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ABSTRACT

Polycomb group (PcG) proteins are involved in
epigenetic silencing where they function as major
determinants of cell identity, stem cell pluripotency
and the epigenetic gene silencing involved in cancer
development. Recently numerous PcG proteins,
including CBX4, have been shown to accumulate
at sites of DNA damage. However, it remains
unclear whether or not CBX4 or its E3 sumo ligase
activity is directly involved in the DNA damage
response (DDR). Here we define a novel role for
CBX4 as an early DDR protein that mediates
SUMO conjugation at sites of DNA lesions. DNA
damage stimulates sumoylation of BMI1 by CBX4
at lysine 88, which is required for the accumulation
of BMI1 at DNA damage sites. Moreover, we estab-
lish that CBX4 recruitment to the sites of laser
micro-irradiation-induced DNA damage requires
PARP activity but does not require H2AX, RNF8,
BMI1 nor PI-3-related kinases. The importance of
CBX4 in the DDR was confirmed by the depletion
of CBX4, which resulted in decreased cellular
resistance to ionizing radiation. Our results reveal
a direct role for CBX4 in the DDR pathway.

INTRODUCTION

The cellular response to DNA double-strand breaks
(DSBs) involves a plethora of proteins whose sequential
recruitment and function at DNA damage sites are
modulated by numerous highly dynamic and reversible
post-translational modifications (1,2). These include phos-
phorylation, ubiquitylation, acetylation, methylation and

sumoylation. The phosphorylation/dephosphorylation
events are performed by kinases such as ATM, ATR and
DNA-PK, and several protein phosphatases (1). The
emerging ubiquitylation cascade comprises the E3 ubiqui-
tin ligases RNF8, RNF168 and BMI1/RING-2, as well as
the E2 ubiquitin-conjugating enzyme UBC13 (3-9). Unlike
the classical role of ubiquitylation in triggering protein
degradation, this ubiquitin-mediated pathway promotes
genomic integrity by orchestrating protein—protein inter-
actions on damaged chromosomes that allow recruitment
of key DNA repair factors to DSBs, including 53BPI
and BRCAI1 proteins, as reviewed in ref. (10—12).
Sumoylation has been implicated in the regulation of
many processes, including transcriptional repression,
genome stability, and chromatin organization, as
reviewed in (13). In yeast, processes critical for cell fate
decisions including survival and some aspects of DNA
repair have been linked to sumoylation (14-16).
Protein sumoylation is accomplished through a multitude
of enzymes that, although mechanistically similar to
ubiquitylation, utilize SUMO-specific enzymatic machin-
ery (16,17). In vitro SUMO-1 modification requires
two enzymatic steps, E1 and E2. Following cleavage of
the SUMO-1 precursor, conjugation of SUMO-1 is
accomplished by an enzymatic cascade employing El
and E2 proteins that form an isopeptide bond between
the e-amino group of a lysine in the receptor protein
and a C-terminal glycine in mature SUMO-1 (18-21).
SUMO-1 activation by an El heterodimeric Aosl/Uba2
enzyme is followed by transfer of SUMO-1 to the
conjugating E2 protein Ubc9. Several structurally
unrelated SUMO E3 ligases have been identified that
are required for efficient modification in vivo (16).
These include proteins belonging to the protein inhibitor
of activated STAT (PIAS) family, Ran-binding protein 2
(RanBP2) and CBX4, a PcG protein. All E3 ligases
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interact with Ubc9 and SUMO, which increases the rate of
substrate sumoylation. The ability of CBX4 to function as
a SUMO E3 ligase depends on a C-terminal substrate
binding domain and an N-terminal region containing the
chromodomain (22). All SUMO E3s are self-sumoylated
and each localize to distinct subnuclear structures (23).
PIAS1/4 is partly concentrated in subnuclear bodies,
whereas RanBP2 associates with the nuclear pore
complex, and CBX4 is found in nuclear foci called PcG
bodies (16,22,24-26).

PcG bodies, which contain Polycomb repressive
complexes, were originally identified in Drosophila
melanogaster as regulators of homeotic gene expression
and play important roles in the epigenetic maintenance
of the repressed transcriptional state of genes (27).
PcG members are chromatin-associated proteins that
initiate and maintain heritable gene repression patterns
(11,27,28). They are important for embryonic and adult
stem cell self-renewal and maintenance, acting partially
through repression of the INK4a/ARF locus. Aberrant
silencing of this and other tumour suppressor loci by
PcG-related mechanisms are now implicated in cancer de-
velopment, as reviewed in (28). At least two distinct
human PcG complexes have been identified. Polycomb
repressive complex I (PRC1) contains CBX4/Pc2, HPH1
and RING domain-containing proteins (RING1, RING-2
and BMII1) (3). The core components of Polycomb
repressive complex II (PRC2) include EED, SUZ12 and
the SET-domain-containing histone methyltransferase
EZH2. Three distinct enzymatic activities have been
linked to these PcG complexes: sumoylation, ubiquityla-
tion, and methylation (11).

Despite the critical role of sumoylation for survival in
yeast following DNA damage, the direct involvement of
sumoylation in the DSB response and its functional inter-
play with the ubiquitylation cascade was only recently
demonstrated in mammals (29,30). These studies provide
evidence of a key role for sumoylation in coordinating the
DDR. They demonstrated that the E3 SUMO ligases
PIAS1 and PIAS4 rapidly accumulate at the sites of
DNA damage and that PIAS1 and PIAS4 are required
for DSB-induced ubiquitylation mediated by the RNFS
and RNF168 ubiquitin ligases, whose activities are essen-
tial for efficient recruitment of the downstream factors
53BP1 and BRCA1 at DNA damage sites (29,30). It
remains unclear whether PIAS1 and PIAS4 were the
only E3 SUMO ligases involved in the DDR or if other
E3 SUMO ligases coordinate aspects of the DDR. Here,
we identify CBX4 as an early DDR protein that critically
regulates the cellular response to DSBs. CBX4 SUMO
activity is required for the recruitment of BMI1 to DNA
damage sites, thereby initiating the BMIl-dependent
DDR ubiquitylation pathway that provides radiation
resistance to cells independent of RNF8 or H2AX.

