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Purpose: Increasing evidence has elucidated the significance of lipid

metabolism in predicting therapeutic efficacy. Obviously, a systematic

analysis of lipid metabolism characterizations of gastric cancer (GC) needs

to be reported.

Experimental design: Based on two proposed computational algorithms

(TCGA-STAD and GSE84437), the lipid metabolism characterization of

367 GC patients and its systematic relationship with genomic characteristics,

clinicopathologic features, and clinical outcomes of GC were analyzed in our

study. Differentially expressed genes (DEGs) were identified based on the lipid

metabolism cluster. At the same time, we applied single-factor Cox regression

and random forest to screen signature genes to construct a prognostic model,

namely, the lipid metabolism score (LMscore). Next, we deeply explored the

predictive value of the LMscore for GC. To verify the specific changes in lipid

metabolism, a total of 90 serum, 30 tumor, and non-tumor adjacent tissues

from GC patients, were included for pseudotargeted metabolomics analysis via

SCIEX triple quad 5500 LC-MS/MS system.

Results: Five lipid metabolism signature genes were identified from a total of

3,104 DEGs. The LMscore could be a prognosticator for survival in different

clinicopathological GC cohorts. As well, the LMscore was identified as a

predictive biomarker for responses to immunotherapy and

chemotherapeutic drugs. Additionally, significant changes in sphingolipid

metabolism and sphingolipid molecules were discovered in cancer tissue

from GC patients by pseudotargeted metabolomics.
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Conclusion: In conclusion, multivariate analysis revealed that the LMscore was

an independent prognostic biomarker of patient survival and therapeutic

responses in GC. Depicting a comprehensive landscape of the

characteristics of lipid metabolism may help to provide insights into the

pathogenesis of GC, interpret the responses of gastric tumors to therapies,

and achieve a better outcome in the treatment of GC. In addition, significant

alterations of sphingolipid metabolism and increased levels of sphingolipids, in

particular, sphingosine (d16:1) and ceramide, were discovered in GC tissue by

lipidome pseudotargeted metabolomics, and most of the sphingolipid

molecules have the potential to be diagnostic biomarkers for GC.

KEYWORDS

gastric cancer, LMscore, therapeutic response, sphingolipid metabolism, lipidome
pseudotargeted metabolomics

1 Introduction

To the best of our knowledge, gastric cancer (GC) is still the

second leading cause of death from the malignant disease

worldwide and has remained relatively unchanged in the past

few decades (Takahashi et al., 2013; Wang et al., 2019).

Obviously, there is an urgent need to improve the survival

rate of GC patients. Metabolic reprogramming, especially

altered lipid metabolism, has been identified to support the

requirements of many different cancer cells for exponential

growth and proliferation (Park et al., 2018; Bian et al., 2020;

Faubert et al., 2020). Due to its biological significance in the

survival, signal transduction, and therapeutic response of cancer

cells, lipid metabolism characterizations have important

therapeutic implications (Martinez-Outschoorn et al., 2017;

Tang et al., 2021). The efficacy of drugs targeting lipogenic

enzymes, exogenous lipid uptake, inflammatory signaling

pathways, etc, have been evaluated in preclinical and clinical

studies (Fernandez et al., 2020).

In our previous study, we observed altered lipid metabolism

based on the serum levels of patients with chronic gastritis and

GC via untargeted metabolomics. Meanwhile, the results of

fasting lipid profile analysis were significantly different in the

control, chronic gastritis, and GC group (p < 0.05). Thus, these

results indicated that the characteristics of lipid metabolism may

influence the development of GC (Yu et al., 2021). In line with

other studies, more lipid metabolism-related signaling pathways

were validated in vitro and in vivo in GC. For instance,

PHTF2 was significantly enriched in the fatty acid metabolism

pathway and can regulate lipid metabolism to affect GC

tumorigenesis (Chi et al., 2020). Lipid metabolism-related

proteins, such as acyl-CoA thioesterase one and GLI family

zinc finger 3, were highly expressed in GC (Wang et al.,

2018). CD36 was validated as a mediator of GC metastasis by

regulating lipid metabolism through the AKT/GSK-3β/β-catenin
signaling pathway (Pan et al., 2019). However, the associations

between lipid metabolism and the pathological development of

GC still remain confusing.

