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Abstract: Dysfunction of the blood–brain barrier (BBB) is involved in the pathogenesis of many
cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatan-
nol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays
an important role in antioxidant and anti-inflammatory responses. In this study, we examined the
protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell
line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated
the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated
bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3
cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-κB and
MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation
and oxidative stress through inactivating the NF-κB and MAPK signaling pathways on cerebral
endothelial cells in vitro.

Keywords: piceatannol; inflammation; oxidative stress; brain endothelial cells; lipopolysaccharide

1. Introduction

Endothelial cells constitute the blood–brain barrier (BBB), which is the interface be-
tween the vasculature and the brain. The BBB maintains the homeostasis of the brain
environment and the normal physiological functions of the central nervous system (CNS)
by regulating the transfer of ions, molecules, and cells between the brain parenchyma and
blood [1]. Its unique property is the prevention of unwanted substances from entering the
brain via the blood, but damage to it will cause many pathological reactions [2]. Dysfunc-
tion of the BBB will lead to the entry of foreign harmful substances into the brain through
the barrier and cause a variety of neurological diseases, such as Alzheimer’s disease, is-
chemic stroke, multiple sclerosis, and traumatic brain injury [3,4]. Cerebral microvascular
endothelial cells (CMECs) are the main lumen components of the BBB [5]. Different from
endothelial cells in non-neural tissues, CMECs are characterized by junction complexes,
including tight junctions, adherens junctions, and gap junctions, strictly regulating the
channel between the brain and blood [6].

Inflammation and oxidative stress result in BBB dysfunction. CMECs induce the
recruitment and migration of leukocytes by upregulating cellular adhesion molecules, in-
cluding intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1), causing local inflammatory responses and the secretion of pro-inflammatory
regulators such as inducible nitric oxide synthase (iNOS) in the brain [7]. Oxidative stress
causing BBB injury is closely related to the etiology and pathogenesis of brain diseases.
Oxidative stress is caused by the imbalance between oxidants and antioxidants [8]. In the
process of BBB injury, the production of enhanced reactive oxygen species (ROS) due to
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the activation of NADPH oxidase can destroy the normal functions of nerves and cells,
leading to cell death [9]. Previous studies have supported the notion of crosstalk between
inflammation and oxidative stress by enhancing the signal transduction of transcription
factors such as nuclear factor-κB (NF-κB) and the expression of c-Jun N terminal kinase
(JNK) and p38 mitogen-activated protein kinase (MAPK), contributing to the destruc-
tion of brain tissues [10]. Many stimuli, such as lipopolysaccharide (LPS), disrupt brain
homeostasis and BBB function, resulting in a loss of tight junction proteins in CMECs,
the secretion of pro-inflammatory cytokines, and the production of ROS [11]. LPS, as an
endotoxin, causes organ damage, such as damage to brain tissue by inducing immune
cells to produce many pro-inflammatory genes [12]. Peripheral LPS can activate the NF-κB
and MAPK signaling pathways and cause oxidative stress and inflammatory response in
CMECs in vitro [13]. Therefore, inhibiting LPS-induced inflammation and oxidative stress
in CMECs is a potential treatment method for BBB dysfunction.

