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Background: Although largely preventable, cardiovascular diseases (CVDs) are the 
biggest cause of death worldwide. Common complex cardiovascular disorders (e.g., 
coronary heart disease, hypertonia, or thrombophilia) result from a combination of genetic 
alterations and environmental factors. Recent advances in the genomics of CVDs have 
fostered huge expectations about future use of susceptibility variants for prevention, 
diagnosis, and treatment. Our aim was to summarize the latest developments in the field 
from a public health perspective focusing on the applicability of data on single-nucleotide 
polymorphisms (SNPs), through a systematic review of studies from the last decade on 
genetic risk estimating for common CVDs.

Methods: Several keywords were used for searching the PubMed, Embase, CINAHL, 
and Web of Science databases. Recent advances were summarized and structured 
according to the main public health domains (prevention, early detection, and treat-
ment) using a framework suggested recently for translational research. This framework 
includes four recommended phases: “T1. From gene discovery to candidate health 
applications; T2. From health application to evidence-based practice guidelines; T3. 
From evidence-based practice guidelines to health practice; and T4. From practice to 
population health impacts.”

Results: The majority of translation research belongs to the T1 phase “translation of basic 
genetic/genomic research into health application”; there are only a few population-based 
impacts estimated. The studies suggest that an SNP is a poor estimator of individual 
risk, whereas an individual’s genetic profile combined with non-genetic risk factors may 
better predict CVD risk among certain patient subgroups. Further research is needed 
to validate whether these genomic profiles can prospectively identify individuals at risk 
to develop CVDs. Several research gaps were identified: little information is available on 
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studies suggesting “Health application to evidence-based practice guidelines”; no study 
is available on “Guidelines to health practice.” It was not possible to identify studies that 
incorporate environmental or lifestyle factors in the risk estimation.

Conclusion: Currently, identifying populations having a larger risk of developing com-
mon CVDs may result in personalized prevention programs by reducing people’s risk of 
onset or disease progression. However, limited evidence is available on the application 
of genomic results in health and public health practice.

Keywords: genetic screening, genetic susceptibility, single-nucleotide polymorphism, translational research, 
cardiovascular diseases, literature search

iNTRODUCTiON

Despite the fact that cardiovascular diseases (CVDs) are largely 
preventable they are the biggest cause of death worldwide, respon-
sible for almost one-third of all global deaths (1). In 2012, CVDs 
were responsible for 46% of deaths caused by non-communicable 
diseases. Of these deaths, an estimated 7.4 million were due to 
ischemic heart disease and 6.7 million were due to stroke (2). This 
review focuses on common complex cardiovascular disorders 
with high public health importance caused by a combination of 
several genetic and environmental factors.

The role of social determinants (e.g., aging, employment, 
income, and education), behavior (e.g., unhealthy diet, tobacco 
use, physical inactivity, and harmful use of alcohol), and metabolic 
(e.g., obesity, diabetes, raised blood TG, and LDL-cholesterol 
level, low blood HDL-C level) risk factors have largely been well 
known for decades due to the large-scale longitudinal studies 
(e.g., Framingham study and Seven Countries study) (3–8). 
Nevertheless, the contribution of inherited (genetic) disposition 
is still the focus of intense research interest (2). Our knowledge of 
these non-genetic risk factors has been useful in disease preven-
tion efforts, but hopefully, we may discover more effective ways 
of preventing and controlling CVDs if we understand the genetics 
underlying these diseases.

The large majority of the common CVDs are developed as 
a result of harmful interaction between heritable and environ-
mental factors. Approaches to identifying the genetic causes of 
polygenic common CVDs (and also other polygenic diseases) 
became more prominent after completion of the Human Genome 
Project. Several genetic loci associated with cardiovascular traits 
have been identified by candidate gene and genome-wide associa-
tion studies testing a set of genetic variants, mainly in case–con-
trol studies in populations of different ancestry and ethnicity. 
Evidence for the strong contribution of genetic factors in the 
development of common CVDs has consistently been reported 
in twin and family-based linkage studies. Heritability estimates 
from large twin studies suggest that genetic variations may 
account for about 30–50% of hypertension risk and about 50–60% 
of coronary artery disease or myocardial infarction risk (9–12). 
For these complex cardiovascular disorders, the main ambition of 
public health initiatives is to be able to prevent or predict diseases 
by identification of the subject at high risk (13). In addition, 
several variants for monogenic subtypes of, e.g., hypertension, 
congenital heart disease, or familial hypercholesterinaemia have 

been identified (14–16). For monogenic disorders, the major 
public health priorities are genetic screening and its effective use 
in health-care practice to arrange the best treatment and provide 
the best care for family members at high risk (13).

Rapid advances in the genomics of CVDs have fostered huge 
expectations about the future use of detecting susceptibility vari-
ants in prevention, diagnosis, and treatment. Although large-scale 
association studies promote the estimation and categorization of 
the predictive values related to genetic variants, and the large 
number of genetic loci associated with CVDs and cardiovascular 
risk factors have provided insights into the biologic pathways that 
underlie the cases of disease, the application of such findings to 
cardiovascular risk prediction, prevention, and treatment still 
needs to be elucidated (17). So far only a small number of find-
ings in human genome research have resulted in evidence-based 
applications in the field of medicine and public health.

Genetic screenings, as Becker et al. indicate, aim at populations 
of asymptomatic individuals, or at subpopulations in which the 
risk is known to be increased, or in which the specific phase of life 
merits screening (pregnant women, newborns) (18). Screening 
for common complex CVDs would give us opportunities for pre-
ventive strategies related to lifestyle, medication, or intervention 
(18). In the last 10 years, there has been increased enquiry into 
the potential clinical and public health applications of genetic 
screening/genetic testing of CVD risk.