To research the relationship between lipid metabolism and

clinical prognosis in GC, we applied two proposed computational

algorithms to estimate the lipid metabolism patterns of

1,536 tumors from GC patients (768 for immune infiltration,

431 for GEO, and 337 for TCGA) and systematically study the

correlation among the lipid metabolism phenotypes with

genomic characteristics, clinicopathologic features and clinical

outcomes of GC. Finally, lipidome pseudotargeted metabolomics

was applied to validate the specific change of lipid metabolism in

GC patients.

2 Materials and methods

2.1 Materials and methods for two
proposed computational algorithms

2.1.1 Gastric cancer datasets and data processing
GC gene expression datasets were publicly available and

reported with full clinical annotations. Patients with overall

survival less than 30 days were removed from further

evaluation, and cancer samples were available to construct

the LMscore. The transcriptomic dataset (https://gdc.

xenahubs.net/download/TCGA-STAD.htseq_fpkm.tsv.gz),

the annotation data (https://gdc.xenahubs.net/download/

gencode.v22.annotation.gene.probeMap), the phenotypic

data (https://gdc.xenahubs.net/download/TCGA-STAD.

GDC_phenotype.tsv.gz), the MSigdb lipid metabolism gene

set (http://www.gsea-msigdb.org/gsea/msigdb/cards/

REACTOME_METABOLISM_OF_LIPIDS), the mutation

data (https://gdc.cancer.gov/about-data/publications/mc3-

2017/mc3.v0.2.8.PUBLIC.maf.gz) and the CNV data of

GC (https://gdc-hub.s3.us-east-1.amazonaws.com/download/

TCGA-STAD.cnv.tsv.gz) were processed according to

previous studies (Zeng et al., 2019; Chen et al., 2021). The

microarray data of GSE84437 generated by Affymetrix were

obtained from the Gene Expression Omnibus (GEO),

included 768 GC specimens and 626 lipid metabolism
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genes for subsequent analysis. Information about the GC

datasets were detailed in Supplementary Table S1.

2.1.2 Differentially expressed genes associated
with lipid metabolism

To identify genes associated with lipid metabolism, we

grouped patients into lipid metabolism clusters and lipid

metabolism gene clusters. Differentially expressed genes

(DEGs) in different groups were determined by the limma

package (Ritchie et al., 2015). Then, the ggpubr package was

used to show the differentially expressed lipid metabolism genes

in normal and cancer samples, and the RCircos package was used

to display DEGs at chromosomal positions. Finally, we applied

packages of R factoextra and FactoMineR in principal

component analysis (PCA) for DEGs to characterize the

classification of samples. Tumors with qualitatively different

lipid metabolism cell infiltration patterns were grouped using

hierarchical agglomerative clustering. Unsupervised clustering

methods were used to identify lipid metabolism patterns and

classify patients for further analysis. A consensus clustering

algorithm was applied to determine the number of clusters in

the GC cohort to assess the stability of the discovered clusters.

This procedure was performed using the ConsensuClusterPlus

package and was repeated 100 times to ensure the stability of the

classification.

2.1.3 Generation of lipid metabolism gene
signatures

The construction of lipid metabolism metagenes was

performed as previous study (Zeng et al., 2019; Jiang et al.,

TABLE 1 Clinical characteristics of the subjects.

Group Control (n = 30) CG (n = 30) GC (n = 30) χ2/F value p

Male/female (n) 15/15 15/15 23/7 5.875 0.053

Age (years ±standard deviation) 52 ± 9.03 55.14 ± 7.65 63.57 ± 9.17*# 13.436 0.000