Piceatannol (3,3′,4,5′-trans-trihydroxystilbene) (Figure 1) is a naturally occurring
polyphenolic stilbene commonly found in various food such as grapes, white tea, and
passion fruit [14]. Piceatannol has a wide range of biological activities, such as anti-cancer,
antioxidant, anti-inflammatory, and immune regulatory activities [15]. Piceatannol was
found to inhibit the activation of NF-κB induced by various inflammatory factors such as
LPS in human bone marrow cells [16]. Piceatannol can effectively inhibit H2O2-induced
DNA damage, indicating that it has a significant antioxidant effect on leukemia L1210, HL-
60, and K562 cells [17]. In addition, piceatannol can suppress the allergic inflammatory re-
sponse of mast cells induced by stimulants by regulating the secretion of pro-inflammatory
cytokines and the expression of MAPK phosphorylation, indicating its potential therapeutic
significance for allergic diseases [18]. The protective effect of piceatannol on endothelial
cells has been extensively studied. Piceatannol enhances the NO bioavailability by increas-
ing endothelial nitric oxide synthase (eNOS) expression and phosphorylation in endothelial
cells [19]. Piceatannol can also act as a heme oxygenase-1 (HO-1) inducer by enhancing the
HO-1 expression of in endothelial cells [20]. Piceatannol can ameliorate endothelial dys-
function by enhancing eNOS activity and the inhibition of oxidative stress [21]. Piceatannol
possesses significant therapeutic potential against cardiovascular diseases [22]. However,
whether piceatannol can prevent BBB damage and, in turn, neurological diseases remains
to be explored, along with its molecular mechanism. This study investigated the protective
effects of piceatannol against LPS-induced inflammation and oxidative stress in mouse
brain microvascular endothelial cells (bEnd.3).
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Figure 1. Structure of piceatannol.

2. Results
2.1. Piceatannol Ameliorated LPS-Induced Adhesion Molecules (ICAM-1/VCAM-1) Protein
Expression in bEnd.3 Cells without Affecting Cell Viability

Piceatannol’s effect on cell viability was measured by an MTT assay. bEnd.3 cells
were exposed to LPS (10 µg/mL) for 24 h with or without piceatannol (10 and 50 µM).
The results showed that the solvent, DMSO, and piceatannol (5, 10, 25, and 50 µM) had
no significant effect on the cell viability on bEnd.3 cells (Figure 2a). Therefore, the effects
of piceatannol at the safe concentrations of 10 and 50 µM were assessed on bEnd.3 cells
stimulated with LPS (1 or 10 µg/mL).
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Figure 2. Effects of piceatannol on cell viability and LPS-induced adhesion molecules expression
in bEnd.3 cells. (a) The effect of piceatannol on cell viability in bEnd.3 cells determined by MTT
assay. (b) Representative blots and (c,d) summarized graph for ICAM-1 and VCAM-1 expression in
cells pretreated with piceatannol (10, 50 µM) for 4 h and co-stimulated with LPS (1 µg/mL) for 24 h.
Results are mean ± SEM, n = 3–4 experiments. * p < 0.05 vs. NC; # p < 0.05 vs. LPS.

To verify the inhibitory effects of piceatannol on LPS-induced adhesion molecules
protein expression, we performed Western blotting. The protein expression of ICAM-1 and
VCAM-1 was upregulated by LPS (1 µg/mL) exposure for 24 h, whereas such upregulation
was reversed by pretreatment with 50 µM piceatannol for 4 h in bEnd.3 cells (Figure 2b–d).

2.2. Piceatannol Inhibited iNOS Expression and Proteins Relevant to MAPK Signaling Pathways
in LPS-Treated bEnd.3 Cells

To confirm the role of iNOS and MAPK signaling pathways in the protective effect
of piceatannol in bEnd.3 cells stimulated with LPS, we performed Western blotting. Ex-
posure to LPS (1 µg/mL) for 24 h increased iNOS expression while the pre-incubation of
piceatannol for 4 h at 50 µM effectively inhibited the iNOS expression when normalized to
GAPDH (Figure 3a,b). However, the phosphorylation of p38 at Thr180/Tyr182 was not
altered in bEnd.3 cells with the same culture conditions (Figure 3a,c). The treatment of
bEnd.3 cells with 10 µg/mL LPS for 1 h significantly increased the phosphorylation levels
of p38 (Thr180/Tyr182) and JNK (Thr183/Tyr185) proteins. These changes were decreased
by pretreatment with piceatannol for 30 min at 50 µM in comparison to the respective total
protein (Figure 3d–f).