In this review, we will discuss the application of single-
nucleotide polymorphisms (SNPs) related to risk estimates in 
identification of increased genetic susceptibility to common 
CVDs from a public health perspective and summarize the 
recent advances in translational research from the past decade 
using the comprehensive framework suggested by Khoury and 
his colleagues (19). This framework comprises four phases of 
evidence in translation research [“T1. From gene discovery to 
candidate health applications; T2. From health application to 
evidence-based practice guidelines; T3. From evidence-based 
practice guidelines to health practice; and T4. From practice to 
population health impact” (19)] and possible future applications 
of genetic screening/testing of CVDs in connection with these 
phases can be identified.

MeTHODS

To identify relevant studies in the field of CVD genetics/genomics 
a structured literature search using compound terms (Table 1a–d) 
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TABLe 1 | Details on the systematic search.

(a) Database: PubMed

Search number MeSH Keywords used in query Results

1 ((“Mass Screening”) OR “Genetic Testing”) AND “Cardiovascular Diseases” 12,735
2 (((“Mass Screening”) OR “Genetic Testing”) AND “Cardiovascular Diseases”) AND “Polymorphism, Genetic” 552
3 (((“Mass Screening”) OR “Genetic Testing”) AND “Cardiovascular Diseases”) AND “Polymorphism, Genetic” 238

Filters activated: full text, humans, and English, published in the last 10 years

(b) Database: embase

Search number embase subject headings used in query Results
1 (“Mass Screening” OR “Genetic Screening”) AND “Cardiovascular Disease” 2,474
2 (“Mass Screening” OR “Genetic Screening”) AND “Cardiovascular Disease” AND “Genetic Polymorphism” 72
3 (“Mass Screening” OR “Genetic Screening”) AND “Cardiovascular Disease” AND “Genetic Polymorphism” 44

Filters activated: full text, humans, and English, published in the last 10 years

(c) Database: CiNAHL

Search number CiNAHL headings used in query Results
1 (“Health Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” 69
2 (“Health Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” AND “Polymorphism, Genetic” 9
3 (“Health Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” AND “Polymorphism, Genetic” 1a

Filters activated: full text, humans, and English, published in the last 10 years

(d) Database: web of Science

Search number Keyword used in query Results
1 (“Mass Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” 217
2 (“Mass Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” AND “Polymorphism, Genetic” 38
3 (“Mass Screening” OR “Genetic Testing”) AND “Cardiovascular Diseases” AND “Polymorphism, Genetic” 30

Filters activated: full text, humans, and English, published in the last 10 years

Strategy of search: date of query: May 5, 2017.
Medical Subject Headings (MeSH) is the United States National Library of Medicine’s controlled vocabulary thesaurus used for indexing articles for PubMed.
aFull text was available in case of 1 article.
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was performed using online database services of PubMed, 
Embase, CINAHL, and Web of Science. The timeframe of the 
search related to this review was from May 5, 2007 until May 5, 
2017. The systematic search and selection process were conducted 
as proposed in the published PRISMA guideline (20) resulting 
in the final list of relevant publications (see adapted flowchart, 
Figure 1 in Section “Results”).

ReSULTS

Studies included in the Review by 
implementing PRiSMA Statement
The first step was the identification of the records. A pri mary 
search using PubMed, Embase, CINAHL, and Web of Science 
was performed to identify related publications using compound 
terms (Table 1a–d). Research communications published earlier 
than 2007 and not published in English were excluded. Only 
those studies that were conducted on human subjects and were 
available in full-text format were considered. This identification 
step resulted in 323 records. Moreover, by checking the references 
of the relevant studies an additional 10 studies were identified 
and included. The details of the search and the number of records 
identified in queries can be seen in Figure 1.

Next, the abstracts of the records that fit the abovementioned 
criteria were tested (screening of the records) for relevance to 
the topic, i.e., only those records were included that focused on 
common CVDs. Twenty-six studies were discarded because the 

full text of the research was not available, and 121 studies were 
excluded after reviewing the abstracts because it appeared that 
these papers clearly were not relevant to common complex CVDs.

Finally, eligibility and inclusion of the records were investigated: 
the full text of the remaining 176 publications was examined in 
more detail. A total of 152 studies were identified for inclusion in 
this review, after 24 studies were excluded because risk prediction 
was not included in those articles or only the methodology was 
described.

Translational Genomic Research in CvDs
During the last decade, voluminous research aimed at incorpo-
rating cardiovascular genetic/genomic discoveries into practice 
has been undertaken. Altogether, 152 studies were found to be 
relevant to this field. Khoury et  al. suggested a framework for 
translational research that is required before applying genomic 
findings in clinical or public health practice. This framework 
includes the following four phases:

T1. From discovery to candidate health applications,
T2. From health application to evidence-based practice guide lines,
T3. From practice guidelines to health practice, and
T4. From practice to population health impact (19).

The major developments on CVDs’ genomics for each phase 
of the framework are summarized in Table 2. Consequently, this 
table also displays how close/far cardiovascular genetic applica-
tions are to/from clinical or public health practice.
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TABLe 2 | Advances in genomic research on common cardiovascular diseases (CVDs) according to the translation research framework.

