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Damage to the CNS results in neuronal and axonal degeneration, and subse-
quent neurological dysfunction. Endogenous repair in the CNS is impeded by
inhibitory chemical and physical barriers, such as chondroitin sulfate proteogly-
cans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon
regeneration. Previously, it has been demonstrated that the inhibition of axonal
histone deacetylase-6 (HDAC6) can promote microtubule �-tubulin acetylation
and restore the growth of CSPGs- and MAG-inhibited axons. Since the acetylation
of �-tubulin is regulated by two opposing enzymes, HDAC6 (deacetylation) and
�-tubulin acetyltransferase-1 (�TAT1; acetylation), we have investigated the regu-
lation of these enzymes downstream of a growth inhibitory signal. Our findings
show that exposure of primary mouse cortical neurons to soluble CSPGs and MAG
substrates cause an acute and RhoA-kinase-dependent reduction in �-tubulin
acetylation and �TAT1 protein levels, without changes to either HDAC6 levels or
HDAC6 activity. The CSPGs- and MAG-induced reduction in �TAT1 occurs pri-

marily in the distal and middle regions of neurites and reconstitution of �TAT1, either by Rho-associated kinase (ROCK)
inhibition or lentiviral-mediated �TAT1 overexpression, can restore neurite growth. Lastly, we demonstrate that CSPGs and
MAG signaling decreases �TAT1 levels posttranscriptionally via a ROCK-dependent increase in �TAT1 protein turnover.
Together, these findings define �TAT1 as a novel potential therapeutic target for ameliorating CNS injury characterized by
growth inhibitory substrates that are prohibitive to axonal regeneration.

Significance Statement

Chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG) represent significant
barriers to axon regeneration after CNS injury. Inhibition of axonal histone deacetylase-6 (HDAC6), an
enzyme that regulates �-tubulin deacetylation, has been shown to overcome the inhibitory effects of CSPGs
and MAG to axon growth. In the present study, we report that �TAT1, the �-tubulin acetyltransferase that
opposes HDAC6’s activity, is downregulated in neurites by CSPGs and MAG in cortical neurons in vitro.
This reduction is associated with a loss of �-tubulin acetylation and occurs via a RhoA-kinase-dependent
pathway. Restoring �TAT1 expression in CSPGs- or MAG-inhibited cortical neurons rescues neurite growth.
Our results suggest that �TAT1 is a potential therapeutic target to promote axonal regeneration in the CNS.
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Introduction
CNS function requires the maintenance of axonal struc-

tural integrity and proper connectivity. As such, injury to
axons often results in dysfunction, typified by the motor
and sensory loss seen following spinal cord injuries. Ex-
acerbating the consequences of injury, axonal regenera-
tion in the CNS is limited, which results in the dysfunction
becoming permanent (Dell’Anno and Strittmatter, 2017).
Both intrinsic and extrinsic neuronal mechanisms contrib-
ute to failed axonal regeneration (Yiu and He, 2006). Many
extrinsic factors are a result of the injury environment and
are regarded to be prohibitive to axon regrowth. These
include, but are not limited to, chondroitin sulfate proteogly-
cans (CSPGs; McKeon et al., 1999; Jones et al., 2003; Tang
et al., 2003), and myelin associated-glycoprotein (MAG;
McKerracher et al., 1994; Mukhopadhyay et al., 1994).
These factors induce signaling, via RhoA and Rho-
associated kinase (ROCK), which converges on the cyto-
skeletal network to inhibit axon growth (Dergham et al.,
2002; Borisoff et al., 2003; Monnier et al., 2003; Mimura
et al., 2006). Microtubules, which consist of cylindrical
structures assembled from protofilaments of �- and
�-tubulin heterodimers (Desai and Mitchison, 1997) and
constitute a major component of the cellular and axonal
cytoskeleton, play a critical role in axon extension and
retraction. Microtubule lengths are variable, depending on
the degree of assembly and disassembly at their plus and
minus ends, making them highly dynamic. This dynamic
structure is essential for many important cellular functions
(Westermann and Weber, 2003), so it is not surprising that
microtubules are under heavy and stringent regulation.

Posttranslational modification is a well-established mech-
anism of regulating microtubules dynamics, and this in-
cludes acetylation of �-tubulin on lysine residue 40 (K40;
Nogales et al., 1998; Janke and Bulinski, 2011). The im-
portance of �-tubulin K40 acetylation is underscored by
several studies that reveal its role in promoting axonal
transport, motor protein binding, and motility (Reed et al.,
2006; Dompierre et al., 2007; Hammond et al., 2010; Alper
et al., 2014; Godena et al., 2014). Using cell culture mod-
els, it has been shown that defective axonal transport can
be rescued by �-tubulin hyperacetylation (Dompierre

et al., 2007). Loss or reduction in �-tubulin acetylation
is associated with a number of neuropathological condi-
tions, including familial dysautonomia, Alzheimer’s disease,
Huntington’s disease, and Charcot-Marie-Tooth disease
(Hempen and Brion, 1996; d’Ydewalle et al., 2001; Dompi-
erre et al., 2007; Gardiner et al., 2007). Taken together, the
injured axon requires numerous processes that are depen-
dent on �-tubulin acetylation to initiate regrowth.