History

H. pylori infection 0 3 0 NA NA

Gastritis (n) 0 15 NA NA NA

Chronic active gastritis (n) 0 12 NA NA NA

Intestinal metaplasia and/or atrophy (n) 0 0 NA NA NA

Endoscopic diagnosis

Normal NA 0 NA NA NA

Hiatal hernia NA 0 NA NA NA

Esophagitis NA 0 NA NA NA

Antroduodenitis NA 0 NA NA NA

Duodenal ulcer NA 0 NA NA NA

Gastric ulcer NA 10 NA NA NA

Other NA 20 NA NA NA

Tumor localization

Antrum NA NA 9 NA NA

Corpus NA NA 8 NA NA

Cardias NA NA 3 NA NA

Unknown NA NA 10 NA NA

Histologic grade

Grade 1 NA NA 18 NA NA

Grade 2 NA NA 5 NA NA

Grade 3 NA NA 1 NA NA

Grade 4 NA NA 6 NA NA

TNM stage

I NA NA 6 NA NA

II NA NA 12 NA NA

III NA NA 5 NA NA

IV NA NA 1 NA NA

Unknown NA NA 6 NA NA

Compared with the control group, *p < 0.05. Compared with the CG, group, #p < 0.05.
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2021). Based on the differential genes in the lipid metabolism

cluster, we firstly used single factor regression analysis to screen

out genes with prognostic differences, with a threshold of p <
0.001, and then used random forest to extract characteristic genes

with a Gini index >10. Then, principal component analysis

(PCA) was performed, and principal components 1 and

2 were extracted to serve as the signature score. After

obtaining the prognostic value of each gene signature score,

we defined the LMscore of each patient as follows:

LMscore � ∑(PC1i + PC2i)

where i is the expression level of gene i. The cutoff values of each

dataset were evaluated based on the association between patient

overall survival and the LMscore in each separate dataset using

the survival and survminer packages, and patients were then

divided into low and high LMscore groups.

2.1.4 Predictive value of the lipid metabolism
score to estimate therapeutic effect

The immune gene set comes from the ImmPort database

and the InnateDB database (Breuer et al., 2013; Bhattacharya

et al., 2018). Tumor immune dysfunction and exclusion

(TIDE) was used to investigate the predictive value of the

LM score for immunotherapy, and the TIDE score was shown

in the high- and low-risk groups (Jiang et al., 2018). The

pRRophetic R package was used to determine whether the

LMscore could accurately predict clinical chemotherapeutic

responses (Geeleher et al., 2014).

2.2 Materials and methods for lipidome
pseudotargeted metabolomics

2.2.1 Study participants for lipidome
pseudotargeted metabolomics

A total of 90 serum (30 control individuals, 30 CG patients

and 30 GC patients), as well as 30 tumor and 30 adjacent

tissues from the GC patients, were gathered and weighed for

pseudotargeted metabolomics analysis, which was approved

by the Ethics Committee of Mianyang Central Hospital. All

sample were collected after the routine inspection. Meanwhile,

the inclusion criteria and exclusion criteria for the disease

groups were similar to the reported literature (Yu et al., 2021).

All serum samples were collected after fasting. The detailed

clinicopathological characteristics are shown in Table 1.

2.2.2 Lipidome pseudotargeted metabolomics
analysis

According to the criteria, serum sample and tissue sample

were separately prepared for lipidome pseudotargeted

metabolomics analysis. The strategy for lipidome

pseudotargeted metabolomics analysis have been reported

(Chen et al., 2013; Li et al., 2020). Firstly, the information

of the characteristic ion pairs (the retention time, primary

mass spectrum, and secondary mass spectrum data) were from

serum untargeted metabolomics analysis. Next, the multiple

reaction monitoring (MRM) mode was adopted to perform

lipidome pseudotargeted metabolomics analysis for tissue

sample. ONE-MAP was used for lipidome pseudotargeted

metabolomics data analysis (Bro and Smilde, 2014).

2.3 Statistical analysis

For comparisons of two groups, statistical significance for

normally distributed variables was estimated by unpaired

Student’s t-tests. For comparisons of more than two groups,

Kruskal-Wallis tests were used as nonparametric methods.

Correlation coefficients were computed by Spearman and

distance correlation analyses. Two-sided Fisher exact tests were

used to analyze contingency tables. The cutoff values of each

dataset were evaluated based on the association between patient

overall survival and the LMscore in each separate dataset using the

survminer package. The forest plot package was used to present the

results of group analysis for the LMscore in GC datasets and TCGA

datasets. The Kaplan-Meier method was used to generate survival

curves for the groups in each dataset, and the log-rank test was used

to determine the statistical significance of differences (Bland and

Altman, 1998). The hazard ratios for univariate analysis was

calculated by a univariate Cox proportional hazards regression

model. A multivariate Cox regression model was used to

determine independent prognostic factors using the survminer

package. All statistical analyses were conducted using R or SPSS

software, and the p values were two-sided. p < 0.05 was considered

statistically significant.