T1 phase: discovery to candidate  
health application

T2 phase: health application 
to evidence-based practice 
guidelines

T3 phase: guidelines 
to health practice

T4 phase: practice to 
population health  
impact

Genome-based prediction of 
common CVDs

 – Single-gene associations
 – Genome-wide associations
 – Prediction models using genetic and non-

genetic factors

 – Clinical validity, utility investigation 
to assess risk in the general 
population

None None

Genetic testing to improve 
diagnostic accuracy

 – Diagnostic models using genetic and 
non-genetic factors

None None None

Genetic testing to improve 
prognostic accuracy

None None None None

Genome-based prediction of 
treatment response

 – Genetic profiles
 – Interaction between genetic factors  

and response to treatment

 – Clinical validity, utility investigation 
to predict response in high-risk 
group

None  – Decision-analytic model 
estimating cost-effectiveness 
(only simulation study)

FiGURe 1 | Flowchart shows study selection procedure. Adapted from Ref. (20).
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From Gene Discovery to Candidate Health 
Applications (T1)
Khoury et al. describe T1 research as follows: it begins after gene 
discovery, and its goal is the development of candidate health 
applications to be used in clinical and public health practice. 
Ideally, the outcome of this phase is the development of a single-
gene test or construction of a genome profile that has high sensi-
tivity, specificity, and predictive value. These applications can be 
used to foster clinical evaluation (predictive testing, screening, 
diagnostic, and prognostic testing) or selection of the most 
effective therapeutic option, usually by observational studies and 
clinical trials (phases I and II) (19).

Genome-Based Prediction of CVDs
Genetic Association Studies on SNPs. During the last 10 years, 
numerous association studies were performed in the field of 
cardiovascular genetics with a high representation of case–con-
trol design among them. These studies utilized a single candi-
date-gene approach almost without exception to estimate the 
potential cardiovascular risk. Few of them were genome-wide 
association studies examining SNPs across the genome, and only 
one linkage study and one segregation study were found (21–23).

Genetic alterations were associated with ischemic stroke 
(24–41), arrhythmias (42–51), coronary heart/artery disease 
(52–62), myocardial infarction (63–66), and carotid sclerosis 
(67–70) were intensely investigated, but less attention was paid 
to the following traits/phenotypes as an outcome: atrial fibrilla-
tion (71), abdominal aorta aneurysm (72), carotid intima-media 
thickness (73, 74), carotid plaque thickness (75), cardiovascular 
mortality/diseases in general (76–80), dilated cardiomyopathy 
(81, 82), venous thrombosis (83–85), familial hypercholesteri-
naemia (86), hypertrophic cardiomyopathy (87–89), plasma 
lipoproteins (90), hypertension (91–93), intracranial aneurysm 
(94, 95), intracerebral hemorrhage (96–98), ischemic heart 
disease (99), recanalization after ischemic stroke (100), suba-
rachnoid hemorrhage (101–103), vasodilator reactivity (104), 
and lower extremity artery disease (105). During recent years, 
a number of review articles have appeared dealing with recent 
advances in genetics research (mostly reviews of association 
studies) of arrhythmia (106–108), coronary artery/heart disease  
(78, 109–114), sudden cardiac death (115, 116), sporadic heart 
failure (117, 118), cardiomyopathy (119), and thrombophilia 
(120, 121), that also discuss the recent and potential develop-
ments in the field (122–127).

Genetic association studies investigate a correlation between 
disease status and a genetic alteration(s) (e.g., SNPs, VNTRs, and 
CNVs) to identify risk or protective alleles that play a part in the 
development of a specific disease. An increased frequency of a risk 
allele or genotype in the individuals affected with a disease can 
result in the conclusion that the variant of interest increases the 
risk of a specific disease (128). According to our results, associa-
tion studies still represent an important tool in identifying genes 
contributing susceptibility to several complex CVDs. Association 
studies (and meta-analyses) have reconfirmed that many differ-
ent genetic variants affect disease risk, but each variant has only 
a relatively small effect. Single markers identified are unlikely to 

be considered for clinical use unless they yield a high effect size 
(characterized by odds ratio/beta coefficient).

Meta-analyses that combine the results of single-gene associa-
tion studies provide an opportunity to obtain more robust effect 
sizes. In the last decade, meta-analyses were related to atrial 
fibrillation, MRI-defined brain infarct, ischemic stroke, and 
susceptibility to any type of atherosclerotic CVD, such as coro-
nary artery disease, acute coronary syndrome, or ischemic heart 
diseases (129–135). It is worth mentioning that meta-analyses 
may be biased: publication bias, population stratification, control 
selection bias, and lack of genotype blinding exist, thus results 
should be interpreted with caution.

Genome-Wide Association Studies. Genome-wide association 
studies use high-throughput genotyping technologies to assay 
thousands of SNPs and correlate them to clinical conditions or 
measurable traits. GWA studies are very useful in discovering 
genetic variants related to different diseases but also have import-
ant limitations (summarized by Pearson and Manolio), “includ-
ing false-positive and false-negative results and biases related to 
selection of study participants, and genotyping errors.” But most 
of the variants identified by GWA studies still have very modest 
effects on disease risk and explain only a small fraction of popu-
lation risk or total estimated heritability (136).

It is important to point out that a variant with even small odds 
ratios can improve the indicative power of the predictive models, 
such as the 9p21 locus (114, 137–141). Despite several studies 
that show consistent associations of 9p21 locus with CVD traits, 
the biological role of the locus is still not well understood. In a 
study by Visel et  al. (142), the results provide direct evidence 
that the coronary artery disease risk interval has a crucial role 
in regulation of cardiac Cdkn2a/b expression (a mouse ortholog 
of the 9p21 locus) and suggest that this region has an effect on 
the progression of coronary artery disease by modifying the 
dynamics of vascular cell proliferation. If it is confirmed this 
would represent a new mechanism for myocardial infarction that 
is unrelated to traditional risk factors (123).

