

(24)

According to Jolly et al. [20], (24) becomes

ΔEk <
− ek

����
����
2

ok/m + rk

+
3 ξk

����
����
2

rk

, (25)

where ok is the trace of OT
kPkOk. m is the dimension of I in

(16), and rk is a positive real number. As mentioned in the
above section, the dimension ofO changes depending on the
position of obstacles related to the mobile robot. According
to the calculate trace ok, the jumping change will not affect
the stability of the training process.

From (25), we can see that the convergence of the
training process is determined by ek, ok, and rk. In order to
guarantee ΔEk < 0, rk should be set as

rk >
3ok ξk

����
����
2

m ek

����
����
2 − 3 ξk

����
����
2

􏼒 􏼓

. (26)

If ‖ek‖2 < 4ξ
2
k (ξk ≥ ‖ξk‖), the error is bounded and the

process is convergent.
If ‖ek‖2 > 4ξ

2
k, the inequality will become

rk >
3ok

m
. (27)

If each element of ξk is of normal distribution,
ξik∼N(0, rk), then,

ek

����
����
2 > 4ξ

2
k � 64rkm, (28)

where 99.99% ξik are bounded. .en,

3ok

m
< rk <

ek

����
����
2

64m
. (29)

rk can be chosen as

rk �
ek

����
����
2/64m + 3ok/m􏼒 􏼓

2
.

(30)

Convergence of the training process is guaranteed,
i.e., bounded ek.

4. Trajectory Optimization

As mentioned above, feasible trajectories are generated. But,
these trajectories are always suboptimal and worthy of
further improvement. So, in this section, the numerical
optimization procedure is designed to obtain the optimal

Initialize
robot state

RFNN planner

Obstacles
threaten vehicle?

Reached target?

Yes

End

No Yes

Train the weights
considering

dg, do, θg, and θo

Train the weights
considering
dg, and θg

No

Figure 4: Flow diagram of EKF.

Computational Intelligence and Neuroscience 5

trajectory. Considering the practical situation, power con-
sumption, driving distance, and time are favored to de-
termine optimization of the trajectory. A new variable object
is established as Tra � p, v,w􏼈 􏼉, indicating that each tra-
jectory is represented by the mobile robot’s state and linear
and angular velocities.

.en, the objective function is structured as

J � W1 􏽘

Nl

k�1
pl

k − p
l
k−1

�����

�����
2

+ W2 􏽘

Nl

k�1
v

l
k − v

l
�����

�����
2

+ W3 􏽘

Nl

k�1
w

l
k −w

l
�����

�����
2

+ W4N
l
,

(31)

whereW is the weight of each item..e first and last items in
(31) represent moving distance and time, respectively.
Furthermore, we want the motion of the mobile robot to be
smooth in the dynamic environment. So, the second and
third items are designed in (31). v and w are the mean values.

.e autonomous mobile robot is driven by the target and
needs to arrive at destination in limited area. During the
process, obstacle avoidance is considered. .en, the target
and obstacle constraints are

pf − pt
����

����2≤Δt, (32)

pk − po
����

����2≥Δo, (33)

where pf is the final state of the mobile robot, pk is the state
at each step, pt is the target state, and po is the obstacle state.
.ese are achieved according to (16), (17), and (21).

In the practical application, the linear and angular ve-
locities of the mobile robot are limited, so

0≤ qk ≤ qmax, (34)

which is achieved according to (9)–(15).
.en, the optimization problem becomes

Tra∗ � argmin
Tra

J. (35)

If the dynamic environment can be predicted ormotion of
the obstacle is not too drastic, our method is able to predict
optimal trajectory without supplement..is is analyzed in the
simulation experiment below. However, the dynamic envi-
ronment is unpredicted and motion of the obstacle is ir-
regular. So, an extra algorithm should be designed.

In order to update the trajectory online, the detection of
data in real time should be carried out. .e following
variable is established to measure changes in the
environment:

σ � od
k − o

m
k􏼐 􏼑

T
W5 od

k − o
m
k􏼐 􏼑, (36)

where od
k is the detection of the observation vector at each

step and om
k is the memory value of the current trajectory.