Previous studies have shown that �-tubulin K40
deacetylation is a primary and non-nuclear function of the
class II zinc-dependent histone deacetylase (HDAC) fam-
ily member, HDAC6 (Zhang et al., 2003; Zhang et al.,
2008). By contrast, MEC-17/�-tubulin acetyltransferase-1
(�TAT1) is the enzyme responsible for �-tubulin K40 acet-
ylation (Akella et al., 2010; Shida et al., 2010). Several
studies to date have suggested important roles for
HDAC6 and �TAT1 in regulating �-tubulin K40 acetylation
and neurite outgrowth. In cultured neurons, pharmacolog-
ical inhibition or knockdown of HDAC6 can prevent the
inhibitory actions of MAG and CSPGs on axonal growth
(Rivieccio et al., 2009). Similarly, it has been shown that
�TAT1 is required for mechanosensation in Caenorhabdi-
tis elegans and that loss of �TAT1 leads to disruption of
microtubule structural integrity and axonal morphologic
defects in touch receptor neurons (Cueva et al., 2012;
Topalidou et al., 2012). Moreover, the loss of �TAT1
disrupts axonal transport, leading to spontaneous axonal
degeneration (Neumann and Hilliard, 2014). Studies in
more complex organisms such as zebrafish and mice
have shown that the loss of �TAT1 results in neuromus-
cular defects (Akella et al., 2010) and brain abnormalities,
respectively (Kim et al., 2013).

Here, we demonstrate that �TAT1 plays an important
role in the acetylation of �-tubulin required for axon
growth. We show that in the presence of MAG or CSPGs,
�TAT1 levels are reduced, resulting in decreased axonal
�-tubulin K40 acetylation. This reduction in �TAT1 level is
mediated via RhoA-ROCK signaling, is a result of de-
creased �TAT1 protein stability, and that reconstitution of
�TAT1 by ROCK inhibition or lentiviral-mediated �TAT1
expression is sufficient to restore growth to MAG- and
CSPGs-inhibited axons. In contrast to �TAT1, under these
conditions HDAC6 levels and activity are unchanged follow-
ing MAG and CSPGs exposure. Based on our data, we
suggest a model of axon growth control through �-tubulin
acetylation via the competing acetyltransferase and
deacetylase activities of �TAT1 and HDAC6, respectively.

Materials and Methods
Antibodies and reagents

The following antibodies were used: CSPGs (2 �g/ml;
CC117, EMD Millipore), cycloheximide (10 �g/ml; C0934,
Sigma Aldrich), recombinant rat myelin-associated glyco-
protein (MAG; 30 �g/ml; P07722, R&D Systems), Y-27632
ROCK inhibitor (10 �M; 1254, Tocris Bioscience), anti-
�TAT1 (1:200; ab58742, Abcam), anti-HDAC6 (1:500;
NB100-91805, Novus Biologicals), anti-acetylated �-tubulin
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(1:1000; D20G3, Cell Signaling Technology), anti-�-tubulin
(1:5000; DM1A, Sigma-Aldrich), anti-�-actin (1:5000; AC-74,
Sigma-Aldrich), anti-� III tubulin (1:5000; MRB435P, BioLeg-
end) and anti-GFP (1:500; Sigma-Aldrich). Lentivirus con-
taining GFP (control) or GFP-tagged wild-type �TAT1
constructs, under the human cytomegalovirus (CMV) pro-
moter, was purchased from Dr. Mingjie Li (Washington Uni-
versity School of Medicine, St. Louis, MO; Li et al., 2010).
HDAC6 activity was determined using the fluorometric
HDAC6 Activity Assay kit (BioVision), as per manufacturer’s
instructions.

Primary neurons
Fetuses of embryonic day 15.5 were obtained from timed

pregnant female CD1 mice (Charles River). All animal pro-
cedures were performed in accordance with the Burke Med-
ical Research Institute and Weill Cornell Medicine animal
care committee’s regulations. Mouse primary neuronal cul-
tures were obtained as described (Rivieccio et al., 2009).
Briefly, neurons were allowed to adhere overnight before
treatment at indicated concentration and duration (i.e., 30
min and 2 h). Lentiviral transduction conditions were opti-
mized and were performed on neo-cortical cultures 2 d after
plating (DIV 2) for 4 h of incubation, with no media change.
Cultures were transduced with concentrated viruses at a mul-
tiplicity of infection of 5. Media were then replaced, and neu-
rons were treated with CSPGs or MAG the next day for 24 h.