MATERIALS AND METHODS
Cell culture, vector construct and transfections

Human embryonic kidney 293 cells (HEK 293) were
cultured (air/CO2, 19:1, 37°C) in DMEM medium

supplemented with 10% foetal bovine serum (Hyclone-
ThermoFisher Scientific, Ottawa, Canada). Penicillin
(100U/ml) and streptomycin (100 mg/ml) (Wisent,
St-Bruno, Canada) were added to culture media. A
human mCherry-PARG-mut expressing vector was
prepared by oligonucleotide-directed mutagenesis of
the GFP-hPARG-110 (pEGFP-C1 expression vector,
Clontech) as described in (31). Mutagenic primers were
made following the guidelines in the QuikChange®
site-directed mutagenesis kit (Stratagene). A mutation
was introduced at amino acid position 756 that completely
abolish PARG catalytic activity (E756D), as reported
in (32). Wild-type and mutagenized PARG cDNAs
were transferred into pmCherry-C1 vector (Clontech).
Human YFP-CBX4 chromodomain and chromobox
CBX4 mutants were generously provided by Dr. Tom
Kerppola. Control and two different CBX4 shRNA
plasmids were obtained from Origene. Smart pool
non-GFP-labelled CBX4 siRNAs were also used
(Dharmcon). For PIAS1 or PIAS4 shRNA, a previously
described shRNA against PIAS] or against PIAS4 was
cloned into separate eGFP vectors (29) using the exact
shRNA service at Origene. All shRNA transfections
were performed with 0.2 ug DNA using Effectene as a
transfection reagent (Qiagen) according to the manufac-
turer’s instructions. All deletion mutants were generated
by using the QuikChange site-directed mutagenesis
kit (Stratagene). Purified proteins were either purchased
from Boston Biochem or Abnova. U20S cells were
cultured in Mycos 5A medium containing 10% foetal
calf serum (FCS) at 37°C and 5% CO,. RNF8 WT and
RNF KO (Dr. Xiaochun Yu), BMI1 WT and BMI1 KO
(Dr. Maarten van Lohuizen) and H2AX wild-type and
H2AX knockout mouse embryonic fibroblasts (André
Nussenzweig) were grown in DMEM supplemented with
10% FCS. Several human cell cultures were included in
this study to examine the potential contributions that
ATM and DNA-PKcs may have in the recruitment of
CBX4 to DNA break sites. These cell lines were
propagated in DMEM/F12 (1:1) containing 10% FBS
supplemented with 1mM glutamine. The pEBS7 (EBS)
and pEBS7-YZ5 (YZ5) cells are SV40-transformed cells
from a single AT-patient where EBS are ATM defective
whereas YZS5 stably express full-length ATM and are
therefore isogenic  (33). Finally, MO059] (lacks
DNA-PKcs) and MOS9K (control) cells were derived
from a malignant glioma isolated from a single human
patient (34). Unless otherwise stated, cells were irradiated
in ambient air using a model CS-600 '*’Cs irradiator
(Picker, Glendale, CA) at a dose rate of 1 Gy/min.

Immunofluorescence microscopy

Immunofluorescence was carried out as previously
reported (3). A panel of commercially available primary
antibodies, directed against various DNA damage
proteins and Polycomb group proteins [BMI1 (Bethyl),
PAR (Abcam), CBX4 (Novus), CBX4 (Millipore),
SUMO-1 (Abcam), SUMO-2 and SUMO-3 (Abcam),
53BP-1(Lake Placid), MDCI (Abcam) and PAR



(Calbiochem)] were used to detect proteins at sites of
DNA damage.

Two-photon micro-irradiation

Cells grown on coverslips were incubated with 0.5 pg/ml
Hoechst 33258 for 15 min and then placed on the stage of
a Zeiss LSM510 NLO laser-scanning confocal micro-
scope. DSBs were generated as previously described (3)
using a near-infrared 750 nm titanium-sapphire laser
line. The laser output was set to 5-10% (unless stated
otherwise), and we used 10 iterations to generate localized
DSBs with a Plan-Neofluar 40x/1.3N.A. oil immersion
objective. For immunofluorescence staining of micro-
irradiated cells, cells were permitted to recover in a 37°C
humidified incubator containing 5% CO, for the indicated
times post damage before 4% paraformaldehyde fixation
and indirect immunofluorescent staining as detailed
above. The average accumulation #+SE of fluorescently
tagged proteins from at least 15 cells each from three
independent experiments was plotted.

Nuclear extractions and immunoblotting

Nuclear extraction and immunoblotting was performed
as previously described (3). Secondary antibodies were
conjugated with infrared specific dyes (either Alexa
Fluor® 680 or Alexa Fluor® 750 or IRDye® 800), and
fluorescence was imaged on the Odyssey Infrared
Imaging system (LiCor Biosciences).

Immunoprecipitation of YFP-CBX4

Cells were seeded onto 150-mm cell culture dishes and
grown up to 80-90% confluency (~15-20 millions cells/
dish). Experiments were performed with cell extracts from
three dishes per condition. GFP (control) and YFP-CBX4
transfections were carried out with Effectene (Qiagen),
as recommended by the manufacturer, and cells were
harvested 16h post-transfection. All further steps
were performed on ice or at 4°C. Two PBS washes
were carried out prior to protein extraction with
3ml/plates of lysis buffer [40 mM HEPES, pH 7.5,
120mM NaCl, 0.3% CHAPS, 1mM EDTA, Ix
Complete™ protease inhibitor cocktail (Roche Applied
Science, Indianapolis, IN) and 1puM PARG inhibitor
ADP-HPD]. Total cell lysates were pooled and placed
on ice for 15min and gently mixed for another
15-20 min on a rotating device for complete lysis. After
homogenization, insoluble material was removed from the
homogenate by centrifugation at 5000 rpm for 5min.
Immunoprecl\i/})itation experiments were performed using
Dynabeads™ magnetic beads covalently coupled to
Protein G (Invitrogen, Burlington, Canada). The
Dynabeads™ (100 pl/condition) were washed two times
with 1ml of 0.1 M sodium acetate buffer, pH 5.0, and
coated with mouse monoclonal anti-GFP antibody
(Roche Applied Science). The beads were washed three
times with 1ml of lysis buffer and added to the protein
extract for 2 h incubation with gentle mixing on a rotating
device. Samples were washed three times with 10ml of
lysis buffer for 5min. Protein complexes were eluted
using 150l of 3X Laemmli sample buffer containing
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5% B-mercaptoethanol and heated at 65°C for Smin in
a water bath.