W5 is the matrix of weights. .e upper bound is set

σ < σbound. (37)

5. Experiments

5.1. Motion Planning Based on RFNN. To prove the effec-
tiveness of the proposed motion planning method, the
simulation experiment is carried out in this section using the
Matlab software. And, all experiments are performed on a
computer with Intel i5 2.3GHz processor and 8GB RAM.
.e simulation area is limited in 10 m × 10 m..ere contain
obstacles and target. .e autonomous mobile robot needs to
reach the target and avoid obstacles. .e detailed values of
the variables that need to be set manually are listed in
Table 1.

As illustrated in Figure 4, the navigation method
proposed here is goal driven. .e program strategy gen-
erates the trajectory guiding autonomous mobile robot to
move from the starting point to the target. At each step,
only the nearest position of the obstacle that threatens the
mobile robot’s safety is used in the training process of
RFNN. So, the obstacle model is established using points at
the edge as shown in Figure 5. Circle represents the
dangerous region whose radius is related to the error term
in (16). It is determined by the EKF algorithm’s training
speed. Distance between centers of adjacent circles depends
on b. If it is too long, the model becomes invalid. If it is too
short, the model is too compact to waste much time in
computation. When a suitable distance is chosen, a sparse
representation of the obstacle is established. Motion
planning is first carried out in the static environment. .e
target and obstacles are supposed to be fully detected in real
time.

.e trajectories without the numerical optimization are
shown in Figure 5. .e two motion trajectories are listed
here. Each mark on the path represents the planned position
of the mobile robot at each step. Changes of motion are
reflected clearly. .e position error of the robot during the
process is shown in Figure 6. When the robot moves close to
the obstacle, it slows down at points A and B. .is satisfies
the actual requirement and guarantees safety. .e corre-
sponding linear velocity is shown at points A and B in
Figure 7. .e corresponding angular velocity is shown at
points A and B in Figure 8. When the robot avoids the
collision with the obstacle, it speeds up to shorten time to
arrive the target. .e corresponding linear velocity is shown
at points C and D in Figure 7. .e corresponding angular
velocity is shown at points C and D in Figure 8. At points E
and F, the robot slows down to arrive the target. .e sta-
tistical analysis of the curvature is shown in Figure 9. It can
be seen that the programmed motion is smooth and is fit to
the actual action.

Information of the two trajectories is shown in Table 2.
Distance, step, cost, and terminal error are chosen as
evaluation criteria in this paper. In order to observe the
state of RFNN during process, weights are listed in Ta-
bles 3 and 4. .e weights are initially set in random. .ey
keep changing during the process to drive the robot to the
target and avoid obstacles. From k � 40 to k � 50, we can
see that they are convergent at the destination.

6 Computational Intelligence and Neuroscience

5.2. Optimization of Trajectory. In order to illustrate the
optimization of the solution, the trajectories are generated
as shown in Figure 10. Among all trajectories, only the blue
one is generated considering (31)–(35). .e corresponding
number in Table 5 is eight. .e left nine cyan trajectories
are generated randomly. Detailed information is listed in
Table 5. By suitably choosing weights in (31), moving
distance, step, and smoothness of trajectory are taken into
comprehensive consideration. It can be seen that more
computation is needed to generate optimal trajectory. .e
terminal error can be reduced by setting the target con-
straint in (32). In this paper, it is set as 0.5. As shown in the
boxplot of velocity in Figures 11 and 12, the values of the
eighth one are more concentrated and outliers are smaller.

Table 1: Initialization of the parameters.

b 0.2

c 0 0 −(π/2) −(π/2)

10 5 π/2 π/2􏼢 􏼣

σ 2.5 1 1 1􏼂 􏼃

λ 0.3
α 0.3
qmax 1 1􏼂 􏼃

T

Δt 0.5
Δo 0.3
σbound 0.5
Δt 1

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

X (m)

Y
(m

)

Robot

Obstacle

Target

Trajectory 1
Trajectory 2

A

B

C

D

E

F

Figure 5: Motion trajectory of the mobile robot.

0 10 20 30 40 50 60 70
–2

0

2

4

6

8

10

Time

Distance error of 1
Distance error of 2

Angle error of 1
Angle error of 2

Figure 6: Distance and angle error of the mobile robot.