Combining Candidate-Gene SNPs with or without Traditional 
Clinical Risk Factors—The Genetic Risk Score (GRS) Approach.  
Multiple markers with small effect sizes may be used in com-
bination to generate high effect size. The simultaneous use of 
the most common and strongest risk markers (with or without 
other non-genetic traditional risk factors) may have the desired 
discriminatory accuracy (quantified by the C-statistics) to dis-
tinguish between diseased and healthy subjects. Information 
obtained from SNPs can be combined by first assigning a risk 
value of, e.g., 0 for a subject that is a non-carrier of risk allele, 1 if 
a “carrier,” or 2 if homozygous for that allele, and then calculating 
the overall score (GRS) for each individual in the study popula-
tion (143).

Using this gene scoring approach, Aulchenko et  al. (144) 
included a total of 17,797–22,562 persons, aged 18–104  years 
from the Nordic countries to Southern Europe. They investigated 
22 loci known to be associated with serum lipid levels (total 
cholesterol, low-density lipoprotein, cholesterol, high-density 
lipoprotein cholesterol, and triglycerides). GRSs based on lipid 
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loci explained 4.8, 3.4, and 3.0% of age-adjusted variances in 
HDL-C, LDL-C, and TG, respectively and were also associated 
with increased intima-media thickness (p = 0.001) and coronary 
heart disease incidence (p = 0.04). They tested for the association 
between the genetic risk profiles and intima-media thickness, 
and incident coronary heart disease. From the risk profiles, 
the total-cholesterol profile and the combined profile—includ-
ing all associated SNPs of the four traits—were most strongly 
associated with the clinical outcomes. They concluded that the 
genetic profiles developed improve the identification of subjects 
at high risk of dyslipidemia but do not improve the prediction 
of atherosclerosis and CHD compared to classical risk factors.

In the study of Krarup et al. (145), the GRS of 45 risk variants 
was involved to estimate the effect on incidence and clinical pre-
dictability of myocardial infarction and coronary artery disease 
in 6,041 Danish individuals. Analyses using two different models 
(model 1: adjusted for age and sex; model 2: adjusted for age, 
sex, BMI, smoking status, and type 2 diabetes mellitus) detected 
allele-dependent association of GRS with myocardial infarc-
tion [hazard ratio (HR) (95% CI): model 1: 1.05 (1.01–1.10), 
p = 0.02 and model 2: 1.06 (1.02–1.11), p = 0.01]. No association 
with coronary artery disease was shown for either GRS model. 
They aimed to estimate the predictive capacity of GRS for only 
myocardial infarction, but no significant effect was identified on 
discriminative or reclassification ability by adding GRS to the 
European SCORE algorithm (age, sex, smoking status, systolic 
blood pressure, and total cholesterol).

In the recent study of Isaacs et al. (146), the cumulative effects 
of common genetic variants related to TC, LDL-C, HDL-C, and 
TG were associated with carotid plaque formation. As Isaacs 
et al. concluded, the relationship was the strongest for the LDL-C 
score, which increased plaque score by 0.102 per SD increase in 
GRS (p = 3.2 × 10−8). TC and LDL-C scores were significantly 
associated with incident myocardial infarction and coronary heart 
disease with HRs between 1.10 and 1.13 per SD increase in score. 
The Framingham risk score (FRS) discriminated myocardial 
infarction better than the GRSs (area under receiver-operating 
characteristic curve—AUC 0.65 vs. 0.62); after combining FRS 
and GRSs, the results improved slightly compared with the FRS 
AUC alone (AUC 0.66; p  =  0.069). In cases of coronary heart 
disease, the results were similar. In conclusion, GRSs did not 
improve clinical AUCs.

Tikkanen et al. (147) genotyped 28 genetic variants in a Finnish 
cohort of 24,124 participants. A multilocus GRS was constructed, 
and its association with incident CVD events was evaluated. They 
reported that by adding genetic information to conventional risk 
factors the risk discrimination of coronary heart disease (C-index 
0.856 vs. 0.851, p = 0.0002) and other end points (CVD: C-index 
0.840 vs. 0.837, p  =  0.0004; acute coronary sclerosis: C-index 
0.859 vs. 0.855, p  =  0.001) were improved. According to their 
model in a population of 100,000 individuals, additional genetic 
screening of subjects at intermediate risk for coronary heart 
disease would reclassify additional 2,144 subjects (12%) into the 
high-risk category.

According to the study by Weijmans et al. (148) in a group of 
patients (5,742 individuals) with symptomatic vascular disease, 

the GRS did not improve prediction of 10-year risk of cardiovas-
cular events beyond clinical characteristics. The net reclassifica-
tion index improved only in case of patients suffering from stable 
atherosclerosis (0.14, 95% CI: 0.03–0.25).

Ganna et al. (149) used data from 6 Swedish prospective cohort 
studies with 10,612 healthy participants. They investigated the 
clinical utility of GRS in primary prevention of CVDs. Several 
risk scores were developed: the overall GRS based on 395 SNPs 
was reported as being associated with cardiovascular traits: one 
coronary heart disease-specific GRS, including 46 SNPs, and 6 
trait-specific GRS for each established CHD risk factor (body mass 
index, HDL-C, systolic blood pressure, TC, and smoking, type 2 
diabetes mellitus). The overall and the coronary heart disease-
specific GRS were significantly associated with CHD risk (HRs for 
fourth vs. first quartile, 1.54 and 1.52; p < 0.001) and improved risk 
classification beyond established risk factors (net reclassification 
improvement, 4.2 and 4.9%; p = 0.006 and 0.017). Discrimination 
improvement was modest (C-index improvement, 0.004).

Genetic Testing to Improve Diagnostic Accuracy
Besides the several studies mentioned earlier on coronary heart 
disease, a study on risk models that predict a person’s risk for 
developing venous thrombosis was published by de Haan et al. 
(150). GRS based on 31 venous thrombosis-associated SNPs 
was developed for subjects of a large case–control study (2,712 
patients and 4,634 controls). GRS computed from all the 31 SNPs 
or from the 5 most strongly associated SNPs performed very 
similarly (AUCs of 0.70 and 0.69, respectively). The AUC of a risk 
model based on known non-genetic risk factors was 0.77 (95% 
CI: 0.76–0.78). After combining the non-genetic and genetic risk 
models, the AUC improved to 0.82 (95% CI: 0.81–0.83), which 
indicates better diagnostic accuracy.