Polymer-blot assays

Immunoprecipitated proteins from nuclear extracts were
resolved using 4-12% Criterion™ XT Bis-Tris gradient
gel (Bio-Rad) and transferred onto 0.2 um nitrocellulose
membrane. Bovine serum albumin (BSA) (Sigma) and
core histones purified from HeLa chromatin by hydroxyl-
apatite column chromatography (Active motif) were used
as negative and positive PAR-binding controls, respect-
ively. The proteins were partly renatured by incubating
the membrane for 1 h at room temperature with gentle
agitation in TBS-T (10mM Tris-HCI, pH 8.0, 150 mM
NaCl, 0.1% Tween-20) with frequent washes with
TBS-T. Then, the membrane was incubated 1h with
TBS-T containing 250nM of 3?P-labelled pADPr
purified on dihydroxyboryl Bio-Rex (DHBB) resin as
described previously (35). The membrane was washed
with the TBS-T buffer until no radioactivity could be
detected. The membrane was subsequently air-dried and
subjected to autoradiography on Bio-Max (Kodak) films.

In vitro sumoylation assay

In vitro sumoylation reactions were performed using
purified recombinant proteins according to a previously
described procedure (22) with some modifications.
The reaction mixtures (20l each) contained 50 mM
Tris/HCL, pH 7.5, SmM MgCl,, 2mM ATP, 250ng of
Aosl/Uba2, 100ng of UbcY, 2 pg of SUMO-1, 400 ng of
GST-BMII and 500 ng of CBX4. Reactions were carried
out at 30°C for 2 h and terminated by the addition of SDS
loading buffer. Products were analyzed by SDS/PAGE
and immunoblotting.

Colony formation assay for IR sensitivity

IR sensitivity was assayed using the colony formation
assay as described previously (36). In brief, cells were
left to grow for 10 days. After 10 cells, the cultures were
fixed and stained with crystal violet, and then colonies
were counted. Error bars are from duplicate samples.

Chromatin immunoprecipitation assays

For Chromatin immunoprecipitation (ChIP) analysis,
induction of a single DSB in MCF7 cells was performed
as previously described (37) with the following
modifications. MCF7 cells were transfected with
pYFP-CBX4 and electroporated 18h later with the I-
Scel expression vector pCBASce using the Gene Pulser
Xcell apparatus (BioRad). ChIPs were performed as
described (37), except that cells were sonicated for
10 x 30s to shear chromatin to an average size of 0.5kb
using a Bioruptor (Diagenode). Immunoprecipitations
were conducted with a monoclonal anti-GFP (Roche,
cat 11 814 460 001) and a control mouse IgG (Jackson
Immunoresearch). Quantification of the amount of
immunoprecipitated DNA was carried out by real-time
PCR using the LightCycler Fast Start DNA Master
SYBR Green I (Roche Applied Sciences), which contained
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Fast Start Tag DNA polymerase and SYBR Green
Dye. The sequence of the primers can be obtained on
request. Primers used in the PCR reactions were
analyzed for linearity range and efficiency using a
LightCycler (Roche). The results are presented as percent-
age of input for the IgG control versus the CBX4
immunoprecipitate.

RESULTS
CBX4 is an early DDR protein

We and several other groups have recently shown that
members of the PRCI1 complex, BMIlI and RING2,
are recruited to sites of DNA damage where they
ubiquitylate the histone H2A, initiating an H2AX- and
RNF8-independent ubiquitylation cascade that is
required for genomic integrity (3,4,38,39). It has been
shown that PIAS1 and PIAS4 act in parallel but
overlapping SUMO-conjugation pathways to promote
RNF8-dependent ubiquitin adduct accumulation at the
sites of DNA damage. CBX4 is a member of the PRCI
complex, and it was recently shown that, in response to
DNA damage, HIPK?2 regulates the E3 SUMO activity of
CBX4 towards itself (40). This prompted us to examine

Merge+ DAPI

whether, similar to RNF8-dependent ubiquitylation
pathway, the Polycomb pathway is also regulated by
sumoylation. Proteins with roles in the sensing and
repair of DNA damage often localize to the surrounding
chromatin (1). To investigate the role of CBX4 in the
DDR, human bone osteosarcoma cells (U20S) in the
presence or absence of ionizing radiation (IR) treatment
were subjected to immunostaining and CBX4 localization
was examined. Notably, we found that, while CBX4
concentrated in several defined domains, PcG bodies, in
untreated human cells (Supplementary Figure S1), 30 min
after IR treatment, it formed nuclear foci that largely
co-localized with y-H2AX, suggesting them to be
ionizing radiation (IR)-induced foci (IRIF) (Figure 1A).
Similar co-localization patterns were established with
BMI1, another PcG protein that has recently been
implicated in the DDR (3,4,36,41-43) (Figure 1B).
We confirmed these results using 750 nm two-photon
laser micro-irradiation, which revealed that CBX4
localized to laser-induced DNA damage sites that
overlap with y-H2AX (Supplementary Figure S2). This
treatment resulted in rapid recruitment of YFP-CBX4 to
DNA damage tracks in live cells (Figure 1C). We found
that CBX4 accumulated at irradiated sites within 11 s after
micro-irradiation. Since the kinetics of CBX4 recruitment
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Figure 1. CBX4 is an early DDR protein. (A) U20S cells were exposed to 2 Gy of radiation. Cells were permeabilized with 0.2% Triton-X100 in
PBS, fixed and stained with (A) CBX4 and y-H2AX antibodies or (B) BMII and CBX4 antibodies. Images were deconvolved with a constrained
iterative deconvolution using a theoretical point spread function using Huygens Essential deconvolution software (Scientific Volume Imaging).
(C) Kinetics of CBX4 in living cells. U20S cells expressing YFP-CBX4, GFP-BMI1 or YFP-Mrell were monitored after micro-irradiation by
time-lapse fluorescence microscopy. Representative images of CBX4 time lapse are shown (top). The scale bar represents 5pm. Quantification of
YFP-CBX4, GFP-BMII and YFP-Mrell accumulation at laser track sites was done using the Zeiss LSM software. The fluorescence intensity values
in the micro-irradiated areas were pooled from 10 to 15 independent cells and plotted versus time (bottom). Experiment was done three times.
(D) Detection of CBX4 on a unique DSB in vivo at a high resolution by chromatin immunoprecipitation (ChIP). Real-time PCR on ChIP samples
was carried out at 191-335, 3014-3228 and 4545-4750 nucleotides from the break (red, yellow and blue bars, respectively). The average percentage of
input for IgG and YFP-CBX4 at the GAPDH control locus is 0.23% and 0.22%, respectively. The data were generated from three independent

experiments and eight PCR values from these experiments.