Immunoblotting and immunocytochemistry
Protein lysates were prepared from cell cultures using

RIPA buffer (Boston Bioproducts). Briefly, cells were
grown in coated plates and rinsed with ice-cold PBS and
centrifuged for 10 min at �16,000 � g. Pellet was col-
lected and resuspended in RIPA buffer, and then further
centrifuged for an additional 5 min at �16,000 � g. Pro-
tein concentration was determined by DC protein assay
(5000112; Bio Rad). Immunoblot analysis was performed
using a Li-Cor Odyssey system as described by Langley
et al. (2008). For immunocytochemistry, primary cortical
neurons were plated on poly-D-lysine (P6407; Sigma-
Aldrich) wells and were fixed with 4% paraformaldehyde
(BM-155-5; Boston BioProducts) for 10 min. Primary an-
tibodies were used in conjunction with Alexa Fluor 488- or
594-conjugated secondary antibodies (1:2000; Invitrogen)
for detection. Slides were mounted with ProLong anti-
fade Gold reagent with DAPI (1:5000; Invitrogen). Immu-
nostaining was examined under Carl Zeiss LSM 510
META confocal microscope for conventional single plane
image. Image analyses were performed in Zen software
(Carl Zeiss). All images were matched for exposure, gain,
excitation power, and postprocessing. Localization anal-
yses were performed using line scan profiling, and lines
were drawn using ImageJ’s “line” tool that enable to
measure peak intensity through the region of interest. To
maintain consistency, neurite initiating segment (NIS) and
distal region were measured 0.5 �m from the hillock and
furthest end of the neurite (specified by Tuj1 positivity),
respectively. The middle segment of the neurite was lo-
cated to be half the length of the neurite. Intensities of
acetylated �-tubulin and �TAT1 were normalized to total
tubulin and Tuj1, respectively. For neurite length measure-

ments, one longest neurite per neuron were measured
from the cell body to end of the process labeled positively
with Tuj1. For lentivirus overexpression experiments, only
the neurites from GFP-positive neurons were measured.

Real-time PCR
Total RNA preparation from cultured cells was per-

formed as described in (Langley et al., 2008). TaqMan
RNA-to-Ct one-step (4392938; Invitrogen) real-time PCRs
were performed on total RNA as a duplex reaction using
�TAT1 gene expression assay (Mm00551286_m1; Ap-
plied Biosystems), and a VIC-labeled �-actin gene ex-
pression assay (4352341E; Applied Biosystems).

Statistics
One- or two-way ANOVA, followed by the Bonferroni’s

post hoc tests, or Student’s t tests were used to measure
statistical significance; p � 0.05 was considered to be
statistically significant.

Results
�TAT1 is downregulated by the axon growth
inhibitory factors, CSPGs, and MAG

CSPGs and MAG are well-characterized molecular bar-
riers to axon regeneration following CNS injury. In the
present study, we examined whether neuronal exposure
to either CSPGs or MAG results in a change in �-tubulin
acetylation levels. Cultured primary cortical neurons were
treated with soluble CSPGs (2 �g/ml) or MAG (30 �g/ml)
for 30 min or 2 h, harvested, and lysates assessed for
�-tubulin acetylation by immunoblot analysis. Our results
showed a significant decrease of �-tubulin acetylation
within 30 min of exposure to MAG and within 2 h of
exposure to CSPGs (Fig. 1A,B). Since �-tubulin acetyla-
tion level is determined by �-tubulin deacetylase and
acetyltransferase activity, we examined HDAC6 and
�TAT1 levels under these conditions. Immunoblot analy-
sis for HDAC6 in lysates from CSPGs- or MAG-treated
neurons showed no change in HDAC6 protein level (Fig.
1C,D). To determine whether HDAC6 activity, rather than
level, contributed to the �-tubulin acetylation change by
CSPGs and MAG, we examined HDAC6 enzymatic activ-
ity using fluorometric HDAC6 activity assay. No change in
HDAC6 activity was observed in lysates from neurons
exposed to either CSPGs or MAG (Fig. 1E,F). We then
examined whether changes in �-tubulin acetylation were
associated with changes in �TAT1 protein. Treatment
with CSPGs or MAG significantly downregulated �TAT1
protein levels (Fig. 1G,H), and their effects were similar to
the changes in �-tubulin acetylation with respect to time
and magnitude (Fig. 1A,B). Taken together, these results
indicate that the acute decrease in acetylation levels of
�-tubulin in response to growth inhibitory factors is inde-
pendent of HDAC6 levels and activity and can be attrib-
uted to a decrease in �TAT1 protein levels.