2.3. Piceatannol Suppressed NF-κB Inflammatory Signaling in bEnd.3 Cells upon LPS Stimulation

The effect of piceatannol on NF-κB signaling in bEnd.3 cells upon LPS stimulation
was investigated by Western blotting. Cells were treated with 10 and 50 µM piceatannol for
4 h and then co-stimulated with 1 µg/mL of LPS for 24 h. Western blotting results showed
a very minor and non-significant effect on the phosphorylation (Ser536) and expression
of p65 (Figure 4a,b). Therefore, cells were stimulated with a higher concentration of
LPS at 10 µg/mL for 1 h, which activated the NF-κB inflammatory signaling pathway
through enhancing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65
(Ser536). Pretreatment with piceatannol (10 and 50 µM, 30 min) significantly ameliorated
p-IKKα/β, p-IκBα, and p-p65 in a concentration-dependent manner without any effect on
the corresponding total protein expression (Figure 4c–f).
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Figure 3. The effects of piceatannol on expression level of iNOS and MAPK signaling in bEnd.3 cells
stimulated with LPS. (a) Representative blots and (b,c) summarized data for iNOS expression and
the phosphorylation of p38 at Thr180/Tyr182 in cells pretreated with piceatannol (10 and 50 µM) for
4 h and co-incubation of LPS (1 µg/mL) for 24 h. (d) Representative blots and (e,f) summarized data
for the phosphorylation of p38 (Thr180/Tyr182) and JNK (Thr183/Tyr185) in cells incubated with or
without piceatannol (10 and 50 µM) for 30 min and then co-stimulated with LPS (10 µg/mL) for 1 h.
Results are mean ± SEM, n = 3–4 experiments. * p < 0.05 vs. NC; # p < 0.05 vs. LPS.
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Figure 4. The effects of piceatannol on NF-κB inflammatory signaling in bEnd.3 cells upon LPS stimulation.
(a,b) Phosphorylation level of p65 at Ser536 in bEnd.3 cells treated with piceatannol (10 and 50 µM, 4 h)
followed by co-stimulation with 1 µg/mL LPS for 24 h. (c) Representative blots and (d–f) summarized
data showing the effect of piceatannol on the phosphorylation of IKKα/β, IκBα and p65 in cells treated
with or without piceatannol (10 and 50 µM) for 30 min and then co-stimulated with LPS (10 µg/mL) for
1 h. Results are mean± SEM, n = 3–4 experiments. * p < 0.05 vs. NC; # p < 0.05 vs. LPS.
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The effect of piceatannol on NF-κB signaling was further confirmed by fluorescence
imaging. LPS exposure (10 µg/mL, 1 h) triggered NF-κB translocation from the cytosol to
the nucleus of bEnd.3 cells. Such translocation was prevented by piceatannol pretreatment
at 50 µM for 30 min (Figure 5).
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Figure 5. The effect of piceatannol on the LPS-induced nuclear translocation of NF-κB p65 in bEnd.3
cells. Representative images for the cells pretreated with different concentrations of piceatannol
(10, 50 µM) for 30 min and then co-treated with LPS (10 µg/mL) for 1 h. NF-κB p65 (green) was
represented by immunofluorescence staining and the nuclei were indicated by DAPI staining (blue).
Results are mean ± SEM, n = 3 experiments. * p < 0.05 vs. NC; # p < 0.05 vs. LPS.

2.4. Piceatannol Diminished LPS-Induced Oxidative Stress in bEnd.3 Cells

We examined whether piceatannol diminished ROS production in bEnd.3 cells with
LPS stimulation using CM-H2DCFDA fluorescence dye. The ROS levels were enhanced by
LPS exposure at 10 µg/mL for 1 h, while piceatannol pretreatment for 30 min reduced the
ROS products, as indicated by CM-H2DCFDA fluorescence (Figure 6).
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Figure 6. The effect of piceatannol on LPS-induced oxidative stress in bEnd.3 cells. After piceatannol
(10, 50 µM) pretreatment for 30 min and then co-treatment with LPS (10 µg/mL) for 1 h, the ROS
level in the bEnd.3 cells was visualized with CM-H2DCFDA incubation by fluorescence imaging.
Results are mean ± SEM, n = 3 experiments. * p < 0.05 vs. NC; # p < 0.05 vs. LPS.