http://nar.oxfordjournals.org/cgi/content/full/gks222/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks222/DC1

to the sites of DNA damage is similar to early DDR
proteins such as MREI1l and BMI1 (3) (Figure 1C),
these data suggest that the Polycomb E3 SUMO ligase
CBX4 is one of the early factors involved in the DDR.
CBX4 accumulation at the sites of DNA damage was
not cell type specific. We observed CBX4 recruitment in
a panel of cell lines ranging from mouse to human
(Supplementary Figure S2). Consistent with our data,
a recent report showed that CBX4 accumulated at the
sites of UV laser induced DNA damage (38). However,
in the previous work, it was unclear what signal CBX4 was
responding to because UV laser irradiation induces
multiple types of DNA lesions such as base damage,
single-strand breaks and DSBs. Our demonstration that
CBX4 accumulates at foci in response to irradiation
(IRIF) suggests that CBX4 is responding to DSBs,
although we cannot rule out that other types of damage
also participate in the recruitment to sites of laser
micro-irradiation.

In order to determine whether CBX4 binds very close to
DSBs in vivo or is associated with flanking chromatin, we
used ChIPs. For this, we employed the MCF7 cell line,
which bears a modified GFP gene in which an I-Scel
restriction site has been engineered (37). The I-Scel restric-
tion enzyme does not cut elsewhere in the genome and
therefore is specific for the modified GFP. In this way, a
unique DSB can be created in a known nucleotide
sequence. Following transfection of MCF7 cells with
pCBASce (a plasmid encoding I-Scel), a unique focus
was present in 40% of the cells, compared to
untransfected cells, as monitored by immunofluorescence
with y-H2AX (data not shown). Early after transfection
with pCBASce, cells transfected with YFP-CBX4 were
fixed with formaldehyde and the chromatin was
solubilized by sonication and purified. Immunopre-
cipitation was performed with an antibody raised against
GFP, which is also efficiently recognizing the YFP tag.
Mouse anti-human IgG (H+L) antibody was used
as a negative control. Control experiments revealed that
GFP antibody immunoprecipitated YFP-CBX4 from the
isolated chromatin (Supplementary Figure S3). After
reversal of the formaldehyde crosslinks, DNA samples
were deproteinized. DNA was isolated and amplified by
real-time PCR with primer pairs specific to regions of
interest near the DSB created by I-Scel. All reactions
were normalized against control primer pairs for
sequences near the GAPDH locus, which allowed us to
control for DSB-independent effects on protein occu-
pancy. This highly informative approach allowed the
detection of repair proteins on the DSB (37). We found
that CBX4 was enriched (~2-fold) at 3kb and 4.5 kb from
the break site (Figure 1D).

Mapping of the domains required to target CBX4 to
DNA damage sites

To define the domain(s) that are responsible for CBX4
recruitment, we employed a series of YFP-tagged
CBX4 deletion mutants (Figure 2A). CBX4 contains
two previously characterized functional domains (44).
The N-terminal region contains a highly conserved
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chromodomain (Chr), which binds to H3K9me3 and
H3K27me3 residues. Also, CBX4 has a conserved region
of 21 amino acids comprising the Pc box of CBX4 (Box)
that is involved in transcriptional silencing and binding to
other PcG proteins. The mutations in CBX4 used include
AChr, deletion of the CBX4 chromodomain; ABox,
deletion of the CBX4 chromobox; and AChr ABox,
combined deletion of both CBX4 domains. We also
introduced a single amino acid substitution of the CBX4
chromodomain (I16F) that is required to bind to the
trimethylated lysine peptide on H3 and has been shown
to reduce association of CBX4 with chromatin (44).
YFP-tagged WT or mutant CBX4 constructs were
transfected into U20S, and the recruitment of CBX4 to
the sites of DNA damage was examined by time-lapse
microscopy. Western blot analysis using extracts from
YFP-CBX4 expressing U20S cells revealed that the level
of expression of each CBX4 expression construct is very
similar (Figure 2B). Introduction of the I16F point
mutation, which eliminates trimethylation-dependent
binding to the histone H3 N-terminus, had no significant
effect on CBX4 recruitment to the sites of DNA damage
(Figure 2C). Similarly, neither deletion of the chromo-
domain nor deletion of the chromobox abrogated recruit-
ment to DNA damage sites (Figure 2C). Nonetheless,
deletion of both domains, while not ecliminating
recruitment, significantly reduced recruitment. These
data indicate that the mechanism of CBX4 recruitment
to sites of DNA damage is distinct from those used to
execute its PcG gene silencing function, where the
chromodomain binds to H3K27me3 residues.

PARP activity is required for CBX4 recruitment to
DNA damage sites

To delineate where CBX4 fits in the established DNA
damage-signalling cascade, we examined CBX4 recruit-
ment in a number of human or mouse cells with
deficiencies in various DNA damage response proteins.
Cells were micro-irradiated using a 750 nm laser, and the
micro-irradiated sites were examined by indirect immuno-
fluorescence. Strikingly, we found that CBX4 accumu-
lation at sites of laser-induced DNA damage is not
significantly affected in cells with H2AX, ATM,
DNA-PKcs, RNF8, 53BP1, Ku80 or HIPK?2 deficiency
(Supplementary Figures S4 and S5). We found no signifi-
cant difference in either the recruitment kinetics or the
retention of YFP-CBX4 in any of the cell lines tested
(Figure 3B-E). These data suggest that the mechanism(s)
responsible for recruiting CBX4 to DNA damage sites is
distinct from previously established pathways. Since
H2AX and numerous early DDR factors had no role in
CBX4 recruitment, we initiated a search for alternative
pathways that could be responsible for CBX4 recruitment.
We focused our attention on poly(ADP-ribosyl)ation
since this post-translational modification is known to
have profound impacts on chromatin structure and
genome functions (45) and has been reported to be
involved in the recruitment of PcG proteins to sites of
laser-induced DNA damage (38). Following genotoxic
insult, DNA-dependent PARPs rapidly synthesize an
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Figure 2. Mapping out the CBX4 domain(s) required for accumulation at sites of DNA damage. (A) Schematic diagrams for the CBX4 deletion
mutants used. (B) Western blot analysis of U20S cells expressing each of the CBX4 mutants to show the expression level of each mutant.
(C) Quantitative time-lapse analysis of the effects of conserved CBX4 domains on CBX4 recruitment to the sites of DNA damage. WT, wild
type; I16F, point mutation in the CBX4 chromodomain; AChr, deletion of the CBX4 chromodomain; ABox, deletion of the CBX4 chromobox;
AChr ABox, combined deletion of both CBX4 domains. Quantifications of YFP-CBX4 deletion mutant accumulation at the laser track sites were
done using the LSM software. The fluorescence intensity values in the micro-irradiated areas were pooled from 10 to 15 independent cells from three
independent experiments and plotted on a time scale. The black line indicates that the intervening lanes were spliced out.