0 10 20 30 40 50 60 70
0

0.25

0.5

0.75

1

Time

Trajectory 1
Trajectory 2

A

B

C

D

E

F

v (
m

/s
)

Figure 7: Linear velocity of the mobile robot.

0 10 20 30 40 50 60 70
–0.5

–0.4

–0.3

–0.2

–0.1

0

w
(r

ad
/s

) 0.1

0.2

0.3

0.4

0.5

Time

Trajectory 1
Trajectory 2

A

B
C

D

E

F

Figure 8: Angular velocity of the mobile robot.

Computational Intelligence and Neuroscience 7

.e performance of the eighth motion trajectory is better
than that of others, which is reflected by the curvature in
Figure 13.

5.3. Comparison with Other Methods. As mentioned above,
there are many programming methods. In order to prove
our method’s effectiveness, other methods are compared
here. OPTI supports for solving optimal problems and
consists of popular optimization solvers. So, a numerical
planner using the nonlinear program solvers in OPTI is
designed. Kinematic constraint, target, and obstacle con-
straints are considered in the process. Furthermore, the
classical A∗ method which is carried out using the grid map
is also taken into comparison.

.e results are shown in Figure 14. .e numerical
method is continuous in motion for the reasons that it plans
the control command instead of the mobile robot’s position.
And, the state of the mobile robot is space free. A∗ plans only
the position of the mobile robot and the path is not smooth.
An extra controller considering kinematic constraints of the
mobile robot should be added to track the path. Because it is
based on the grid map, the planned path can be unsuitable
for the robot to follow. A big curvature makes performance
bad, such as the orange circle area in Figure 14. Although
the performance of the numerical method is better, it takes
up more computation time than A∗ as listed in Table 6.
Compared to these two kinds of methods, our planner is
continuous in motion and the generated trajectory is
smooth. Computation time is much shorter than the

Table 2: Trajectory information.

Distance (m) Step Cost (s) Error (m)
Trajectory 1 10.20 62 0.228 0.389
Trajectory 2 10.44 59 0.347 0.303

–0.4

–0.2

0

0.2

0.4

k

0.6

Trajectory 1 Trajectory 2

Figure 9: Statistical analysis of the curvature.

Table 3: RFNN weights of trajectory 1.

k � 1 k � 10 k � 20 k � 30 k � 40 k � 45 k � 50
0.701 5.396 15.40 20.60 23.32 24.49 24.82
0.209 1.616 4.614 6.174 6.986 7.337 7.437
0.533 4.110 11.73 15.69 17.76 18.65 18.90
0.359 2.772 7.913 10.58 11.98 12.58 12.75
0.713 5.493 15.67 20.97 23.73 24.93 25.26
0.007 0.053 0.152 0.204 0.230 0.242 0.245
0.639 4.926 14.06 18.81 21.28 22.35 22.66
0.126 0.972 2.775 3.713 4.202 4.413 4.473
0.774 5.965 17.02 22.78 25.78 27.07 27.44
0.537 4.138 11.81 15.80 17.88 18.78 19.03
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.220 1.910 5.496 8.076 9.053 9.406 9.448

Table 4: RFNN weights of trajectory 2.

k � 1 k � 10 k � 20 k � 30 k � 40 k � 45 k � 50
0.101 0.882 2.538 3.730 4.181 4.344 4.363
0.756 6.545 18.82 27.66 31.01 32.22 32.36
0.866 7.494 21.55 31.67 35.50 36.89 37.05
0.996 8.624 24.80 36.45 40.86 42.45 42.64
0.098 0.852 2.451 3.601 4.037 4.195 4.213
0.172 1.493 4.295 6.312 7.075 7.351 7.383
0.484 4.192 12.05 17.72 19.86 20.64 20.73
0.937 8.110 23.32 34.28 38.42 39.92 40.10
0.509 4.409 12.68 18.63 20.89 21.70 21.80
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.466 4.036 11.61 17.06 19.12 19.87 19.95

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

X (m)

Y
(m

)

Target

Vehicle

Obstacle

Figure 10: Motion trajectories of the mobile robot.

Table 5: Information of trajectories.