Genome-Based Prediction of Treatment Response
In addition to genetic testing that can improve the treatment by 
increasing drug efficacy and safety, a genetic test can be used to 
select patients for therapies that target-specific genes/gene prod-
ucts (151). An area where genome-based prediction of treatment 
response is important is the use of genetic testing for evaluating 
the antiplatelet effects of the antiplatelet drug clopidogrel. Several 
recent studies suggest that therapeutic responses to clopidogrel 
might depend on the genotype at the CYP2C19 gene; however, 
some findings are contradictory (152–156). It was shown that 
clopidogrel-treated patients who had an allele of CYP2C19 
with reduced function [most commonly the CYP2C19*2 or 
CYP2C19*3 allele, roughly 30% of patients have loss-of-function 
(LOF) alleles] had less platelet inhibition, and consequently, a sig-
nificantly higher risk of cardiovascular events than those who had 
a normally functioning CYP2C19 enzyme (157). Furthermore, it 
was shown that the CYP2C19*17 variant is the gain-of-function 
(GOF) allele (prevalence is between 3 and 21%) and is an 
independent factor in increased bleeding risk (157). Recently, 
Shen et  al. (158) demonstrated the explicit clinical benefit of 
CYP2C19 genetic testing for guiding the antiplatelet therapy on 
a sample of 628 patients; clinical outcomes were analyzed at 1, 
6, and 12 months after discharge. Individual antiplatelet therapy 
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guided by CYP2C19 genetic testing significantly improved the 
prognosis of patients after percutaneous coronary intervention. 
The morbidity rates of “major adverse cardiovascular events” 
in the intervention group were decreased by 4.3, 4.6, and 5.2% 
compared with the routine group (conventionally treated with 
75 mg daily of clopidogrel without CYP2C19 genetic testing) at 
1, 6, and 12 months, respectively.

According to a review by Chan et  al. (159), there is a good 
evidence of analytical validity for testing LOF polymorphisms 
in managing clopidogrel therapy. They highlighted that LOF 
polymorphisms are associated with reduced levels of the active 
clopidogrel metabolite and with reduced on-treatment inhibition 
of ADP-induced platelet activation. In percutaneous coronary 
intervention populations, there is consistent evidence for an 
association between LOF polymorphisms and adverse clinical 
outcomes (stent thrombosis and major adverse cardiovascular 
events). Evidence for clinical utility of CYP2C19 genotyping as 
a predictive biomarker is limited to subgroups with indecisive 
findings.

In a single-center study of 535 ischemic stroke patients who 
received clopidogrel, Yi et al. (160) found that for patients car-
rying the reduced function LOF polymorphisms the inhibition 
of platelet aggregation was significantly lower in patients treated 
with proton-pump inhibitors.

From Health Application to Evidence-Based  
Practice Guidelines (T2)
The second phase (T2) begins if there is convincing evidence 
on genetic test performance. In this phase, the so-called ACCE 
components (analytic and clinical validity, clinical utility and 
ethical, legal, and social issues) are investigated in the popula-
tion settings for which the tests are intended. These evaluations 
depend on multidisciplinary research in the field of clinical 
medicine, laboratory sciences, economics, public health, ethics, 
behavioral, and social sciences. Results from this phase should 
result in evidence-based guidelines for both clinical and public 
health practice (19).

According to the Evaluation of Genomic Application in 
Practice and Prevention Working Group (EWG), testing for 
the 9p21 genetic variant or 57 other variants in 28 genes is not 
recommended to assess risk for CVD in the general population, 
specifically heart disease and stroke (161). The EWG highlighted 
that even if the 9p21 variants with heart disease had convincing 
evidence of per allele–odds ratio of between 1.2 and 1.3 (the high-
est among all variants they investigated) the magnitude of net 
health gain from use of any of these test (alone or in combination) 
is irrelevant. According to the guideline of the U.S. Preventive 
Services Task Force, genetic/genomic markers are not included 
among those non-traditional risk factors suggested in coronary 
heart disease risk assessment (carotid intima-media thickness 
and high sensitivity C-reactive protein) (162).

To date, several research studies have focused on the CYP2C19 
gene (see relevant studies above) because its variants can reduce 
the formation of the active metabolite of clopidogrel and 
influence clopidogrel’s antiplatelet effects. While many studies 
showed that clopidogrel’s efficacy depends on CYP2C19 genetic 
polymorphisms, others did not find any association (163, 164). 

In fact, CYP2C19 LOF alleles account for only 12% of the 
variability in response to clopidogrel. This implies that most of 
the variabilities are caused by other factors not yet developed. 
To date, guidelines form the American College of Cardiology 
Foundation/American Heart Association recommended against 
routine genetic testing in patients with acute coronary syndrome 
(165). In addition, a IIb recommendation (evidence C) has been 
given to CYP2C19 genotyping by stating that: efficacy is less well 
established; only diverging expert opinion and case studies are 
available.