3. Discussion

The present study showed that piceatannol ameliorated inflammatory response and
oxidative stress in LPS-treated bEnd.3 cells by the following results: (1) piceatannol at high
concentration (50 µM) markedly suppressed the expression of adhesion molecules ICAM-1
and VCAM-1; (2) piceatannol reduced iNOS expression as well as inactivating the NF-κB
and MAPK signaling pathways; and (3) piceatannol diminished ROS production.

LPS is widely used as an inducer of inflammation in various cells, including macrophages [23].
As an endotoxin, LPS enhances the release of pro-inflammatory mediators, leading to
the destruction of brain tissue and BBB dysfunction [24]. iNOS, the most familiar pro-
inflammatory cytokine, induces an inflammatory response by inducing the excessive
production of NO [25]. LPS has also been reported to cause oxidative stress by increasing
ROS generation [24]. ROS are closely associated with neurological diseases and are a key
mediator in promoting inflammatory response and BBB destruction [26]. A number of
experimental studies have shown that an excessive increase in ROS reduces the expression
of tight junction proteins in endothelial cells, which increases BBB permeability and causes
nervous-system-related diseases [27,28]. Therefore, a reduction in ROS production or
enhancement of antioxidant activity in the body is a common therapeutic strategy. In this
study, we found that the antioxidant piceatannol can reduce inflammatory responses and
ROS levels in brain endothelial cells by regulating intracellular mechanisms.

Cell adhesion molecules, including ICAM-1 and VCAM-1, play an important role in
neurological diseases [29]. Both ICAM-1 and VCAM-1 exist in vascular endothelial cells,
mediating the process of pathological conditions such as brain injury inflammation. When
LPS triggers an inflammatory response, the expression of adhesion molecules increases,
resulting in leukocytes adhering to vascular endothelial cells, which increases the perme-
ability of the vascular wall and destroys BBB function [30]. Extensive evidence shows that
LPS can activate the MAPK and NF-κB signaling pathways and damage the central nervous
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system [31,32]. The MAPK signaling cascade is a major regulator involved in oxidative
stress and inflammatory response and is also related to the protein expression of iNOS [33].
MAPKs are serine/threonine kinases, mainly including the p38 and c-JNK families [34]. An
increasing number of studies have demonstrated that MAPKs play an important role in the
central nervous system [32]. Our study found that piceatannol can effectively inhibit the
LPS-induced activation of MAPK pathways in bEnd.3 cells. Moreover, NF-κB is a common
transcription factor and a major mechanism of inflammation [35]. Studies have shown that
the NF-κB pathway up-regulates the expression of adhesion molecules in bEnd.3 cells and
enhances oxidative stress [36]. NF-κB mainly involves the IKKα/β, IκBα and p65 signaling
pathways [37], which were determined in the present study to be a potential mechanism
modulating the effect of piceatannol.