Regulation of �TAT1 protein levels by CSPGs or
MAG is ROCK dependent

It is well established that MAG and CSPGs exert growth
inhibitory effects via distinct receptors. For instance, MAG
has been shown to activate the small GTPase RhoA via
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Figure 1. Growth inhibitory factors downregulate �-tubulin acetylation and �TAT1 levels. A, B, Immunoblot analysis of primary murine
cortical neurons after exposure to soluble CSPGs (2 �g/ml; A) or MAG (30 �g/ml; B) showed a significant decrease in �-tubulin
acetylation levels at the indicated times. Acetylated �-tubulin was normalized to total �-tubulin from the same immunoblot. C, D,
Immunoblot analysis for HDAC6 after incubation with CSPGs (C) or MAG (D) for 2 h. HDAC6 level was normalized to �-actin from the
same immunoblot. E, F, HDAC6 activity assays in primary neurons exposed to CSPGs (E) or MAG (F) after 30 min or 2 h did not
change HDAC6 activity. Tubastatin A, a specific HDAC6 inhibitor, was used a positive control. G, H, Immunoblot analysis for �TAT1
after incubation with CSPGs (G) or MAG (H) for 30 min or 2 h showed a signification reduction in �TAT1 protein levels. �TAT1 level
was normalized to �-actin from the same immunoblot. �, Significant downregulation compared to the control group p � 0.05; ��p �
0.01 (one-way ANOVA followed by Bonferroni’s post hoc test was performed for A, B, E–H. Student’s t test was performed for C, D).
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NogoR (Fournier et al., 2001; Domeniconi et al., 2002; Liu
et al., 2002; Wang et al., 2002b) and p75 neurotrophin
(Wang et al., 2002a; Wong et al., 2002; Yamashita et al.,
2002) receptors, leading to subsequent activation of RhoA
and its downstream kinase, ROCK (Dergham et al., 2002;
Yamashita et al., 2002; Fournier et al., 2003). Although
CSPGs use PTP� to activate yet unidentified pathways
(Shen et al., 2009), studies have shown that the RhoA/ROCK
pathway also mediates the neurite growth-inhibitory activity
of CSPGs (Dergham et al., 2002; Borisoff et al., 2003; Mon-
nier et al., 2003). Since the inhibitory signals of CSPGs and
MAG may converge on the RhoA/ROCK pathway, we next
delineated the mechanism of action whereby CSPGs or MAG
regulates �TAT1. Primary cortical neurons were cotreated with
CSPGs or MAG, and Y-27632, a well-established ROCK inhib-
itor. Consistent with our prior observations (Fig. 1A,B), CSPGs
and MAG reduced �TAT1 protein levels (Fig. 2A,B). Cotreat-
ment with the ROCK inhibitor prevented this effect (Fig. 2A,B).
Furthermore, the reduction in �-tubulin acetylation was pre-
vented when both the ROCK inhibitor and either growth inhib-
itory substrates were applied (Fig. 2C,D). In line with our
observations in Figure 1C,D, no changes in HDAC6 protein
levels were seen under these conditions (data not shown).

These findings indicate that �TAT1 regulation by CSPGs and
MAG is ROCK dependent.

�TAT1 downregulation by CSPGs and MAG
predominantly occurs in the middle and distal
regions of neurites

In addition to measuring global changes of �TAT1 lev-
els in cortical neurons via immunoblotting, we further
examined the effects of CSPGs and MAG on �TAT1 levels in
different regions of neurites. Primary cortical neurons were
cultured for 24 h, treated with soluble CSPGs or MAG for 30
min or 2 h, and immunostained for �TAT1. Our immuno-
staining results indicated that in control neurons, �TAT1 was
evenly distributed from the cell body to the distal end of the
neurite. Consistent with previous studies (Shida et al.,
2010), �TAT1 was not localized to the nucleus of cortical
neurons. By contrast, a 2-h exposure to CSPGs resulted
in a significant reduction in �TAT1 intensity in the middle
and distal regions of neurites (Fig. 3A–C). Similarly, expo-
sure to MAG resulted in significant reduction in the middle
and distal regions of the neurite; however, this reduction
occurred within 30 min and was also seen in the proximal
(NIS) region of the neurite (Fig. 3D–F). Administration of