anionic poly(ADP-ribose) matrix that triggers local chro-
matin relaxation while acting as a loading platform for a
variety of DDR factors (46). Poly(ADP-ribosyl)ation re-
actions are typically brief and transient phenomena due to
the rapid hydrolysis of PAR by the poly(ADP-ribose)
glycohydrolase (PARG) (47). To explore a role for
PAR-metabolizing enzymes in the recruitment of CBX4
to sites of DNA damage, we asked whether a broad
spectrum PARP inhibitor (AG-14361) could affect
CBX4 accumulation dynamics. U20S cells stably express-
ing YFP-CBX4 were pre-treated with either DMSO
(control) or PARP inhibitor (AG-14361) for 1h before
750-nm laser micro-irradiation, and the recruitment of
YFP-CBX4 to the sites of DNA damage was monitored
using time-lapse microscopy. CBX4 was recruited
efficiently to DNA lesions in control-treated cells, but
recruitment was largely abrogated in cells treated with
the PARP inhibitor (Figure 3A). To further evaluate the
role of PAR polymer in CBX4 recruitment to the sites of
DNA damage, mCherry-tagged PARG constructs were
used to modulate nuclear PAR levels (48). The expression
of a wild-type (PARG-WT) and catalytically inactive
(PARG-mut) 111-kDa nuclear PARG isoforms was used
to modulate PAR turnover and assess whether PAR levels
can have an impact on CBX4 recruitment (48). U20S
cells were co-transfected with mCherry PARG-WT or
PARG-mut constructs together with YFP-CBX4, and

the recruitment of YFP-CBX4 to the sites of DNA
damage was monitored using time-lapse microscopy. We
found that overexpression of PARG-mut did not have
an impact of CBX4 recruitment to the DNA damage
sites, whereas overexpression of PARG-WT abrogated
the recruitment of CBX4 to the DNA damage sites
(Figure 3B).

CBX4 binds to PAR in vitro

The requirement for PAR chains to recruit CBX4 raised
the possibility that CBX4 might bind PAR polymer chains
directly. To test this hypothesis, YFP-CBX4 was trans-
fected into HEK?293 and affinity-purified using anti-GFP
antibodies coupled to magnetic Protein-G Dynadeads.
YFP differs from GFP due to a mutation at T203Y;
antibodies raised against full-length GFP should also
detect YFP and other variants. CBX4 immunopreci-
pitations were performed under normal growth conditions
(untreated cells) or following massive PARP activation by
the DNA alkylating agent MNNG. The immunopre-
cipitated proteins were resolved by SDS-PAGE and
stained with SYPRO. YFP-CBX4 was highly enriched as
shown by the prominent 100-kDa band revealed by the
staining (Figure 3C). However, we failed to observe
a typical YFP-CBX4 band shift in MNNG-treated cells
that would suggest that CBX4 is directly covalently
poly(ADP-ribosyl)ated by PARP-1. However, when the
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Figure 3. PARP mediates CBX4 recruitment to DNA break sites. (A) Effect of PARP inhibitor (PARPi) on CBX4 recruitment to the sites of DNA
damage. U20S cells were treated with PARPi (2.5uM) for 1 h before DNA damage. DNA damage was introduced by laser micro-irradiation, and
the recruitment of CBX4 to the sites of DNA damage was recorded. (B) Effect of PARG WT and PARG dead on CBX4 recruitment.
mCherry-tagged PARG WT or PARG-mut were co-transfected with YFP-CBX4 into U20S. Cells co-expressing YFP and mCherry were
micro-irradiated, and the accumulation of CBX4 at the sites of DNA damage was recorded. The scale bar represents 5Sum. (C) YFP-CBX4 was
transfected into HEK 293 cells and affinity-purified using anti-GFP antibodies coupled to magnetic Protein-G Dynadeads. The immunoprecipitated
proteins were resolved by SDS-PAGE and stained with SYPRO. (D) Polymer blot of proteins immunoprecipitated with GFP antibody from nuclear
extracts of cells expressing YFP-CBX4. Immunoprecipitated proteins were resolved by SDS-PAGE and stained with SYPRO (left), (middle left
panel) incubated with 3*P automodified PARP-1 and (right left panel) incubated with **P automodified PAR. The identity of the PAR-binding signal
on the blot was confirmed by immunodetection using anti-GFP and anti-CBX4 antibodies (right panels). BSA was used as a negative control for
non-specific binding while purified core histones were used as positive control proteins for noncovalent PAR-binding.

immunoprecipitate was resolved by SDS-PAGE,
transferred to nitrocellulose, and probed for proteins
that bind PAR, strong noncovalent binding affinity for

further examined on additional polymer blots (Figure
3D). BSA was used as a negative control to test
nonspecific binding in our assay, whereas purified core

PAR was observed in the position of the gel where
CBX4-YFP migrated (Figure 3D). The identity of the
PAR-binding signal on the blot was confirmed by
western blots using anti-GFP and anti-CBX4 antibodies
(Figure 3E). The specificity of CBX4 binding to PAR was

histones were used as positive control proteins for
non-covalent PAR-binding. Abundant proteins such as
IgGs or the YFP tag itself did not bind PAR, and under
the same conditions, BSA did not bind to PAR, whereas
core histones bound PAR as expected (Figure 3D).
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The polymer-blot assays indicate that CBX4 has the
ability to directly bind PAR polymers in vitro. Taken
together our results suggest that DNA damage induces
PAR polymer synthesis that acts as scaffolding matrix
that serves to directly recruit CBX4 to the sites of DNA
damage.