Distance (m) Step Cost Terminal error
1 9.936 76 0.091 0.439
2 14.72 87 0.059 0.483
3 9.866 96 0.022 0.402
4 10.01 74 0.038 0.221
5 12.13 62 0.129 0.471
6 9.744 75 0.102 0.384
7 10.15 78 0.067 0.331
8 9.683 58 1.342 0.369
9 10.36 50 0.089 0.463
10 9.957 65 0.011 0.451

8 Computational Intelligence and Neuroscience

numerical method to achieve the same performance, but it is
a little longer than A∗. .e qualitative comparison is il-
lustrated in Figure 15.

5.4. Robustness of RFNN Planner. In this paper, we want to
realize real-time motion planning. So, robustness has to be
guaranteed. .e weights of RFNN are trained online. Per-
formance depends on initial weights. After initial weights are
ensured, trajectory is fixed under the current condition.
However, in the practical situation, dynamic environment
and perception inaccuracy influence performance of motion
planning. So, in this section, influence of these factors to our
planning method is introduced.

In order to prove the robustness of RFNN, the FNN-
based planner is compared in this section first. Initial
weights a0 of RFNN and FNN are both set as [0.1057, 0.1420,
0.1664, 0.6209, 0.5737, 0.0520, 0.9312, 0.7286, 0.7378, 0.0634,
0.8604, 0.9344, 0.9843, 0.8589, 0.7855, 0.5133, 0.1776, 0.3985,
0.1339, 0.0308, 0.9391, 0.3013, 0.2955, 0.3329, 0.4670, 0.6481,
0.0252, 0.8422, 0.5590, 0.8540, 0.3478, 0.4460]. It is supposed
that there is a perception error. In the actual motion period,
the obstacles’ position is biased contrasted to the prediction
period..e performance is shown in Figure 16. Motion with
RFNN under the perception error is the same as that under
prediction. .e recurrent frame in RFNN structure im-
proves the robustness of the planner. On the contrary,
motion with FNN is the biased contrasted prediction. .is
can cause dangerous in the actual situation.

To introduce our method’s robustness in dynamic
surroundings, the experiment is carried out as shown in
Figure 17. Initial weight a0 is set as [0.4401, 0.6305, 0.2144,
0.6398, 0.9684, 0.6972, 0.8841, 0.9268, 0.9452, 0.5178, 0.1781,
0.8219, 0.0489, 0.1291, 0.9319, 0.2809, 0.9441, 0.6843, 0.6741,
0.3766, 0.8681, 0.5585, 0.3033, 0.8492, 0.7845, 0.9706, 0.9782,

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Figure 11: Statistical analysis of velocity.

–0.4

–0.2

0

0.2

0.4

1 2 3 4 5 6 7 8 9 10

Figure 12: Statistical analysis of angular velocity.

–1

–0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10

Figure 13: Statistical analysis of the curvature.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

X (m)

Y
(m

)

Vehicle

Target

Obstacle

RFNN
A∗

OPTI

Obstacle
avoidance

Figure 14: Motion trajectories of the mobile robot.

Computational Intelligence and Neuroscience 9

0.6032, 0.0149, 0.2569, 0.3101, 0.2272]. We assume that
surroundings change to states 2 and 3. Corresponding
trajectories are green and yellow, respectively. .e changes
of RFNN weights of each condition are, respectively, il-
lustrated in Figure 18. Detailed information of each tra-
jectory is shown in Table 7. It proves that our method

Table 6: Trajectory information.

Distance (m) Step Cost (s) Error (m)
Opti 9.677 60 37.891 0.328
A∗ 9.838 62 0.512 0.354
RFNN 9.683 58 1.342 0.369

RFNN

OPTI
A∗

Optimality

Runtime Performance

Figure 15: Qualitative comparison.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

X (m)

Y
(m

)

Motion trajectory

Obstacle

Target

Robot

Prediction
Motion with RFNN
Motion with FNN

Figure 16: Qualitative comparison.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

X (m)

Y
(m

)

Obstacle

Target

State 1

State 2

State 3

Robot

State 1
State 2
State 3

Figure 17: Motion trajectory of the mobile robot.

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Weights

Step

State 3

State 1
State 2

Figure 18: Motion trajectory of the mobile robot.

Table 7: Trajectory information.