BA

C D

Figure 2. Downregulation of �TAT1 and �-tubulin acetylation by CSPGs and MAG is mediated through ROCK-dependent pathway.
Primary cortical neurons were treated with either CSPGs (2 �g/ml) or MAG (30 �g/ml) at indicated times, with or without ROCK
inhibitor (Y-27632; 10 �M). A, B, Immunoblot analysis for �TAT1 showed that ROCK inhibitor prevented downregulation of �TAT1
after exposure to CSPGs (A) and MAG (B). �TAT1 level was normalized to �-actin from the same immunoblot. C, D, Immunoblot
analysis for acetylated �-tubulin showed that ROCK inhibitor also prevented CSPGs- and MAG-induced (C, D, respectively) reduction
of �-tubulin acetylation. Acetylated �-tubulin was normalized to total �-tubulin from the same immunoblot. �, Significant downregu-
lation compared to the control group at their respective times, p � 0.05; ��p � 0.01 (two-way ANOVA followed by Bonferroni’s post
hoc test was performed).
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the ROCK inhibitor, Y-27632, alone did not significantly
alter �TAT1 localization compared with control neurons,
but when co-administered with CSPGs or MAG it pre-
vented the �TAT1 reduction in the neurites. Immunostain-
ing using an antibody against acetylated �-tubulin

revealed a similar pattern of �-tubulin acetylation change
to that observed for �TAT1. Significant decreases in
acetylated �-tubulin were predominantly seen in distal to
middle regions with CSPGs (Fig. 4A–C) or MAG (Fig.
4D–F) treatment. The distal neurite �-tubulin acetylation
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Figure 3. CSPGs and MAG change neurite �TAT1 expression. A, D, Confocal immunofluorescent micrographs showing the
distribution of �TAT1 in cortical neurons after exposure to growth inhibitory factors CSPGs (2 �g/ml; A) or MAG (30 �g/ml; D) with
or without ROCK inhibitor (Y-27632; 10 �M) after 30 min and 2 h. Immunolabeling was performed using antibodies against �TAT1
(1:200; red) and Tuj1 (1:5000; green). Nuclei of neurons were labeled with DAPI (blue). Immunofluorescence intensity at different
regions of the axon as indicated by white dashed line (i.e., distal, middle, and NIS) was quantified in B, C and E, F. �, Treatment versus
control p � 0.05; ��, treatment versus control p � 0.01; ���, treatment versus control p � 0.001; ##, cotreatment with MAG and
ROCKi versus MAG alone p � 0.01; ###, cotreatment with MAG and ROCKi versus MAG alone p � 0.001 (two-way ANOVA followed
by Bonferroni’s post hoc test was performed). Scale bar, 20 �m.
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decrease by CSPGs was attenuated by cotreatment with
the ROCK inhibitor at 30 min and 2 h, while the decrease
by MAG was attenuated by cotreatment with the ROCK
inhibitor at 2 h (Fig. 4). Attenuation of �-tubulin acetylation
decrease by MAG at 30 min did not reach a level of
significance (Fig. 4E).

�TAT1 downregulation by CSPGs and MAG
correlates with decreased neurite length

Based on our observations that CSPGs and MAG de-
crease �TAT1 expression and �-tubulin acetylation, we
hypothesized that �TAT1 decrease is responsible for the
inhibition of neurite outgrowth. To test this hypothesis, we
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Figure 4. CSPGs and MAG change neurite �-tubulin acetylation. A, D, Confocal immunofluorescent micrographs showing the distribution
of �TAT1 in cortical neurons after exposure to growth inhibitory factors CSPGs (2 �g/ml; A) or MAG (30 �g/ml; D) with or without ROCK
inhibitor (Y-27632; 10 �M) after 30 min and 2 h. Immunolabeling was performed using antibodies against acetylated �-tubulin (1:1000; red)
and �-tubulin (1:5000; green). Nuclei of neurons were labeled with DAPI (blue). Immunofluorescence intensity at different regions of the axon
as indicated by white dashed line (i.e., distal, middle, and NIS) was quantified in B, C and E, F. �, Treatment versus control p � 0.05; ���,
treatment versus control p � 0.001; #, cotreatment with ROCKi versus treatment alone p � 0.05; ##, cotreatment with ROCKi versus
treatment alone p � 0.01 (two-way ANOVA followed by Bonferroni’s post hoc test was performed). Scale bar, 20 �m.
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examined the effects of CSPGs and MAG on neurite
length in the presence or absence of ROCK inhibitor.
Cultured primary cortical neurons were plated, cultured
for 4 h, then treated with soluble CSPGs (2 �g/ml) or MAG
(30 �g/ml) in the presence of the ROCK inhibitor,
Y-27632, for 24 h. Consistent with our previous findings
(Rivieccio et al., 2009), and our current findings that
CSPGs and MAG decrease �TAT1 and �-tubulin acetyla-
tion levels, treatment with either CSPGs (Fig. 5A) or MAG
(Fig. 5B) significantly reduced neurite length in cortical
neurons (42% and 25% reduction, respectively). Cotreat-
ment with ROCKi restored neurite growth (44% compared
to CSPGs treatment alone; 66% compared to MAG treat-
ment alone) indicating that the axon growth inhibitory
effect of either CSPGs (Fig. 5A) or MAG (Fig. 5B) was
dependent on ROCK. To demonstrate a causative rela-
tionship for reduced �TAT1 and inhibited neurite growth,
we reconstituted �TAT1 expression to CSPGs- or MAG-
treated neurites. Primary cortical neurons (DIV 2) were
infected with �TAT1-GFP-lentivirus or GFP-lentivirus
(control) for 4 h. Media were then replaced, and neurons
were treated with CSPGs or MAG for 24 h. Assessments
of neurite length from infected (GFP-positive) cortical neu-
rons show that �TAT1-lentivirus-mediated overexpres-
sion of �TAT1 significantly reversed the growth inhibitory
effects of CSPGs and MAG (Fig. 5C,D, respectively; 80%
compared CSPGs treatment alone, and 169% relative to
MAG treatment alone).