CBX4 mediates the accumulation of SUMO conjugates
at DSBs

Three SUMO isoforms: SUMO-1, SUMO-2 and SUMO-3
accumulate at DSB sites and form IRIF in mammalian
cells (29,30). Therefore, we examined whether or not
CBX4 knock down had an effect on the formation of
DNA damage-induced SUMO-1, SUMO-2 or SUMO-3
IRIF. Due to similarities in sequence, SUMO-2 and
SUMO-3 cannot be distinguished to date and are thus
referred to as SUMO-2/3 (49). The effect of CBX4
knock down on SUMO-1 and SUMO2/3 IRIF formation
was examined in U20S cells transfected with one of two
different CBX4 shRNA prior to radiation exposure

CBX4 efficiently form SUMO-1 and SUMO-2/3 IRIF
with an average of 28 foci per cell (Figure 4A).
In contrast, CBX4 knock down reduced the average
number of SUMO-1 and SUMO-2/3 foci per cell to 8.
These data suggest that CBX4 regulates the accumulation
of SUMO-1 and SUMO-2/3 at the sites of DNA damage.
In control experiments, we confirmed that CBX4 shRNA
constructs that co-express a GFP reporter specifically
depleted CBX4 levels in cells and CBX4 knock down
had no effect on the global SUMO-1 or SUMO-2/3
levels in cells (Supplementary Figure S6 and data not
shown). Previous reports showed that PIAS1 and PIAS4
mediate SUMO-1 and SUMO-2/3 accumulation at DSB
sites in an RNF8-dependent manner (29,30). Therefore,
we next examined if SUMO-1 and SUMO-2/3 accumulate
in RNF8 KO MEFs. In order to test this, YFP-SUMO-1
and YFP-SUMO-2/3 were transfected into RNF§ WT
and RNF8 KO cells and the accumulation of SUMO-1
and SUMO-2/3 at the sites of DNA damage were moni-
tored by time-lapse microscopy. Consistent with previous
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Figure 4. CBX4 and PIASI/4-mediated DDR pathways are distinct. (A) Effect of CBX4 knock down (KD) on the formation of SUMO-1 and

SUMO-2/3 IRIF. U20S cells transiently expressing GFP-tagged CBX4

shRNA were exposed to 2Gy of radiation; cells were fixed and

co-immunostained with antibodies to SUMO-1 or SUMO-3 and y-H2AX antibodies. An average number of SUMO-1 or SUMO-3 IRIF per cell
were plotted. RNF8 WT and RNF8 KO MEFs transiently expressing either (B) YFP-SUMO-1 or (C) YFP-SUMO-3 were micro-irradiated, and the
accumulation of SUMO was monitored by time-lapse fluorescence microscopy. The fluorescence intensity values in the micro-irradiated areas were
pooled from 10 to 15 independent cells from three independent experiments and plotted on a time scale. (D) U20S cells transfected with either PIASI
shRNA construct or PIAS4 shRNA construct that co-expresses a GFP reporter were micro-irradiated, permitted to recover for Smin at 37°C, and
immunostained as indicated. The scale bar represents 5 pm. (E) CBX4 mediates resistance to radiation. Survival curves of U20S cells transfected with
either control shRNA or either one of two different CBX4 shRNA or double transfected with different shRNA as indicated, exposed to different
doses of radiation and allowed to grow for 10 days. Cells were stained with crystal violet, and the number of remaining colonies was counted.
The experiment was carried out in triplicate. Error bars represent standard error from three independent experiments.
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laser-induced DNA damage was reduced but still readily
detectable in RNF8 KO cells, indicating the existence of
an RNF8-independant pathway that is responsible for the
remaining SUMO-1 recruitment (Figure 4B and C) (29).
In contrast, YFP-SUMO-2/3 accumulated efficiently in
both RNF8 WT and RNF8 KO MEFs (Figure 4B and
C) suggesting that SUMO-2/3 recruitment is RNFS§
independent. Not surprisingly, CBX4 colocalized with
SUMO-1, -2 and -3 at sites of DNA damage
(Supplementary Figure S7).

The PIAS1/PIAS4- and CBX4-mediated DNA damage
response pathways are distinct

Recent reports identified PIAS1 and PIAS4 as E3 SUMO
ligases that are required for SUMO-1 and SUMO-2/3
accumulation (29,30). Therefore, we wanted to determine
whether or not the PIAS1, PIAS4 and CBX4 SUMO
ligases function in the same or different DNA damage
response pathways. A previously described shRNA
against PIAS1 or against PIAS4 was cloned into
separate eGFP vectors (29). PIAS1 or PIAS4 shRNAs
constructs that co-express a GFP reporter were trans-
fected into U20S. Cells were subjected to laser
micro-irradiation  followed by immunofluorescence
staining. We found that CBX4 accumulation at DNA
damage sites was not affected by either PIASI- or
PIAS4-specific sShARNA (Figure 4D). In a control experi-
ment, these sShRNA constructs efficiently knocked down
the relevant protein in cells (Supplementary Figure S8).
These data indicate that neither PIAS1 nor PIAS4 are
required for the initial recruitment of CBX4 to DNA
damage sites and suggest that PIAS1/PIAS4 and CBX4
function in distinct DDR pathways. To confirm whether
or not CBX4 and PIAS1/PIAS4 were part of the same or
distinct genetic pathways contributing to radiation
resistance, the survival of either U20S cells transfected
with both PIASI or PIAS4 shRNA and CBX4 shRNA
or U20S cells transfected with both RNF8 shRNA and
CBX4 shRNA was quantified. When challenged with
moderate doses of IR (2 Gy), the transient knockdown
of CBX4 significantly reduced the fraction of surviving
cells (Figure 4E). The effect of CBX4 knockdown on
cellular radiation sensitivity was more pronounced
(3-fold) at 4 Gy. Interestingly, we found that knockdown
of PIAS1 or PIAS4 together with CBX4 knockdown or
simultaneous knockdown of RNF8 and CBX4 additively
increased radiation sensitivity beyond the loss of either E3
ligase alone, implying that these E3 ligases are not part of
the same genetic pathway (Figure 4E). Also, the sensitivity
of cells to radiation upon CBX4 knockdown indicates
a direct functional role for CBX4 in the DDR or repair
of DNA damage.