Distance (m) Step Error (m) State
State 1 9.683 58 0.369 Success
State 2 9.699 50 0.374 Success
State 3 4.714 15 4.723 Fail

10 Computational Intelligence and Neuroscience

possesses robustness in the dynamic environment with little
amplitude changes. It loses efficacy if the changes are drastic.
So, the dynamic update mechanism of initial weights of
RFNN should be designed necessarily.

5.5. Update of Motion Trajectory. Effectiveness of compu-
tation, continuity of motion, and smoothness of the pre-
dicted trajectory make the proposed planning method
feasible and stable to update online. By applying update
strategy to RFNN, robust optimality of prediction is guar-
anteed during the whole process. .e performance is shown
in Figure 19. .e update period is ΔT which depends on σ.
Optimal trajectory during T1 is generated at the beginning.
.e position of the target and obstacles keeps changing. If
the autonomous mobile robot keeps moving according to
trajectory 1, collision will happen..reshold settled in (37) is
reflected in Figure 20. .en, weights of RFNN are retrained
as shown in Figure 21. Optimal trajectory during T2 is
generated considering the updated position of obstacles and
target. .en robot changes the route at point A in Figure 19.
Corresponding changes of linear velocity is shown in Figure
22 at point A. Contrasted to linear velocity, change of an-
gular velocity is drastic in Figure 23. Because robot needs to
avoid collision. Position error during whole process is shown
in Figure 24. Before A point, red lines represent robot’s
position error. After point A, the green line represents the
robot’s position error. More computation periods can be
added until the mobile robot reaches the target. .is
guarantees the real-time optimization.

5.6. Hardware Application Based on Omnidirectional Vision.
In order to examine the effectiveness of our planning
method, we also implement it to the realistic mobile robot in
Figure 25. .e visual navigation has attracted many re-
searchers [27]. A catadioptric omnidirectional camera is

popularly used in recent years for its advantage of wide field
of view [28]. It can capture horizontal field of view in a single
image. So, the vision system based on the catadioptric
omnidirectional camera is carried on the mobile robot to
percept surroundings in this paper. Detailed imaging theory
is introduced in our previous work [29, 30].

Although it is a binocular stereo vision system, we only
use the lower camera of it because binocular stereo omni-
directional vision takes up much computation resource and
runtime performance is not good in real-time application.
When the mobile robot moves fast, binocular structure
swings violently. In order to use monocular vision to achieve
location, artificial landmarks are designed and SURF
(speeded-up robust features) are extracted to guarantee
rotation and scale invariance. .e features of simple shapes
are extracted firstly as shown in Figure 26..e landmarks are
then designed using these shapes and are placed on the wall

0 1 2 3 4 5 6 7 8
0

1

2

3

Y
(m

)

4

5

6

7

8

X (m)

Collision

Target

Vehicle

Obstacle

T1
T2

A

Figure 19: Motion trajectory of the mobile robot.

0 3 6 9 12 15
0

0.2

0.4

0.6

σ

0.8

1
Threshold

Step

Figure 20: Changes of σ.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Step

a

Figure 21: Changes of RFNN weights.

Computational Intelligence and Neuroscience 11

forming the location system as shown in Figure 25. Detailed
introduction of the location method is introduced in
[31, 32].

.e planning method proposed in this paper is carried
out, and the performance of mobile robot is shown in
Figure 27. .e obstacles in blue are known to the mobile
robot, and the green one is unknown. .e target position
keeps changing during the process. .ere are totally three
predictions. One is generated at the beginning in red. After
the unknown obstacle is detected, prediction 2 in magenta is
generated at point A. Prediction 3 is generated to lead the
mobile robot to reach the final station of the target at the B
point. .e blue circles represent the actual motion of the

mobile robot. Performance of the vision system is shown in
Figure 28. Detailed information of the prediction and actual
motion is listed in Table 8. During the process, the robot
locates itself by tracking the three landmarks..e landmarks
matching the precision curve in Figure 29 shows the per-
centage of correctly tracked frames for a range of distance

Figure 25: Experiment environment with artificial landmarks.

Figure 26: SURF of the sample landmarks.

0 10 20 30 40 50 60 70 80
–0.5

–0.4

–0.3

–0.2

–0.1

0

w
(r

ad
/s

) 0.1

0.2

0.3

0.4

0.5

Time

T2

T1

A

T2

T1

Figure 23: Angular velocity of the mobile robot.