CSPGs- and MAG-induced �TAT1 decrease occurs
via a change in �TAT1 protein stability

The observed downregulation of �TAT1 in neurites
treated with CSPGs or MAG could occur via changes in
�TAT1 transcription or �TAT1 protein stability. To deter-
mine whether transcription of �TAT1 is decreased with
CSPGs or MAG treatment, primary cortical neurons were
treated with CSPGs or MAG for 30 min or 2 h, harvested
and analyzed for �TAT1 expression by quantitative RT-
PCR. No significant changes in �TAT1 mRNA levels were
observed in any of the conditions (Fig. 6A,B), suggesting
that the reduction in �TAT1 protein levels in response to
growth inhibitory factors is dependent on �TAT1 tran-
scription. To determine whether the changes �TAT1 re-
flect in a change in protein stability, we performed
cycloheximide chase assays in CSPGs or MAG-treated
primary neurons. In cycloheximide-treated (10 �g/ml)
control neurons, the levels of �TAT1 protein remained
relatively steady over the 2-h course of the experiment
(Fig. 6C,D). By contrast, we saw a significant reduction in
�TAT1 protein levels within 30 min with CSPGs (Fig. 6C)
or MAG (Fig. 6D), which persisted at the 2-h time point.
Similar to controls, the cotreatment of neurons with cy-
cloheximide and the ROCK inhibitor, Y-27632, resulted in
no significant changes in �TAT1 levels during the 2-h
course of the experiment; however, cotreatment with
Y-27632 could prevent �TAT1 protein decrease observed
by CSPGs (Fig. 6C) or MAG treatment alone (Fig. 6D).
These observations strongly suggest that the reduction in
�TAT1 seen with MAG or CSPGs treatment is due to a

ROCK-dependent increase in the turnover rate of this
protein.

Discussion
Previous studies have established that CSPGs and

MAG play critical roles in the extrinsic inhibition of axon
regeneration following CNS injury. Thus, they have been
widely studied, both in vitro and in vivo, to identify of
molecular targets that can be manipulated to overcome
CNS regeneration failure, with the ultimate goal of reduc-
ing dysfunction and disability. Previous studies have high-
lighted the role of HDAC6 in mediating the growth
inhibitory effects of MAG and CSPGs. Moreover, these
studies identified HDAC6 as a novel target for pharmaco-
logical inhibition or genetic downregulation using small
molecule inhibitors or siRNAs, respectively, which can
promote neurite outgrowth in multiple models of growth
inhibition using MAG and CSPGs (Rivieccio et al., 2009).