The MTHFR enzyme catalyzes the transition of 5,10-meth-
ylenetetrahydrofolate to 5-methyltetrahydrofolate, the primary 
circulatory form of folate, and a cosubstrate for homocysteine 
remethylation to methionine. MTHFR polymorphism testing 
(for variant of c.665C  →  T and c.1286A  →  C) is frequently 
suggested by general practitioners as part of the clinical inves-
tigation for thrombophilia. The potential associations between 
MTHFR genotype status and several complications have been 
evaluated by case–control, cohort, Mendelian randomiza-
tion, and meta-analysis because formerly it was suggested 
that reduced enzyme activity of MTHFR led to hyperhomo-
cysteinemia, which amount to an increased risk for venous 
thromboembolism, coronary heart disease, and recurrent 
pregnancy loss (166). But a later meta-analysis has found that 
the association was not as strong as previously believed. Long 
and Goldblatt highlighted that “homozygosity for the 677C>T 
polymorphism is linked to a small increase in homocysteine 
levels; the increased risk of ischemic heart disease and stroke is 
more closely related to the serum levels of homocysteine rather 
than the presence of the MTHFR polymorphisms. Furthermore, 
there seems to be no increased risk of mortality from CVD to 
MTHFR 677C>T homozygotes (167).” Considering the fact 
that MTHFR polymorphism is only one out of many other 
factors contributing to the clinical picture, the utility of this 
testing is presently doubtful. There is growing evidence that 
MTHFR polymorphism testing has minimal clinical utility and 
therefore should not be prescribed as part of a routine evalu-
ation for thrombophilia according to the American Congress 
of Obstetricians and Gynecologists, the American College of 
Medical Genetics and Genomics, and the British Society for 
Haematology (166–169).

Although the ethical, legal, and social issues related to genetic 
screening/testing of CVDs are rather important components of 
T2 research, they were not the focus of our interest.

From Evidence-Based Guidelines  
to Health Practice (T3)
The third phase addresses the spread and integration of knowl-
edge yielded through the T2 phase research. The translation 
and dissemination of evidence-based guidelines into practice is 
challenging (19), and only one genomic application is ready for 
implementation in routine daily practice. The U.S. Preventive 
Services Task Force suggest BRCA mutation testing for predicting 
breast and ovarian cancers for women who have blood relatives 
with breast, ovarian, tubal, or peritoneal cancer (170), but no rec-
ommendations (published or in progress) are available regarding 
genetic testing of CVDs.
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From Practice to Population Health Impact (T4)
This phase assesses how the adopted recommendations and 
guidelines make an impact. It focuses on clinical and public health 
outcomes of the guidelines obtained and includes measuring the 
incidence of the disease, quality of life indicators, clinical decision 
modeling, and cost-effectiveness analysis (19).

So far, only one study by Jiang and You (171) examined the 
clinical and economic outcomes of CYP2C19 LOF- and GOF-
guided antiplatelet therapy in subjects with acute coronary 
syndrome undergoing percutaneous coronary intervention. 
They designed a lifelong decision-analytic model in a hypotheti-
cal cohort of 60-year-old patients to simulate outcomes of three 
strategies: clopidogrel, alternative P2Y12 inhibitors (prasugrel/
ticagrelor), and LOF/GOF-guided therapy (LOF/GOF allele 
carriers received an alternative P2Y12 inhibitor and wild-type 
patients received clopidogrel). Direct costs, clinical event rates 
(including major cardiovascular events, stent thrombosis, and 
major bleeding), and quality-adjusted life-years gained were 
the model’s outcomes. They found that non-fatal myocardial 
infarction (5.62%) and stent thrombosis (1.2%) had the lowest 
rate in the alternative P2Y12 inhibitor arm, whereas non-fatal 
stroke (0.72%), cardiovascular death (2.42%), and major bleed-
ing (2.73%) were the lowest in the LOF/GOF-guided group. The 
LOF/GOF-guided arm had the highest QALYs (7.5301 QALYs) 
at the lowest lifelong cost (USD 76,450). These finding suggest 
that personalized antiplatelet therapy driven by CYP2C19 LOF 
and GOF alleles appears to be the preferred antiplatelet strategy 
when compared to clopidogrel and alternative P2Y12 inhibitor 
therapy.

Quality Assessment of Studies included
The full text of the articles (genome-wide association studies, 
genetic risk prediction studies, and meta-analyses) was screened, 
and data on recently published key reporting components 
(according to STREGA, GRIPS, and PRISMA) and methodo-
logical components (according to AMSTAR) of the studies were 
extracted (20, 172–174). The STREGA, GRIPS, PRISMA, and 
AMSTAR checklists have 22, 25, 27, and 11 items, respectively, 
that should be reported in the research articles. If each item is 
achieved, the maximum scores are identical to the item numbers. 
The mean STREGA score of all collected GWAs was 20.8 ± 1.64 
(on average, 94.54% of the items properly reported). The per 
item STREGA analysis revealed that one item (item 19: discuss-
ing limitations of the study) was the least adhered to (40%) of 
the five GWAs included. The mean GRIPS score of all genetic 
risk prediction studies included was 21.43  ±  2.51 (85.72% of 
items were reported satisfactorily). The per item GRIPS analyses 
showed that one item had less than 57% adherence (item 14: 
report the number of individuals at each stage of the study) out 
of the seven risk prediction studies involved. Two items (item 
10: specify the procedure and data used for validation of the risk 
model, and item 19: report any validation of the risk model) 
had 28.6% adherence. The overall mean PRISMA score of meta-
analysis was 22 ± 4 (82.96% of the items adequately reported). 
The per item PRISMA analysis showed that one item (item 5: 
indicate if a review protocol exists and where it can be accessed) 

had 0% adherence out of the five meta-analyses included. Item 
25 (discuss limitations at study and outcome level) has only 
40% adherence. The mean AMSTAR score of meta-analyses 
was 6.2 ± 1.48 (56.36% of the items adequately reported). The 
per item AMSTAR analysis showed that three items (item 1: 
Was an a priori design provided? Item 4: Was the status of the 
publication—i.e., gray literature—used as an inclusion criterion? 
Item 5: Was the list of studies, included and excluded, provided?) 
had 0% adherence out of the five meta-analyses included. Based 
on our analyses the reporting qualities of recently published 
studies were good in general, although according to the per 
item analyses there is a need for improvement in the case of 
some items. Two meta-analyses (129, 133) were excluded from 
PRISMA and AMSTAR analyses owing to the fact that both were 
meta-analyses of genome-wide association studies developed by 
consortia and data were not obtained via systematic literature 
search.