0 10 20 30 40 50 60 70 80
0

0.25

0.5

0.75

v (
m

/s
)

1

1.25

1.5

Time

T2

T1

T1

T2

A

Figure 22: Linear velocity of the mobile robot.

0 10 20 30 40 50 60 70 80
–2

0

2

4

6

8

10

Time

Distance error of T1

Distance error of T2

Angle error of T1

Angle error of T2

T1

T2

A

Figure 24: Error of the mobile robot.

12 Computational Intelligence and Neuroscience

–1
–1

0 1 2 3 4

0

1

2

Y
(m

)

3

4

X (m)

Start

Target
Known
obstacle

Unknown
obstacle

Actual motion
Prediction 1

Prediction 2
Prediction 3

Landmark

A

B

Figure 27: Motion trajectory of the mobile robot.

#1

(a)

#10

(b)

#30

(c)

#50

(d)

#70

(e)

#80

(f)

#90

(g)

#100

(h)

#110

(i)

Figure 28: Monocular omnidirectional vision system.

Computational Intelligence and Neuroscience 13

thresholds. Precision is 98.3% at 10 pixels. Update of tra-
jectory is determined by settled threshold in (36) and (37). If
σ is beyond threshold, weights of RFNN are retrained as
mentioned above. Changes of σ are illustrated in Figure 30. σ
is beyond threshold at A and B. It leads to update of RFNN
weights as shown in Figure 31. Robot’s motion is then
changed in Figures 32 and 33. Figure 34 reflects the position
error of the mobile robot. In actual application, maximum
velocities are limited for safety. According to hardware
experiment, our method’s effectiveness is proved.

Among all experiment results above, the mobile robot’s
motion is drastic at the beginning. .is is reflected by linear
velocity. .e reason is that weights of RFNN are generated
randomly at the beginning. After learning using EKF,
predicted motion of the mobile robot is stable. Experiments
are carried out in limited area due to limited perception
ability of the vision system. But, it can be popularized to
large-scale navigation by combining the proposed program
method with the topological mapping method introduced in
[33].

6. Conclusion

By designing a simple RFNN structure and using an effective
EKF-based learning method, a novel motion planning
strategy is introduced. .e greatest novelty is that the
proposed method plans both motion and trajectory in real
time. Robust optimization of solution is guaranteed.
According to simulation and hardware experiments, effec-
tiveness is proved. All the experiments in this paper are

limited in a small area. Contrasted to path planning in
autonomous driving area, it is a kind of a local planning
method. Furthermore, the characteristics of planning in
free-space make it a suitable supplement to other global
methods. It can also be used as an obstacle avoidance
method. Although the method is introduced by considering
the unmanned ground mobile robot in 2D condition, it can
be popularized to unmanned aircraft and underwater un-
manned vehicle in 3D condition. Because our method does
not need the previous map and offline computation, it takes
up less memory space in contrast to other methods. .us, it
may have good performance in 3D condition where sur-
roundings are complex. In order to improve runtime per-
formance, initial weights of RFNN are generated randomly,
which can be modified in future work. Some heuristic
methods can be designed to choose initial weights of RFNN.
.e structure of RFNN used in this paper is simple. .e

Table 8: Trajectory information.

Distance (m) Step Error (m) Cost (s)
Prediction 1 4.747 57 0.155 1.261
Prediction 2 3.574 47 0.174 0.514
Prediction 3 1.274 52 0.123 0.081
Actual motion 6.569 103 0.099 110

0 10 20 30 40 50
0

0.2

0.4

Pr
ec

isi
on

0.6

0.8

1

Threshold

Figure 29: Landmark matching precision during process.

0 20 40 60 80 100 110
–10

0

10

20a

30

40

50
Dynamic weights

Step

A

B

Figure 31: Changes of RFNN weights during process.

0 20 40 60 80 100 110
0

0.2

0.4

σ

0.6

0.8

1

Time

A B

Figure 30: Changes of threshold during process.