In this study, we show that the microtubule protein,
�-tubulin, which is one of the most recognized intracellu-
lar protein targets of HDAC6, is deacetylated in neurons
following stimulation by CSPGs or MAG (Fig. 1A,B). This
deacetylation was most striking in the distal portion of
neurites, but also occurred in the middle and proximal
regions (Fig. 3A–F). Given that HDAC6 inhibition can res-
cue neurite outgrowth in CSPGs- or MAG-stimulated neu-
rons and can increase �-tubulin acetylation (Rivieccio
et al., 2009), we thought it logical that CSPGs or MAG
might regulate �-tubulin acetylation via HDAC6; however,
under these conditions, we saw no evidence for altered
HDAC6 levels or its enzymatic activity downstream of
CSPGs or MAG signaling (Fig. 1C–F). By contrast, under
the same growth inhibitory conditions, our findings reveal
that �TAT1 levels were significantly downregulated (Fig.
1G,H). Since �-tubulin acetylation is regulated by the
opposing activities of HDAC6 (deacetylase) and �TAT1
(acetyltransferase), our results suggest that �TAT1 regu-
lation is the main driver of CSPGs- or MAG-induced
�-tubulin acetylation loss in the neurite. This notion is
highly supported by our findings that �TAT1 downregula-
tion is both temporally and spatially identical to �-tubulin
acetylation changes downstream of MAG or CSPGs treat-
ment (Figs. 3, 4), and that �TAT1 reconstitution by
lentiviral-�TAT1 infection can overcome neurite growth
inhibition (Fig. 5C,D). These findings are also supported
by the recent demonstration that overexpression of
�TAT1 in DRG neurons significantly increases �-tubulin
acetylation toward the distal portion of the axon and
significantly increases axon length (Lin et al., 2017). Fur-
thermore, that �-tubulin acetylation level is dependent on
�TAT1 is consistent with a recent report demonstrating
that �TAT1 is highly expressed in mouse brain tissue, and
that �TAT1 deletion results in a near absence of acety-
lated �-tubulin (Kim et al., 2013).

Our study, herein, also gives insight into how �TAT1 is
regulated downstream of MAG and CSPGs signaling as a
reduction in �TAT1, and consequently �-tubulin acetyla-
tion, can be prevented by inhibiting the RhoA-ROCK path-
way (Figs. 2–4). Several studies have identified that MAG
and CSPGs exert their axon growth inhibitory effects via a
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Figure 5. ROCK inhibition and overexpression of �TAT1 reverse CSPGs- and MAG-induced inhibition of neurite outgrowth. A, B,
Fluorescent microscopy of primary cortical neurons incubated with CSPGs (2 �g/ml; A) or MAG (30 �g/ml; B), with or without ROCK
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receptor complex comprising Nogo receptor family mem-
bers and p75NTR low-affinity neurotrophin receptors that
in turn signal via the receptor-bound GTPase, RhoA. A well-
characterized canonical downstream effector of RhoA is
Rho-associated protein kinase, ROCK, which is involved in
many aspects of neuronal functions including neurite out-
growth and retraction. As such, the axon growth-inhibitory

effects of MAG and CSPGs can be reversed by blockade of
the Rho-ROCK pathway in vitro and in vivo (Borisoff et al.,
2003; Mimura et al., 2006; Hur et al., 2011).

The relationship between ROCK and acetylation of
�-tubulin has been underscored by studies in mice over-
expressing �TAT1 that is deficient of catalytic activity but
not �-tubulin binding. These mutant animals have less

continued
inhibitor (Y-27632; 10 �M) for 24 h. Neurite lengths and mean neurite length for each condition are shown in column scatter plots
below micrographs. ���, CSPGs or MAG treatment versus untreated control p � 0.001; ###, cotreatment with ROCKi versus
treatment alone p � 0.001 (one-way ANOVA followed by Bonferroni’s post hoc test was performed). Scale bar, 10 �m (A, B). C, D,
Confocal immunofluorescent microscopy of primary cortical neurons following infection with lentiviral GFP (LV GFP; control) or
lentiviral GFP-�TAT1 (LV GFP-�TAT1) with or without CSPGs (2 �g/ml; C) or MAG (30 �g/ml; D). Transduced neurites were identified
by immunolabeling with antibodies for neuron-specific Tuj1 (1:5000; red) and GFP (1:500; green) and quantified with ImageJ software.
Neurite lengths and mean neurite length for each condition are shown in column scatter plots below micrographs. ���, CSPGs or MAG
treatment versus untreated control p � 0.001; # and ###, LV GFP-�TAT1 with CSPGs or MAG versus LV GFP with CSPGs or MAG, p �
0.05 and p � 0.001, respectively (two-way ANOVA followed by Bonferroni’s post hoc test was performed). Scale bar, 20 �m (C, D).
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acetylated �-tubulin and enhanced microtubule depolymer-
ization sensitivity to nocodazole (Kalebic et al., 2013a,b), a
well-established activator of RhoA-ROCK pathway (Krendel
et al., 2002; Chang et al., 2008). Here, we also reveal that
activation of the RhoA-ROCK pathway by CSPGs and MAG
act to decrease �TAT1 levels by decreasing its stability at
a posttranslational level (Fig. 6). How RhoA-ROCK path-
way regulates �TAT1 protein levels is still an open ques-
tion. Previous studies established that RhoA has protein
degradation effects, in particular, on p27kip through reg-
ulation of cyclin E/CDK2 activity (Hirai et al., 1997; Hu
et al., 1999). Expression of dominant-negative RhoA in-
hibited p27kip degradation in vitro (Hu et al., 1999). In
addition to the traditional roles of RhoA on actin dynam-
ics, our study and others strongly suggests that RhoA has
a role in regulating protein degradation. While the mech-
anism behind RhoA signaling and �TAT1 degradation
remains elusive, this finding nevertheless places empha-
sis on the importance of events downstream of the Rho-
ROCK pathway and identifying the stabilization/
destabilization domain(s) of �TAT1 for drug development
targets in promoting CNS axon regeneration in the pres-
ence of growth impeding factors such as CSPGs and
MAG.