3 Results

3.1 Characterization of lipid metabolism in
gastric cancer and distinct patterns of lipid
metabolism subtypes

The clinicopathological characteristics of the GC cohort in the

present study were shown in Supplementary Table S1. The TCGA

dataset comprised 499 patients, and their transcriptomic data, were

included in our initial analysis. Differentially expressed lipid

metabolism-related genes were determined by significance criteria

(adjusted p value <0.05 and |logFC| ≥ 1) as implemented in the

limma package. Then, the differential expression of lipidmetabolism

genes in normal and cancer samples were showed. To identify the

optimal cluster number, clustering stability was assessed according

to the ConsensusClusterPlus package. The consensus matrix

supported the existence of three robust clusters for GC (data not

shown). We identified 94 prognosis-related lipid metabolism genes
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through univariate Cox regression analysis, among which 27 were

protective factors and 67 were risk factors (Figure 1A). The hmisc

package was used to calculate the correlation of lipid metabolism

genes with prognostic efficacy, and 7 differentially expressed and

prognosis-related lipid metabolism genes were clustered into three

categories. In addition, the three clusters had significant prognostic

FIGURE 1
Characterizations of lipid metabolism in GC. (A) Cellular interactions of lipid metabolism in GC. The size of each cell represents the survival
impact of each lipid metabolism gene. Favorable factors for OS, green circle; Risk factors for OS, orange circle. Positive correlation, red square;
Negative correlation, blue square. (B) The association between lipid metabolism patterns and OS of 768 patients in the TCGA and GEO datasets. And
the log-rank test shows an overall p < 0.05. (C) GSVA (gene set variation analysis) between the three clusters. Cluster 1, red; Cluster 2, green;
Cluster 3, purple.
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FIGURE 2
Constructing the prognostic model of the LMscore based on lipid metabolism signatures in GC. (A) Heatmap of unsupervised analysis and
hierarchical clustering of the 3,104 DEGs and their associations with clinicopathological characteristics. (B) Kaplan-Meier plots for the association
between lipidmetabolism gene clusters andOS of 768 patients in the TCGA and GEO datasets. And the log-rank test shows an overall p= 0.0013. (C)
The fraction of 11 differentially expressed genes in two lipid metabolism gene clusters. (D) Alluvial diagram showing the correlation of lipid
metabolism subtypes with LMscore groups and clinical outcomes. (E) Kaplan-Meier curves of high- and low-LM score groups in the entire TCGA
cohort. Log-rank test shows an overall p = 0.00043. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001, p ≤ 0.0001.
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differences (p = 0.008) (Figure 1B). Finally, a total of 18 pathways

were enriched based on the lipid metabolism gene expression profile

by GSVA (gene set variation analysis) (Figure 1C).

3.2 Construction and validation of the lipid
metabolism score in different gastric
cancer datasets

Analysis of K-means based onDEGs was then employed to

classify the patients into two groups (Figure 2A). Survival analysis

of patient and a total of 11 differentially expressed genes among the

two lipidmetabolism gene clusterswere determined (Figures 2B,C). In

addition, the relationships of lipid metabolism subtypes and LMscore

groups as well as the outcomes of patients were analyzed. According

to the median of the LMscore, and we found that overall survival was

significantly longer for patients in the low LMscore group than for

patients in the high LMscore group (Figure 2D). Moreover, the

LMscore was established for each patient based on the prognostic

value of each signature gene. As shown in Figure 2E, the LMscore

could effectively distinguish significantly different OS in the entire

cohort. Notably, patients with a low LMscore had significantly higher

survival probability than those with a high LMscore (n = 384, p =

0.00043), which was validated in the GSE15459 dataset

(Supplementary Figure S1).