DiSCUSSiON

We have collected and reviewed the published literature accord-
ing to an overarching framework for translational research 
recommended by Khoury et al. (19). The studies reviewed in this 
work represent the majority of current data available on genetic 
testing/screening for CVD risk. The relevant research papers 
were retrieved using a PubMed search and included original 
scientific papers, reviews, meta-analyses, and editorials. We have 
summarized the major findings of the research identified in each 
translation phase.

The overview of most significant outcomes in genetic research 
in common CVDs according to the framework for translational 
research is summarized in Table 3. The vast majority of the studies 
published relate to T1 research (24–127, 137–160), many fewer 
focus on T2 research (161–169); however, T3 research is missing, 
and only one simulation study (171) was identified as a part of the 
T4 research (Tables 2 and 3). These finding suggest that during 
the last 10 years very few cardiovascular genetic discoveries have 
led to evidence-based applications for medical or public health 
practice. Genetic prediction of the complex CVDs consists of 
multiple genes added to traditional risk factors (145, 146, 149). 
Several recent studies suggest that polymorphisms, mainly in 
candidate genes, may help to distinguish among several clusters/
subgroups of patients. Several studies have identified certain 
risk profiles based on clusters of genes related to coronary heart 
disease or deep vein thrombosis but with low predictive values 
(147, 150). Further research is still needed to validate whether 
these genomic profiles can prospectively identify individuals at 
risk to develop CVDs.

The most important limitation of current cardiovascular 
T1 research is that only single-gene variants or several SNPs 
contributing to a small proportion of the genomic variation 
are investigated, but there are already prediction models avail-
able involving more complex system biology in large-scale and 
well-designed studies (144–150). We have also identified various 
research gaps including the following: little information is avail-
able on studies suggesting “Health application to evidence-based 
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TABLe 3 | Overview of most significant outcomes in genetic/genomic research in common cardiovascular diseases (CVDs) according to the framework for translational 
research.

T1 phase: discovery to candidate  
health application

T2 phase: health application to 
evidence-based practice guideline

T3 phase: guidelines  
to health practice

T4 phase: practice 
to population health 
impact

Genome-based prediction  
of common CVDs

 – Numerous genetic alterations were 
associated with numerous phenotypes  
in single-gene studies (24–127)

 – 9p21 locus shows powerful association  
with coronary heart disease, myocardial 
infarction in several genome-wild associations 
(114, 137–141)

 – Total-cholesterol risk profile (based on 11 
SNPs) improves identification of subjects  
at high risk of dyslipidemia (144)

 – Combining Framingham risk score and 
genetic risk score (GRS) (based on 336  
SNPs related to TC, LDL-C, HDL-C, and  
TG) slightly improves clinical accuracy (146)

 – GRS (based on 28 variants) improves the  
risk discrimination of coronary heart disease 
over and above traditional risk factors (147)

 – Overall GRS (computed from 395 variants) 
increases risk classification of coronary  
heart disease beyond established risk  
factors (149)

 – Evaluation of Genomic Applications 
in Practice and Prevention Working 
Group does not recommend testing 
for 9p21 genetic variant or other 57 
SNPs in 28 genes to assess the risk  
of heart disease and stroke (161)

None None

Genetic testing to improve 
diagnostic accuracy

 – Combining GRS (computed from 31 SNPs) 
and non-genetic risk factors increases the 
diagnostic accuracy of venous thrombosis 
(150)

None None None

Genetic testing to improve 
prognostic accuracy

None None None None

Genome-based prediction  
of treatment response

 – Antiplatelet therapy guided by CYP2C19 
gene testing for loss-of-function/gain-of-
function (GOF) alleles improves  
cardiovascular prognosis (157, 158)

 – MTHFR genetic testing for 677C>T 
homozygosity has minimal clinical 
utility, not recommended as a part  
of routine evaluation for thrombo-
philia (161, 166–169)

None  – Loss-of function/GOF-
guided personalized 
antiplatelet therapy has 
the highest quality-
adjusted life-years at 
lowest lifelong cost 
(simulation study) (171)
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practice guidelines”; no study is available on “Guidelines to health 
practice.” Furthermore, it was not possible to identify studies 
that incorporated environmental or lifestyle factors into the risk 
estimation.

Single-gene association reports from the last decade clearly 
point out that the SNPs associated with increased or decreased 
cardiovascular risk have little impact in risk estimation. In a study 
reviewed, the results of more than 600 studies and 3,000 SNPs 
related to CVDs, the largest OR for the association between an 
SNP and cardiovascular trait was 1.6, and almost all OR were 
between 0.8 and 1.2 (175). These so-called “common variants 
with small effects” can explain only modest amount of heritability 
even if hundreds of genetic factors are used for risk prediction 
(176, 177). Beside these variants numerous “rare alleles” (popula-
tion frequency is less than 0.5%) expected in the human genome. 
Rare variants have remarkable effect size and consequently 
might underlie the missing heritability of complex CVDs (178). 
To capture rare variants the GWAs approach or linkage study 
design are not powerful (178, 179); instead of genotyping a 
list of variants it is inevitable to sequence entire genome. The 