14 Computational Intelligence and Neuroscience

output of RFNN is not considered as the input of RFNN.
More complex recurrent structures can be designed to
improve effectiveness of the RFNN planning strategy in the
future. Furthermore, the location method of the autono-
mous mobile robot used in this paper is too simple. It also
needs to be improved in future. Simultaneous localization
and mapping (SLAM) and visual-inertial odometry tech-
niques will be designed in our system..e perception system
will be developed more effectively in the future.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by the National Natural Science
Foundation of China under Grant 61673129 and U1530119,
the Natural Science Foundation of Heilongjiang Province of
China under Grant F201414, and the Fundamental Research
Funds for the Central Universities under Grant
HEUCF160418.

References

[1] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous
vehicle control: a nonconvex approach for obstacle avoid-
ance,” IEEE Transactions on Control Systems Technology,
vol. 25, no. 2, pp. 469–484, 2017.

[2] J. Faigl, “An application of self-organizing map for multirobot
multigoal path planning with minmax objective,” Computa-
tional Intelligence and Neuroscience, vol. 2016, Article ID
2720630, 15 pages, 2016.

[3] J. Ni, L. Wu, P. Shi, and S. X. Yang, “A dynamic bioinspired
neural network based real-time path planning method for
autonomous underwater vehicles,” Computational In-
telligence and Neuroscience, vol. 2017, Article ID 9269742,
16 pages, 2017.

[4] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nuchter, “A sensor-
fusion drivable-region and lane-detection system for auton-
omous vehicle navigation in challenging road scenarios,”
IEEE Transactions on Vehicular Technology, vol. 63, no. 2,
pp. 540–555, 2014.

[5] A. Majumdar and R. Tedrake, “Funnel libraries for real-time
robust feedback motion planning,” International Journal of
Robotics Research, vol. 36, no. 8, pp. 947–982, 2017.

[6] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic
approaches in robot path planning: a survey,” Robotics and
Autonomous Systems, vol. 86, pp. 13–28, 2016.

[7] O. Montiel, R. Sepúlveda, and U. Orozco-Rosas, “Optimal
path planning generation for mobile robots using parallel
evolutionary artificial potential field,” Journal of Intelligent &
Robotic Systems, vol. 79, no. 2, pp. 237–257, 2014.

[8] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path
planning for mobile robots using Bacterial Potential Field for

0 20 40 60 80 100 110
0

1

2

3

d g
 (m

)

4

5

Time

A

B

Figure 34: Position error of the mobile robot.

0 20 40 60 80 100 110
0

0.1

0.2

v (
m

/s
)

0.3

0.4

Time

A

B

Figure 32: Linear velocity of the mobile robot.

0 20 40 60 80 100 110
–0.2

–0.1

0

w
(r

ad
/s

)

0.1

0.2

Time

A

B

Figure 33: Angular velocity of the mobile robot.

Computational Intelligence and Neuroscience 15

avoiding static and dynamic obstacles,” Expert Systems with
Applications, vol. 42, no. 12, pp. 5177–5191, 2015.

[9] D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A
review of motion planning techniques for automated vehi-
cles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 4, pp. 1135–1145, 2016.

[10] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar,
“Automatic parallel parking with geometric continuous-
curvature path planning,” in Proceedings of 2014 IEEE In-
telligent Vehicles Symposium, pp. 465–471, Ypsilanti, MI,
USA, June 2014.

[11] A. H. Karami and M. Hasanzadeh, “An adaptive genetic al-
gorithm for robot motion planning in 2D complex envi-
ronments,” Computers & Electrical Engineering, vol. 43,
pp. 317–329, 2015.

[12] F. Abdessemed, M. Faisal, M. Emmadeddine et al., “A hier-
archical fuzzy control design for indoor mobile robot,” In-
ternational Journal of Advanced Robotic Systems, vol. 11, no. 3,
p. 33, 2014.

[13] M. Wang and J. N. K. Liu, “Fuzzy logic-based real-time robot
navigation in unknown environment with dead ends,” Ro-
botics and Autonomous Systems, vol. 56, no. 7, pp. 625–643,
2008.

[14] M. K. Singh and D. R. Parhi, “Path optimisation of a mobile
robot using an artificial neural network controller,” In-
ternational Journal of Systems Science, vol. 42, no. 1,
pp. 107–120, 2011.