We also studied the difference in the LMscore in the clinical

groups using the GC cohort from TCGA and GEO databases. We

found that the LMscore tended to increase as the tumor volume

increased, which indicated that a high LMscore denotes a worse

prognosis (Supplementary Figure S2A). There was a high incidence of

GC with an average age of 33 years old. Interestingly, we also found

that the LM score in the age <55 group was higher than that in the

other two groups (55 ≤ age ≤70, and age >55) (Supplementary Figure

S2B). When comparing the different grade, stage and lymph node

groups, disease progressionwas associatedwith an increased LMscore.

In addition, there were significant differences in the LMscore between

the high and low lymphnode number groups (Supplementary Figures

S2C,D,E). Finally, the robustness of our model was proven, and the

high LMscore group indeed had a worse prognosis (Supplementary

Figure S3).

3.3 Predictive value of the lipid
metabolism score as a biomarker for
therapeutic effect in gastric cancer

TIDE was used to evaluate the LM score as a predictor of

immunotherapy, and significant differences were observed in the

TIDE score between the high and low LM groups (Figure 3A).

Meanwhile, the TIDE prediction score was in the high LM group

was significantly higher than that in the low LM group (n = 384, p <
2.22e-16), which indicated that the low LM score groups were more

sensitive to immunotherapy (Jiang et al., 2018). Additionally,

comparison of the IC50 of different drugs was applied in high

and low LMscore groups, of which 67 kinds of drugs were

significantly differential, and the high LMscore group had higher

sensitivity. The first six drugs were displayed according to the p value

(p < 2.22e-16) (Figure 3B). Totally, the difference of the predictive

value of lipid metabolism between immunotherapy and

chemotherapy, and the underlying molecular mechanism need to

validate.3.4 Significant alterations of sphingolipid metabolism in GC

discovered by lipidome pseudotargeted metabolomics.

To validated our preliminary research, a total of 90 serum

samples were firstly used for untargeted metabolomics analysis by

SCIEX triple quad 5500 LC-MS/MS system. Representative total ion

chromatograms (TIC) in positive and negative ion mode were

selected and showed in Supplementary Tables S2, S3. Based on

the result of untargeted metabolomics analysis, lipidome

pseudotargeted metabolomics was determined to the metabolism

characteristics of tissue from GC patients. Next, metabolomics data

were analyzed by multivariate methods including principal

component analysis (PCA) and partial least squares discriminant

analysis (PLS-DA). Differentially accumulated metabolites were

identified based on variable importance in the projection (VIP) >
1 in the loadings plot, FC > 1.5 or FC < 2/3, and p < 0.05. And, the

AUC of the differential metabolites were calculated by the ROC

analysis. PCA and PLS-DAwere sufficient to characterize the results

of tissue metabolite profiling (Figure 4). From the global overview of

ion features, we interestingly found that significant alterations of

sphingolipid metabolism were discovered by lipidome

pseudotargeted metabolomics in cancer tissue from GC patients.

In addition, sphingolipids molecules including sphingosine (d16:1)

and the group of compounds known as ceramides, were validated in

GC patients. According to the basic principle for ROC analysis

(Hajian-Tilaki, 2013), differential metabolites were chosen as

candidate markers when AUC >0.70 (Table 2).

4 Discussion

Cancer cells possess altered cellular metabolism, which

provides the biochemical basis to support tumorigenicity and

malignancy, including in GC (Huang et al., 2020;

Snaebjornsson et al., 2020). We previously found that

altered lipid metabolism is the most prominent metabolic

alteration in GC by untargeted metabolomics (Yu et al., 2021).

The decrease in lipid profile in cancer patients may be owing

to their increased utilization of lipids by neoplastic cells in

membrane biogenesis. However, the changes in lipid

metabolism and the correlation between lipid metabolism

and clinical outcome in GC patients have been poorly studied.