CBX4 is required for BMI1 recruitment to DSB sites

Since CBX4 contains the chromodomain that binds to
trimethylated lysine 27 on histone H3 (H3K27me3) and
thereby participates in targeting the Polycomb E3 ubiqui-
tin ligase complex, PRCI, to genes undergoing repression,
we tested the possibility that CBX4 is needed to target
the PRC1 component, BMI1, to sites of DNA damage
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(50-52). BMI1 recruitment to DNA damage was
examined in U20S cells transfected with CBX4 shRNA
construct that co-expresses a GFP reporter. Cells were
exposed to 2Gy of radiation, and the accumulation of
BMII into IRIF was monitored. As a control, we coun-
terstained cells with y-H2AX antibody in order to reveal
the sites of DNA damage (IRIF). Consistent with our
previous observation (3), we found that BMIIl was
enriched in IRIF that co-localize with y-H2AX in U20S
cells having normal expression of CBX4 (3) (Figure 5A).
In contrast, BMI1 accumulation at DSB sites was reduced
in U20S cells expressing GFP-CBX4 shRNA (Figure 5A).
We then tested whether or not the recruitment of CBX4
and BMI1 to sites of DNA damage was mutually depend-
ent on each other, which might occur because they coexist
in the PRC1 complex. BMI1 wild-type (BMI1 WT) and
BMI1 knock out (BMI1 KO) mouse embryonic fibroblasts
(MEFs) (53) were micro-irradiated, and the recruitment of
CBX4 was examined by indirect immunostaining. We
found that CBX4 was efficiently recruited to the sites of
DNA damage in both BMI1 WT and BMI1 KO MEFs
(Figure 5B), demonstrating that CBX4 recruitment onto
sites of DNA breaks is BMII independent. To further
confirm these data, we examined the kinetics of CBX4
recruitment in BMI1 WT and BMII KO MEFs. Cells
were transfected with full-length YFP-CBX4, and the
kinetics of CBX4 recruitment to sites of DNA damage
was monitored by time-lapse microscopy. We found no
significant difference in either the recruitment kinetics or
the retention of YFP-CBX4, when BMI1 WT is compared
to BMI1 KO cells (Figure 5C). Taken together, these data
suggest that CBX4 is essential for the accumulation of
BMI1 at DSB sites, wherecas CBX4 recruitment is
independent of BMII.

DNA damage induces the sumoylation of BMI1 at
lysine 88

The demonstration that CBX4 is required for targeting
BMII to sites of DNA damage suggested the possibility
that BMI1 is sumoylated in response to DNA damage.
To directly test for BMII sumoylation, we transiently
co-expressed myc-tagged-BMI1, Ubc9 and YFP-
SUMO-1 and then performed myc immunoprecipitations.
Immunoblotting of the resulting samples with an
anti-BMI1 antibody established that, upon exposing cells
to radiation, a slower migrating band was observed that is
consistent with the conjugation of SUMO-1 to BMII
(Figure 6A). This band was not present in cells not
exposed to radiation suggesting that BMI1 is sumoylated
in response to DNA damage. This conclusion is further
supported by reciprocal GFP-immunoprecipitation
western experiment. Indeed, anti-BMI1 immunoblotting
confirmed that irradiation induced the sumoylation of
BMI1 (Figure 6A). We next conducted computational
analysis using the BMII1 primary sequence to predict
potential BMI1 sumoylation sites. The analysis revealed
one probable sumoylation site on BMII, at lysine 88
(K88). To determine if lysine 88 is sumoylated, we
created a version of BMIl in which lysine 88 was
mutated to arginine (K88R). BMI1 KO cells exposed or
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Figure 5. CBX4 is required for BMI1 localization to DNA damage sites. (A) U20S cells transfected with CBX4 shRNA construct that co-expresses
a GFP reporter were irradiated with 2 Gy and left to recover for 30min at 37°C. Cells were fixed and immunostained for BMI1 and y-H2AX.
(B) BMI1 WT and BMI1 KO MEFs were micro-irradiated and left to recover for Smin. Cells were fixed and stained as indicated. The scale bar
represents 5Spm. (C) Dynamics of YFP-CBX4 in BMI1 WT and BMI1 KO MEFs. Cells were transfected with YFP-CBX4, and accumulation of
YFP-CBX4 at the DNA damage sites was analyzed by time-lapse fluorescence microscopy. The fluorescence intensity values in the micro-irradiated
areas were pooled from 10 to 15 independent cells from three independent experiments and plotted on a time scale.

not exposed to radiation were co-transfected with Ubc9,
SUMO-1 and either GFP-BMI1 WT or GFP-BMI1 K88R
and analyzed by western blot. Consistent with previous
results, we found that DNA damage-induced sumoylation
of BMI1 in cells reconstituted with the WT BMII
construct (Figure 6B). Importantly, mutation of this
lysine residue to arginine (BMI1 K88R) abrogated DNA
damage-induced BMI1 SUMO modification in vivo
(Figure 6B). We conclude that BMI1 is sumoylated in
response to DNA damage and that lysine 88 is the
principal lysine utilized for SUMO conjugation. We next

studied the impact of K88R mutation on BMII recruit-
ment to sites of DNA damage. U20S cells were trans-
fected with the GFP-BMI1 WT or GFP-BMI1 K88R
construct, and the kinetics of BMII1 recruitment to sites
of DNA damage was monitored by time-lapse micros-
copy. We found that K88R mutation severely reduced
the recruitment of BMI1 to sites of laser-induced DNA
lesions (Figure 6C). We conclude that lysine 88 is essential
for BMI1 targeting to the sites of DNA breaks. To exclude
that the mutation of K88 to R itself is responsible for
the defect in BMII1 recruitment, independent of the
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Figure 6. DNA damage-induced sumoylation of BMI1 at lysine 88. (A) 293T cells transiently transfected with CBX4, myc-tagged BMI1, Ubc9 and
YFP-SUMO-1 were irradiated with 6 Gy and permitted to recover for 1h at 37°C. Nuclear extracts were prepared and immunoprecipitated using
myc or GFP-specific antibody. Immunoblot analysis was done using BMI1 antibody. As a control different blots were run simultaneously and
probed with y-H2AX and actin. (B) BMI1 KO MEFs reconstituted either with empty vector, GFP-BMI1 WT or GFP-BMI1 K88R constructs were
treated as in (A). Nuclear extracts and immunoprecipitations were done using GFP antibody. Immunoblot analysis was done using BMI1 antibody.
(C) Time-lapse fluorescence microscopy of GFP- WT BMII1, GFP- K88R-BMI1, GFP- WT-BMI1-SUMOI or GFP-K88R-BMI1-SUMO-1 in U20S
following laser micro-irradiation. The fluorescence intensity values in the micro-irradiated areas were pooled from 10 to 15 independent cells from
three independent experiments and plotted on a time scale. (D) U20S cells expressing Ubc9 and SUMO-1 were transfected with either control or one
of the two different CBX4, shRNA were irradiated with 6 Gy and permitted to recover for 1 h at 37°C. Nuclear extracts were immunoprecipitated
and immunoblotted using BMII antibody. (E) CBX4 promotes SUMO-1 conjugation to BMI1 in vitro. Purified proteins GST-tagged BMII1 and
GST-tagged CBX4 proteins were incubated with recombinant Aosl/Uba2 (E1), Ubc9 and SUMO-1 as indicated. The reaction mixture was analyzed
by western blotting using anti-BMIlantibody.