Piceatannol, a 3,3′,4,5′-trans-trihydroxystilbene, is commonly found in grapes [38].
Previous studies have demonstrated that piceatannol presents anti-cancer, antioxidant, and
anti-inflammatory activities, and can effectively ameliorate endothelial dysfunction [19,39].
Piceatannol can inhibit the NF-κB and MAPK signaling pathways with its antioxidant activ-
ity and therefore prevent oxidative damage and inflammatory response in osteoclasts [40].
Piceatannol is used to treat a variety of pathological conditions, such as cardiovascular
disease, Alzheimer’s disease, and sickle cell disease [22,41,42]. In this study, piceatannol
was selected to explore its protective role in brain microvascular endothelial cells against
inflammation and oxidative stress and the underlying molecular mechanism. We found
that piceatannol effectively reduced the expression of LPS-induced adhesion molecules.
Subsequently, the treatment of piceatannol downregulated the expression of LPS-activated
iNOS, which verified the inhibitory effect of piceatannol on pro-inflammatory cytokines in
neurodegenerative diseases. The Western blot results showed that piceatannol inhibited
the MAPK signaling pathways in bEnd.3 cells upon LPS stimulation. Incubating with low
concentrations of LPS (1 µg/mL) for 24 h, piceatannol did not significantly improve the
phosphorylation of p38. This is consistent with previous studies that indicated that LPS
at low concentrations and long exposure times was not able to induce MAPK signaling
pathways or that the effect was absent in brain endothelial cells [7,43]. Adjusting the treat-
ment conditions to the pretreatment of piceatannol (10 and 50 µM, 30 min) followed by the
co-stimulation of LPS (10 µg/mL, 1 h), piceatannol notably diminished the phosphorylation
levels of p38 and JNK MAPKs. On the other hand, piceatannol acts on the NF-κB signaling
cascade. Piceatannol at 50 µM strongly suppressed the phosphorylation of p65, IKKα/β,
and IκBα in the NF-κB signaling pathway. Likewise, piceatannol blocks NF-κB p65 subunit
translocation to the nucleus of bEnd.3 cells.

Of note, LPS-induced ROS production can activate various signaling pathways and is
closely associated with a variety of diseases [44]. CM-H2DCFDA is oxidized by intracellular
H2O2 into dichlorouorescein (DCF) and can be used as a fluorescent probe to measure
the level of ROS production in LPS-stimulated bEnd.3 cells [45]. We found that LPS
(10 µg/ mL, 1 h) increased ROS levels, which were suppressed by pretreatment with
piceatannol at 50 µM for 30 min. These experimental results showed that piceatannol
significantly reduced LPS-induced inflammation and oxidative stress in brain endothelial
cells, indicating potential therapeutic significance against BBB dysfunction.

Our present findings are in line with previous reports showing that inflammatory
and oxidative stress responses are involved in LPS-induced damage, causing the down-
regulation of tight junctions and adherens junctions, an increase in BBB permeability, and
thus BBB disruption [24], as well as reports that anti-inflammatory and antioxidant drugs—
for example, metformin [46] and platonin [47]—can upregulate tight junction proteins to
protect BBB function. Herein, we suggest that piceatannol can help in preventing hyperper-
meability in endothelial cells, possibly through the suppression of the MAPK and NF-κB
signaling pathways and the inhibition of oxidative stress. However, other direct or indirect
mechanisms such as mitochondrial function and expression of tight junctions and adherens
junctions are to be examined in the future. The piceatannol analogs, pterostilbene and
resveratrol, also exhibit anti-inflammatory and antioxidant activities, but are less active than
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piceatannol. In vascular endothelial cell models with elevated oxidative stress, piceatannol
was found to have a stronger activity in restoring dimethylarginine dimethylaminohydro-
lase of endothelial cells than resveratrol [21]. Additionally, piceatannol showed a stronger
anti-inflammatory effect than resveratrol in terms of inhibiting the release of NO and
prostaglandin E2 [48]. More interestingly, piceatannol has a protective effect against DNA
damage, while pterostilbene and resveratrol aggravated DNA damage [49].

Many studies on the bioactivity of piceatannol have reported its anti-inflammatory
and/or antioxidative activities [50–52]. In line with our current findings, piceatannol ex-
hibits potential for clinical development. Unfortunately, the beneficial effects of antioxidant
treatment remain controversial, as antioxidants exhibit disappointing results in terms of
disease progression and severity in a clinical setting. Piceatannol has been greatly limited
in clinical applications due to its poor liberation characteristics. Therefore, scientific investi-
gations are trying to overcome this obstacle through different approaches. For instance,
nanotechnology is a possible approach to prepare drug vehicles for the controlled release
of piceatannol [53]. Further investigations are essential to confirm the effectiveness of
piceatannol in terms of clinical application and to find a suitable modality for optimizing
its effect.