The study was mainly focused on the prognostic of the low and

high LMScore groups in different clinical models. As we known, the

prognosis of GC is related tomany factors, such as LAURENS typing,

HER-2, PD-L1 expression, and so on. Based on LAURENS typing,

GC is classified into intestinal type and diffuse type adenocarcinoma.
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Previous research has found that diverse metabolic pathways,

including cholesterol homeostasis, glycolysis and fatty acid

metabolism were dysregulated between the diffuse- and intestinal-

subtypes. Recent genetic profiling research has led to the development

of a new classification, namely the newly defined genomically stable

subtype, which shares many cases with the histopathologically diffuse

type (Ling et al., 2020; Suh et al., 2022). In addition, based on different

cancer genomics research, different molecular functions and

mutational signatures characteristic will be validated. Our study

possibly provides an understanding of lipid metabolism in GC

heterogeneity (Nam and Lee, 2022). Next, we performed an

unsupervised clustering method to classify GC samples based on

FIGURE 3
Predictive value of the LMscore as a biomarker for immunotherapy and chemotherapy for GC. (A) Box plots showing TIDE scores between the
high and low LMscore groups. (B) Box plots showing the IC50 values between the high and low LMscore groups stratified by the drug, GSK269962A,
and LFM. A13, JNJ.26854165, Bexarotene, AP.24534, and Dasatinib. ****, p < 2.22e-16.

FIGURE 4
Multivariate analysis of pseudotargetedmetabolomics data of tissue from the GC patients. (A) Three-dimensional score plot of the PCAmodels.
(B) Score plots for the first three latent components of the PLS-DA model. Cancer tissue in GC patients, GCT; adjacent tissue in GC patients, GCP.
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the proportions of 28 types of immune cells. The proportions of

infiltrating immune cells among the three lipid metabolism subtypes

were divided into high- and low-infiltration groups, and there was a

significant difference in survival when the two groups had infiltrating

activated CD4 T-cells and natural killer T-cells (Data not show). Lipid

metabolites can indirectly regulate T-cell activation (Shyer et al., 2020).

For instance, β-oxidation of de novo fatty acids is important for the

differentiation of CD4+ regulatory T-cells (Lochner et al., 2015).

Studies have proven that lipid metabolism can limit the cytotoxic

machinery of NK cells viamTOR signaling (Michelet et al., 2018). As

well, a recent study showed blockade of PD-L1 in GC influences lipid

metabolism by increasing FAPB4/5 expression in CD8+ tissue-

resident memory T-cells (Mabrouk et al., 2022). Thus, lipid

metabolism has been an anticancer target.

Consensus clustering has been widely used in genomic

studies. In this study, we used consensus clustering to estimate

the optimal K value. We found that when K = 3, the consensus

matrix was the crispest (Lancichinetti and Fortunato, 2012).

Therefore, GC samples were classified into three clusters.

Based on the DEGs among the three clusters, we used this

criterion to determine the optimal K value and classify GC

samples. Finally, two lipid metabolism subtypes, LMscore-

high and LMscore-low, were identified based on this GC

cohort, and the top five genes were CAV1, PALM, PCDH7,

C14orf132, and CEP55. These DEGs have been validated to

regulate lipid metabolism in cell renal cell carcinoma1 (Zhang

et al., 2021), prostate cancer (Vykoukal et al., 2020) and colon

cancer (Jeffery et al., 2016), which indicated that these DEGs

may be potential prognostic biomarkers and therapeutic

targets for GC.

Integrated analysis revealed that the LMscoremay be a prognostic

biomarker forGC, and that the LMscore showed a positive correlation

with the progression of GC. Our data also revealed that patients with

higher histologic grade, higher clinical stage and more lymph nodes

exhibited higher LMscore (Supplementary Figures S2,S3). Increasing

evidence has indicated that enhanced synthesis or uptake of lipids

contributes to rapid cancer cell growth and drug resistance. Besides,

the IC50 values for the high LMscore group were lower than those of

the low LMscore groups, which also demonstrated the different

underlying molecular mechanism.

Therefore, the specific changes in lipid metabolism should be

further verified. Here, we performed lipidome pseudotargeted

metabolomics to investigate the metabolic features for GC. The

detailed clinicopathological characteristics, such as age, gender,

endoscopic diagnosis, esophagitis, tumor localization, histologic

grade, and TNM stage were shown in Table 1. From the

lipidome pseudotargeted metabolomics analysis, sphingolipid

metabolism was significantly altered in the cancer tissue

compared with adjacent tissue in GC patients. In addition, a

group of sphingolipids molecules were validated in GC patients

may be used as candidate biomarkers for GC diagnosis. Sphingosine

(d16:1), SM 38:2, and series of ceramides including Cer (d18:0/18:0),

Cer (d18:2/21:0), GlcCer (d18:1/12:0), and so on, were significantly

upregulated (FC > 1.5) in cancer tissue from GC patients when

compared with those in healthy subjects (Table 2). Sphingolipids

have been linked to cancer drug resistance (Giussani et al., 2014;

TABLE 2 Differential metabolites in GC tumor tissue when compared to adjacent tissue.