A critical question that remains is whether or not �-tubulin
acetylation is required for neurite growth. In neurons, micro-
tubule arrays are constantly adapted to fit their physiologic
needs by modulating the balance between dynamic short-
lived, and stable long-lived microtubule sub-populations.
During neurite extension, the more stable microtubules
are needed in the proximal axon to drive forward growth,
but those in the axon tip/growth cone must be highly
dynamic if it is to grow and respond to extracellular stimuli
(Tahirovic and Bradke, 2009; Bradke et al., 2012). Micro-
tubule structure, organization, stability, and function are
highly regulated by microtubule-associated proteins
(MAPs) and posttranslational modifications. Spatial local-
izations of acetylated �-tubulin along axons reflects dif-
ferences in their stability, with enriched acetylation in the
more long-lived or stabilized microtubule populations that
predominate in the proximal axon region and low-level
acetylation at neurite tips (Black et al., 1989; Webster and
Borisy, 1989; Brown et al., 1992; Baas et al., 1993). It may
be that stabilizing microtubules enables the tip of the axon
push through what would be negative growth signals in
the injured nervous system. This hypothesis would be
consistent with recent findings, where taxol has been
shown to stabilize microtubules and augment regenera-
tion of injured optic nerve (Sengottuvel et al., 2011; Sen-
gottuvel and Fischer, 2011) and injured spinal cord axons
(Hellal et al., 2011).

In addition to microtubules serving as architectural el-
ements that shape the elongation of growing axons, and
they are key components of the machinery that transports
mitochondria and material required for axon growth from
their sites of synthesis in the cell body into the axon
(Yogev et al., 2016). Several studies have revealed that
microtubule acetylation affects the affinity and progres-
sivity of microtubule motors, playing a positive role in
motor-based trafficking in axons (Reed et al., 2006; Dom-

pierre et al., 2007; Hammond et al., 2010; Alper et al.,
2014; Godena et al., 2014). Dompierre et al., proposed
that the neurodegenerative Huntington disorder might in-
volve a defect in tubulin acetylation, and that increasing
tubulin acetylation can enhance the recruitment of the
molecular motors dynein and kinesin-1 to microtubules to
promote vesicular transport in differentiated neurons
(Dompierre et al., 2007). Thus, the role of �-tubulin acet-
ylation by �TAT1 in neurite extension might be to facilitate
growth-requiring cargo delivery.

It is important to consider that we cannot exclude the
possibility that the roles of �TAT1 and HDAC6 in axon
regeneration are independent of �-tubulin and/or their
acetyltransferase and deacetylase activities, respectively.
A recent study by Lin et al. (2017) found that while �TAT1
overexpression in DRGs increases axonal �-tubulin acet-
ylation in cultured DRG neurons, the overexpression of a
catalytically inactive mutant, �TAT1-D157N, does not. Yet
both the catalytically active and inactive �TAT1s signifi-
cantly increased axonal lengths in vitro. Similarly, with
regard to �-tubulin acetylation and microtubule stability,
findings by Kalebic et al. (2013b) revealed that it is the
interaction of �TAT1 with microtubules, and not acetyla-
tion per se, that is the critical factor regulating microtubule
stability. Nevertheless, our findings here demonstrate an
exciting and novel role for �TAT1 as a critical acute
mediator of axon growth that is regulated downstream of
CSPGs and MAG, and the RhoA/ROCK signaling cas-
cade, which is a known molecular target to promote axon
regeneration. In addition to this previously unidentified
role, our work suggests that protecting �TAT1 stability/
levels may provide an additional robust strategy to over-
come axonal regeneration failure after CNS injury.
Furthermore, the interplay between �TAT1 and HDAC6 in
the context of �-tubulin acetylation will be an interesting
area of future exploration. One can surmise that when
�TAT1 is downregulated at the axonal tips, HDAC6 may
become the predominant enzyme and promotes �-tubulin
deacetylation. Studies are under way to explore the
spatio-temporal relationship between these two opposing
enzymes in regulating axonal growth, as are studies to
define the role of �TAT1 in vivo, especially in animal
models of traumatic brain injury and spinal cord injury.
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