4. Materials and Methods
4.1. Chemicals and Reagents

Piceatannol was purchased from Tokyo Chemical Industry (Tokyo, Japan). Dul-
becco’s modified Eagle’s medium (DMEM) was bought from GE Healthcare Life Sci-
ences HyClone Laboratories (Logan, UT, USA), while fetal bovine serum (FBS) and peni-
cillin plus streptomycin (PS) were obtained from Gibco (Carlsbad, CA, USA). 3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and LPS were purchased
from Sigma-Aldrich (St. Louis, MO, USA). The secondary antibodies, RIPA buffer, phenyl
methane sulfonyl fluoride (PMSF), Protease Inhibitor Cocktail, BCA protein assay kit
for Western blotting, 4% paraformaldehyde (PFA), Alexa Fluor 488-labeled secondary
antibody, and 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) were
acquired from Beyotime biotechnology (Shanghai, China), while all the primary anti-
bodies were obtained from Cell Signaling Technology (Danvers, MA, USA). PVDF mem-
branes were acquired from Millipore (Billerica, MA, USA). 5-(and-6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA) was purchased from
Molecular Probes (Eugene, OR, USA).

4.2. Cell Culture

Cells from bEnd.3, a mouse brain endothelial cell line, were purchased from the Ameri-
can Type Culture Collection (ATCC) (Manassa, VA, USA). The bEnd.3 cells were cultured in
DMEM containing 10% FBS plus 100 U/mL penicillin and 100 U/mL streptomycin at 37 ◦C
in a humidified atmosphere with 5% CO2. Cells were subcultured every 2–3 days. All the
experiments with bEnd.3 cells were performed between passages 5 to 25 for maintaining
excellent BBB characteristics in vitro [54]. The bEnd.3 cell impaired model was induced
by treating with LPS at two different concentrations and stimulation times (1 µg/mL for
24 h or 10 µg/mL for 1 h) to examine different target proteins modulating inflammatory
and antioxidant responses in accordance with previous literature [24]. Piceatannol (10 or
50 µM) was added to the medium for 30 min and then LPS (10 µg/mL) was added in
the existing medium containing piceatannol for 1 h. For another set of experiments, cells
were pretreated with piceatannol for 4 h before LPS stimulation (1 µg/mL for 24 h) in the
existing medium. Piceatannol was dissolved in 1% dimethyl sulfoxide (DMSO), and LPS
was dissolved in phosphate-buffered saline (PBS).

4.3. Cell Viability Assay

The cell viability was evaluated by MTT assay. bEnd.3 cells (5 × 104/well) were
seeded in 96-well plates and incubated at 37 ◦C with 5% CO2 overnight and then treated
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with different concentrations of piceatannol for 24 h. After the incubation, the medium was
refreshed with the one containing 10% MTT reagent for another 4 h. The MTT medium was
replaced with 100 µL DMSO in each well to dissolve the formazan crystals. The absorbance
at 570 nm was read using the SpectraMax M5 microplate reader (Molecular Devices, Silicon
Valley, CA, USA).