[15] T. Dierks, B. Brenner, and S. Jagannathan, “Neural network-
based optimal control of mobile robot formations with re-
duced information exchange,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1407–1415, 2013.

[16] Z. Peng, G. Wen, S. Yang, and A. Rahmani, “Distributed
consensus-based formation control for nonholonomic
wheeled mobile robots using adaptive neural network,”
Nonlinear Dynamics, vol. 86, no. 1, pp. 605–622, 2016.

[17] C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-
evolving interval type-2 fuzzy neural network for dynamic
system processing,” IEEE Transactions on Fuzzy Systems,
vol. 17, no. 5, pp. 1092–1105, 2009.

[18] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and
prediction of dynamic systems using an interactively re-
current self-evolving fuzzy neural network,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 24,
no. 2, pp. 310–321, 2013.

[19] C.-J. Kim and D. Chwa, “Obstacle avoidance method for
wheeled mobile robots using interval type-2 fuzzy neural
network,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 3,
pp. 677–687, 2015.

[20] K. G. Jolly, R. Sreerama Kumar, and R. Vijayakumar, “In-
telligent task planning and action selection of a mobile robot
in a multi-agent system through a fuzzy neural network
approach,” Engineering Applications of Artificial Intelligence,
vol. 23, no. 6, pp. 923–933, 2010.

[21] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak,
“Extended Kalman filter based learning algorithm for type-2
fuzzy logic systems and its experimental evaluation,” IEEE
Transactions on Industrial Electronics, vol. 59, no. 11,
pp. 4443–4455, 2012.

[22] J. J. Rubio and W. Yu, “Nonlinear system identification with
recurrent neural networks and dead-zone Kalman filter al-
gorithm,” Neurocomputing, vol. 70, no. 13–15, pp. 2460–2466,
2007.

[23] X. Wang and Y. Huang, “Convergence study in extended
kalman filter-based training of recurrent neural networks,”

IEEE Transactions on Neural Networks, vol. 22, no. 4,
pp. 588–600, 2011.

[24] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer,
“Formal verification of obstacle avoidance and navigation of
ground robots,” International Journal of Robotics Research,
vol. 36, no. 12, pp. 1312–1340, 2017.

[25] Y. Han, Q. Zhu, and Y. Xiao, “Data-driven control of au-
tonomous vehicle using recurrent fuzzy neural network
combined with PID method,” in Proceedings of 37th Chinese
Control Conference (CCC 2018), pp. 5239–5244, Wuhan,
China, July 2018.

[26] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of
nonlinear dynamical systems with Kalman filter trained re-
current networks,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 279–297, 1994.

[27] F. B. Font, A. Ortiz, and G. Oliver, “Visual navigation for
mobile robots: a survey,” Journal of Intelligent & Robotic
Systems, vol. 53, no. 3, pp. 263–296, 2008.

[28] I. Cinaroglu and Y. Bastanlar, “A direct approach for object
detection with catadioptric omnidirectional cameras,” Signal,
Image and Video Processing, vol. 10, no. 2, pp. 413–420, 2015.

[29] Q. Zhu, C. Liu, and C. Cai, “A novel robot visual homing
method based on SIFT features,” Sensors, vol. 15, no. 10,
pp. 26063–26084, 2015.

[30] C. Cai, B. Fan, X. Weng, Q. Zhu, and L. Su, “A target tracking
and location robot system based on omnistereo vision,” In-
dustrial Robot: An International Journal, vol. 44, no. 6,
pp. 741–753, 2017.

[31] Q. Zhu, H. Xie, C. Cai, and P. Liu, “A rapid and precise self-
localization approach of mobile robot based on binocular
omni-directional vision,” in Proceedings of 36th Chinese
Control Conference (CCC 2017), pp. 26–28, Dalian, China, July
2017.

[32] Q. Zhu, P. Liu, and C. Cai, “Robust method of indoor robot
localization based on artificial landmark,” Journal of Com-
puter Applications, vol. 37, pp. 126–130, 2017.

[33] Q. Zhu, X. Liu, and C. Cai, “Feature optimization for long-
range visual homing in changing environments,” Sensors,
vol. 14, no. 2, pp. 3342–3361, 2014.

16 Computational Intelligence and Neuroscience