sumoylation status, we constructed a fusion protein where

SUMO-1 is attached to the C-terminus of either WT or
K88R BMII and the recruitment of BMII to the sites of
DNA damage was monitored. Interestingly, we found that
fusing SUMO-1 to the K88R mutant abolished the re-
cruitment defect observed with the K8§R BMI1 construct,
indicating that interactions mediated by SUMO are im-
portant in targeting BMI1 to DNA damage (Figure 6C).

CBX4 mediates DNA damage-induced BMI1 sumoylation

We next wanted to examine if CBX4 is responsible for
sumoylation of BMI1 in response to DNA damage.
U20S cells expressing Ubc9 and SUMO-1 were trans-
fected with either control or one of the two different
CBX4, shRNA were either mock treated or exposed to
radiation and nuclear extracts were prepared.
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Immunoblot analysis revealed that BMI1 was efficiently
sumoylated in cells expressing control shRNA whereas
CBX4 knock down completely abrogated DNA
damage-induced BMI1 sumoylation (Figure 6D). To
determine whether CBX4 can sumoylate BMI1 in vitro,
purified GST-tagged BMIlI and GST-tagged CBX4
proteins were incubated with recombinant Aosl/Uba2
(E1), Ubc9 and SUMO-1 in the presence of ATP.
Reactions were terminated by the addition of
SDS-PAGE loading buffer and analyzed by western blot
with a BMIl1-specific antibody. When recombinant El,
UbcY, CBX4 and SUMO-1 were all present, a slower
migrating band was observed that is consistent with the
conjugation of SUMO-1 to BMI1 (Figure 6E). This band
was not present when E1, Ubc9, CBX4 or SUMO-1 was
absent from the reaction mixture, demonstrating that
CBX4 can sumoylate BMI1 in vitro. Taken together,
these data suggest that CBX4 is required for the
sumoylation of BMII in response to DNA damage.

DISCUSSION

Protein sumoylation is an important post-translational
modification, which can regulate multiple aspects of
target protein function (54). Here we provide evidence
that CBX4 is directly involved in the cellular response to
DNA damage. We found that sumoylation of BMII by
CBX4 affects its subcellular localization and is required
for BMIIl recruitment to sites of DNA damage.
CBX4-mediated sumoylation of BMI1 allows its recruit-
ment to sites of DNA damage. This event initiates a novel
ubiquitylation pathway that is required for radiation
resistance and genomic integrity. CBX4 recruitment to
the sites of DNA damage is independent of H2AX,
RNFS, PI-3-kinase-related kinases and PIASI/PIAS4,
which distinguishes CBX4-dependent DDR signalling
from other known pathways. The demonstration that
CBX4 is recruited to the sites of DNA damage within
seconds after damage and that CBX4 expression is neces-
sary for cell survival upon exposure to irradiation leads to
a model in which CBX4 plays an early critical role in the
DDR. The newly discovered role of both SUMO and
ubiquitin-based Polycomb-dependent signalling within
the DDR cascade expands the role of PcG proteins
beyond gene repression. Interestingly, the SUMO-
mediated regulation of the Polycomb E3 ubiquitin ligase
complex at sites of DNA damage illustrates that both the
Polycomb pathway and the canonical RNFS8 pathway use
similar regulatory mechanisms. Recent reports implicated
two E3 SUMO ligases PIAS1 and PIAS4 in the
RNF8-dependent cellular response to DNA damage
(29,30). The CBX4 SUMO ligase represents a distinct
pathway since the recruitment of PIAS1 and PIAS4 to
sites of DNA damage requires the E3 ubiquitin ligase
RNFS8 and the phosphorylation of H2AX, while CBX4
recruitment is independent of these factors. Additionally,
CBX4 recruitment to sites of DNA damage is independent
of PIAS1 and PIAS4. This suggests that PIAS1/PIAS4
and CBX4 are two independent SUMO pathways that
operate within the DDR.

The PARP family of proteins has been implicated
previously in the recruitment of DNA repair factors to
lesions and is known to rapidly localize to sites of
damage (46,55,56). PARPI1, the best-characterized family
member in mammalian cells, is involved in single-strand
break repair and an alternative non-homologous end-
joining pathway of DSB repair (38). The binding of
PARP1 to DNA breaks stimulates its enzymatic activity
and leads to the rapid assembly of PAR chains adjacent to
the lesion. This assembly leads to the recruitment of X-ray
repair cross-complementing group 1 and DNA ligase III,
as well as polynucleotide kinase, polymerase-f, flap
endonuclease-1, and PARP2 to the break site. Recently
Chou et al. (2011) found that PARP activity was
required for the accumulation of a number of PcG
proteins at sites of DNA damage, including BMII and
CBX4. Since they also found that EZH2 was recruited
in a PARP-dependent manner, they proposed that there
was a PARP-dependent recruitment PRC2 methyl-
transferase complex. Through the catalytic subunit,
EZH2, PRC2 then recruited PRCI1. However, we (11)
and others (57) have not found increased histone H3
lysine 27 methylation at sites of DNA damage. In this
light, our results implicate CBX4 as the component of
PRCI1 that is both responsible for the recruitment of the
complex and directly interacts with poly(ADP-ribose).
Two lines of evidence support such a scenario. First,
CBX4 positive charge prediction identifies a domain in
the N-terminus of CBX4 that has the potential to bind
ribosylated polymer. Second, using polymer-blot assays
we have shown that CBX4 has the ability to directly
bind PAR polymers in vitro.

In conclusion, we present data that documents a new
function for CBX4 within the DDR, further establishing
the involvement of PcG in multiple cellular processes. The
demonstration that CBX4 controls the sumoylation status
of BMII, and that this modification regulates BMII
recruitment to sites of DNA damage in mammalian
cells, establishes a new role for sumoylation in mediating
interaction among PcG proteins.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-8.
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