Compounds FCa log2(FC) VIP AUC CI p (U test) p (homogeneity variance test)

sphingosine (d16:1) 4.38 2.13 1.11 0.73 0.60–0.86 1.81E-03 2.07E-20

Cer (d18:1/20:0) 3.97 1.99 1.01 0.87 0.77–0.97 8.51E-07 2.86E-24

Cer (d18:0/18:0) 3.67 1.88 1.08 0.83 0.72–0.94 1.13E-05 6.14E-22

Cer (d18:2/21:0) 3.45 1.79 1.32 0.85 0.75–0.96 2.78E-06 3.62E-13

GlcCer(d18:1/12:0) 3.00 1.59 1.03 0.77 0.64–0.89 4.10E-04 4.37E-12

Cer (d18:2/20:0) 2.67 1.42 1.92 0.92 0.85–1.00 1.77E-08 6.32E-07

HexCer (d18:2/20:0) 2.64 1.40 1.36 0.86 0.77–0.95 1.58E-06 3.45E-03

Cer (d18:2/23:0) 2.13 1.09 1.12 0.74 0.61–0.87 1.48E-03 6.22E-06

SM 38:2 2.13 1.09 1.22 0.90 0.82–0.98 1.20E-07 1.24E-06

Cer (d18:2/18:0) 2.07 1.05 1.68 0.88 0.80–0.97 3.66E-07 5.31E-04

Cer (d18:2/22:0) 2.06 1.04 1.34 0.83 0.72–0.93 1.48E-05 2.61E-04

Cer (d18:0/24:1) 2.00 1.00 1.09 0.84 0.74–0.94 5.27E-06 9.58E-08

Cer (d16:1/22:0) 1.99 0.99 1.01 0.75 0.62–0.87 9.27E-04 2.81E-05

Cer (d18:1/24:0) 1.94 0.96 1.06 0.84 0.74–0.94 6.07E-06 1.33E-07

Cer (d18:1/23:1) 1.91 0.93 1.08 0.78 0.65–0.91 1.84E-04 3.66E-04

Cer (d18:1/24:1) 1.90 0.93 1.03 0.83 0.72–0.94 1.21E-05 2.48E-07

Cer (d18:0/16:0) 1.89 0.92 1.06 0.79 0.67–0.91 1.29E-04 3.40E-03

Cer (d18:2/24:1) 1.78 0.83 1.18 0.83 0.73–0.94 9.19E-06 7.03E-05

aFC, FC > 1.5 indicates the upregulated level, FC < 2/3 indicates the downregulated level.
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Ogretmen, 2018; Companioni et al., 2021). Besides, sphingolipid

metabolism has been validated to regulate the susceptibility to host

immune cells, and a comprehensive landscape of tumor

microenvironment characteristics helps interpret the responses of

GC to immunotherapies (Church and Galon, 2015; Popel, 2020).

Therefore, the comprehensive evaluation of lipid metabolism

characterization is complementary to better maximize the

antitumor efficacy both immunotherapy and chemotherapy

(Binnewies et al., 2018). Meanwhile, this study provided clues to

explore the detailed molecular mechanism of sphingolipid

metabolism in GC.

5 Conclusion

In conclusion, our present study depicts a comprehensive

landscape of lipid metabolism signatures in GC. Meanwhile, the

LMscore was proven to be a promising predictor of patient survival

and therapeutic responses in GC, whichmight be helpful to improve

therapy. Notably, our study is also the first to demonstrate the levels

of sphingolipid metabolismare significantly different in GC tumor

tissue when compared to adjacent tissue via lipidome

pseudotargeted metabolomics. Additionally, differential

sphingolipid molecules validated in this study may be as

diagnostic biomarkers for the diagnosis and classification of GC.
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