4.4. Western Blotting Analysis

bEnd.3 cells (7.5 × 105/well) were seeded in 6-well plates and incubated at 37 ◦C with
5% CO2 overnight. The western blotting analysis was divided into two groups: one group
of bEnd.3 cells were incubated with 10 µM and 50 µM piceatannol for 4 h, followed by
24 h LPS (1 µg/mL) stimulation. Another group of cells were pretreated with different
concentrations of piceatannol for 30 min before exposure to LPS (10 µg/mL) for 1 h. The
cells were lysed with RIPA buffer supplemented with 1% PMSF and 1% Protease Inhibitor
Cocktail on ice for 10 min. After centrifugation at 15,000 rpm for 15 min at 4 ◦C, the
supernatants were collected and the protein concentration was determined by BCA protein
assay kit. Equal amounts of protein sample (20 µg) were separated by 10% SDS/PAGE and
transferred onto PVDF membranes. Subsequently, the membranes were blocked by 5% non-
fat milk in 0.05% Tween-20 PBS and incubated with respective primary antibodies against
ICAM-1 (#4915), VCAM-1 (#13662), iNOS (#13120), p-p38 (#4511), p38 (#8690), p-JNK
(#9255), JNK (#9253), p-IKKα/β (#2697), IKKα (#2682), IKKβ (#2678), p-IκBα (#2859), IκBα
(#4814), p-p65 (#3033) and p65 (#8242) (1:1000) (Cell Signaling Technology) overnight at
4 ◦C. GAPDH (#5174) (1:5000) was selected as housekeeping protein for checking equal
loading of each sample. After washing with 0.05% Tween-20 PBS, the membranes were
incubated with the corresponding secondary antibodies (1:1000) (anti-rabbit, A0208; anti-
mouse, A02616, Beyotime) for 2 h at room temperature. The protein bands were visualized
with an enhanced chemiluminescence (ECL) system (GE Healthcare, Pittsburgh, PA, USA)
and scanned by ChemiDoc MP Imaging System (Bio-Rad Laboratories, Hercules, CA, USA).

4.5. Intracellular ROS Measurement

The intracellular ROS level in each group was detected by CM-H2DCFDA. bEnd.3
cells (2.5 × 105/well) were seeded in 24-well plates and incubated at 37 ◦C with 5%
CO2 overnight. After piceatannol pretreatment for 30 min and co-treatment with LPS
(10 µg/mL) for 1 h, the bEnd.3 cells were washed with PBS and incubated with CM-
H2DCFDA (5 µM)-containing normal physiological saline solution (NPSS) at 37 ◦C for
30 min in dark conditions. The NPSS contains (mM): 140 NaCl, 5 KCl, 1 CaCl2, 1 MgCl2,
10 glucose, and 5 HEPEC (PH 7.4). Then, the dye was removed and washed three times
with PBS. The fluorescent signals of the cells were measured using the Leica-DMi8 Inverted
fluorescent microscope at an excitation of 475 nm and an emission of 590 nm (Leica Mi-
crosystems, Wetzlar, Germany). Densitometry analysis was measured by the Image-Pro
Plus 6.0 software.

4.6. Immunofluorescence Assay

bEnd.3 cells (5 × 105/confocal dish) cultured in a laser confocal Petri dish were
pretreated with piceatannol for 30 min, followed by the co-incubation of LPS (10 µg/mL) for
1 h. The bEnd.3 cells were then washed by PBS, fixed with 4% PFA for 20 min, permeabilized
with 1% Triton X-100 for 10 min and blocked with 3% BSA for 1 h at room temperature.
Subsequently, the cells were incubated with primary antibody against NF-κB p65 (1:500)
(#8242, Cell Signaling Technology) overnight at 4 ◦C, followed by incubation with Alexa
Fluor 488-labeled secondary antibody (1:100) (A0423, Beyotime) for 2 h at room temperature.
Finally, the cells were washed with PBS and subjected to DAPI incubation. The fluorescence
images were captured by a confocal laser scanning microscope (Leica Microsystems, TCS
SP8, Mannheim, Germany). The quantification (measurement of intensity) was performed
using the Image-Pro Plus 6.0 software.
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4.7. Statistical Analysis

All data were expressed as mean ± standard error of mean (SEM) of n separate
experiments. Numerical data were compared using Student’s t-test or one-way ANOVA
followed by Bonferroni post hoc tests for more than two treatments. All data were analyzed
using the GraphPad Prism software (GraphPad Software, San Diego, CA, USA). The value
of p < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, our results revealed that piceatannol inhibits LPS-induced oxidative
stress and inflammatory response in bEnd.3 cells by suppressing the NF-κB and MAPK
signaling pathways and downregulating the expression of adhesion molecules (ICAM-1
and VCAM-1), all accomplished with the diminishment of ROS generation. Considering
the beneficial effects of piceatannol on brain endothelial cells, it is necessary to further
study the effect of piceatannol in vivo to verify its potential therapeutic significance for
neurological diseases.
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