previous sequencing technology (known as “automated Sanger 
sequencing”) was expensive and time-consuming, but over the 
past decade, new high-throughput technologies, referred to as 
next-generation sequencing (NGS), were evolved. NGS tech-
nologies are cost-effective, able to explore the human genome 
in reasonable time and are suitable to discover full spectrum of 
sequence variations (180). Several recent studies suggest that the 
application of NGS technology in defining and characterizing 
inheritable components of CVDs is getting important (181–183). 
This strategy was successfully applied to find new genetic vari-
ants for Mendelian CVDs such as hypertension (KCNJ5, KLHL3 
gene), dilated cardiomyopathy (BAG gene), or familial combined 
hypolipidemia (ANGPTL3 gene) (184–187). However, utiliz-
ing NGS technologies to discover novel variants contributing 
common CVDs is very challenging mainly because of stringent 
statistical requirements. Currently, this approach represents 
a field has not been widely explored (188, 189). A viewpoint 
paper from the European Society of Cardiology working group 
on myocardial and pericardial diseases and the members of the 
European Society of Human Genetics summarize their current 
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opinion on the next-generation DNA sequencing. In routine care 
of patients whole exome/genome sequencing can be used as a 
diagnostic tool but only in case of recognized Mendelian disease 
genes (e.g., inherited cardiomyopathies, channelopathies, and 
familial dyslipidemias) (190–192). The collaboration between 
cardiologist, geneticist, molecular biologist, and bioinformatician 
are necessary in interpretation of sequencing results (190). All the 
challenges, advantages, and disadvantages of the NGS approach 
are beyond the scope of our wok.

Common CVDs are complex disorders in which gene–gene 
and gene–environment interactions play an important role. 
To date, the diagnosis of CVDs is mainly based on clinical 
signs and symptoms; however, the expectations surrounding 
genomic discoveries that improve presymptomatic testing, 
diagnosis, and treatment are huge. Genetic screening, a pos-
sible tool for disease prevention, is defined by the use of a set 
of diagnostic tests on a population to identify people who are 
carriers of specific genetic disorders, and who are consequently 
at higher risk of developing a certain disease. In the case of 
some common cardiovascular disorders, alteration in a single 
gene strongly affects the risk of development (these are referred 
to a “monogenic diseases,” e.g., familial hypercholesterinaemia, 
Mendelian forms of low and high blood pressure); however, in 
the case of the majority of common disorders, several genes, 
environmental factors, and also interactions between genes 
and between genes and environmental factors (considered 
“complex diseases,” e.g., coronary heart disease and venous 
thromboembolism) are required (188).

Smoking, harmful alcohol consumption, physical inactivity, 
and unhealthy eating habits are the most significant preventable 
behavioral risk factors of CVDs. As illustrated by several stud-
ies, gene–gene and gene–environment interactions contribute 
to the initiation and maintenance of these risk behaviors, which 
in turn increases risk for CVDs (193–196). Investigations of 
genetic and environmental attributes associated with ethnicity 
are an essential component of multidisciplinary research into 
the prevention of diseases, including those that differ in preva-
lence among ethnic groups such as CVDs (197, 198). The Roma 
population, which constitutes the largest ethnic minority in 
Europe, is the main subject of ethnicity-based studies because 
available data strongly suggest that Roma populations suffer 
from poorer health and lower life expectancy (199). Recently, 
our research group investigated whether genetic susceptibil-
ity contributes to the higher prevalence of smoking, harmful 
alcohol drinking habits and reduced HDL-C level in the Roma 
population compared to the general Hungarian population 
(200–202). Estimating the extent of genetic susceptibility 
might be important for designing and implementing targeted 
public health intervention programs among Roma. According 
to our results, harmful health behaviors (smoking and alcohol 
consumption) among Romani people have environmental/
cultural underpinnings rather than inheritable attributes thus 
interventions aimed at smoking and alcohol consumption 
should preferentially target the cultural/environmental factors. 
However, in the case of reduced HDL-C levels, the contribution 
of genetic susceptibility was confirmed hence interventions 

aimed at this risk factor need to consider the increased genetic 
susceptibility of Roma.

Genetic testing offered for single-gene disorders known to 
be associated with CVDs (e.g., familial hypercholesterinaemia 
or Tangier disease) (18, 192). Presently, genetic screening is 
recommended for high-risk groups only in special cases (for 
example, cascade testing from known cases of Lynch syndrome 
and familial hypercholesterinaemia or testing for women at high 
risk of breast cancer because of their family history). In contrast 
with single-gene disorders, screening is limited for estimating 
susceptibility to multifactorial CVDs (203).

Caution is required before spreading out the use of such 
genetic screening tests to population level, because the positive 
predictive value of any variants found is low, and it would be 
hard to interpret the findings (13). Furthermore, several funda-
mental questions raised by Thanassoulis and Vasan concerning 
the genetic background of common CVDs still have not been 
resolved: “Can genetic markers really improve CVD risk predic-
tion? How many SNPs are responsible for the genetic component 
of CVD? How many genetic markers will we need to discover 
to reliably improve risk prediction? What are the implications 
of the allelic architecture of CVD for risk prediction? What 
necessary steps are needed before bringing this information to 
patients?” (123).

Although genetic screening/testing for CVDs would ideally 
offer proper options concerning prevention, the discriminatory 
power of genetic screening to identify those who should or 
should not be the target of specific lifestyle advice and/or specific 
medication is still controversial, especially for variants having low 
individual relative risk and low predictive values (18).

In conclusion, we found that only a small proportion of the 
genetic/genomic research has advanced from discovery phase 
to an evidence-based health application. But recent findings 
and especially GWA studies and prediction studies offer a more 
advanced level of primary/secondary prevention interventions 
for those subjects who are at greater genetic risk, hopefully in the 
near future. Presumably, developments in public health practice 
will also inevitably facilitate effective implementation of genomic 
science.
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