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Abstract
Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in

the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of

pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thiore-

doxin reductase inhibitors have been carried out or are underway. Due to the emerging role

and importance of oxidoreductases for haemostasis and the current interest in developing

inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/

thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We

used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activ-

ity influences platelet function, as well as an unbiased proteomics approach to identify

potential Trx substrates on the surface of platelets that might contribute to platelet reactivity

and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation

state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhe-

sion and activation were affected, including the collagen receptor GPVI and the von Willeb-

rand factor receptor, GPIb. To experimentally validate these findings we assessed platelet

function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related

protein disulphide isomerase). In agreement with the proteomics data, small molecule

inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenu-

ated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the find-

ings of the proteomics study. These data reveal a novel role for thioredoxin in regulating

platelet reactivity via proteins required for early platelet responses at sites of vessel injury

(GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX

464 and PX-12 as antiplatelet agents.

Introduction

Oxidation/reduction of disulphide bonds contributes to cell viability and survival. Disruption of
this system can have a significant impact on physiology and disease. The NADPH/thioredoxin
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reductase/thioredoxin system largely oversees cellular reduction/oxidation balance in the cell,
with glutathione/glutathione reductase and other enzymes (protein disulphides isomerases
(PDIs), peroxireducatses etc) also playing a role. Together, these enzyme systems oversee and
regulate oxidation/reduction balance, scavenge reactive oxygen species, contribute to protein
folding in the endoplasmic reticulum, and regulate the activity of a number of proteins involved
in DNA repair, apoptosis, and transcription[1–6]. In addition to these intracellular roles, these
enzyme systems can also regulate extracellular processes via effects on catalytic and allosteric dis-
ulphides bonds in their substrates. Both PDI and thioredoxin (Trx) have been shown to influence
a myriad of extracellular processes, including HIV infection[7, 8], integrin activation[9, 10],
receptor-ligand interactions[7, 11], and thrombus formation[12, 13]. These functions influence a
number of pathophysiological processes [14–16], particularly cancer [17–20], where enhanced
Trx-1 levels and activity promotes tumor cell growth and survival in vitro, while loss of Trx-1 or
its activity promotes apoptosis and prevents tumor formation in mice. This correlation between
Trx and disease has lead to the development of a number of Trx inhibitors that we have exploited
to use as chemical tools to investigate the role of Trx in platelet function.

Initially we found that inhibition of Trx activity affects the profile of reduced thiols at the
surface of resting platelets, following which we used a proteomics approach to determine
which proteins were affected. We identified key platelet adhesion/activation receptors whose
thiol profile was altered by Trx inhibition, and subsequent investigation correlated these
changes with changes in protein function and platelet activation via the collagen (GPVI) and
von Willebrand (GPIb-IX-V) receptors (thrombin, ADP and thromboxane A2 receptors were
not affected). Ristocetin-induced platelet agglutination and CRP-XL-induced platelet activa-
tion was impaired by Trx inhibitors, as was thrombus formation on type I collagen in whole
blood under flow. This indicates that the NADPH/Trx-R/Trx system influences platelet reac-
tivity to immobilized ligands (vWF and collagen) at sites of injury and demonstrates for the
first time that redox modulation of platelet cell surface proteins by thiol isomerases other than
PDIs is important for platelet function in the early response to injury. As inhibition of GPVI-
collagen and GPIb-vWF interactions is known to reduce pathological thrombosis with minimal
effect on the physiological response to injury[21], especially with regards to ischemic stroke,
there is considerable interest in exploiting these interactions for drug development. Inhibitors
of the NADPH/Trx-R/Trx system developed to treat cancer and known to be well tolerated in
man may be appropriate for repurposing an antiplatelet drugs.

Methods

Materials

Anti-CD42b was purchased from Santa Cruz Biotechnology. Alexa Fluor 647 anti-GPVI anti-
body (clone HY101) was purchased from BD Pharmingen. Auranofin, PX-12, PMX 464, and
U46619 were purchased from Tocris Bioscience (Bristol, U.K.). All other reagents were pur-
chased from Sigma (Poole, U.K.). Collagen-related peptide (GCO-[GPO]10GCOG-NH2) was
synthesised and cross-linked by Peptide Protein Research Ltd (Cambridge UK).

Preparation of washed human platelets

Whole blood was taken from healthy volunteers (from which informed, written consent was
obtained) and collected into 50 ml syringes containing 5 ml 4% sodium citrate in accordance
with procedures approved by the Local Research Ethics Committee (Faculty of Medical and
Veterinary Sciences Ethics Committee, United Bristol Healthcare Trust project number
D5736). Acid citrate dextrose (ACD; 0.15% (w/v) citric acid, 0.4% (w/v) trisodium citrate dihy-
drate, 0.2% (w/v) glucose) was added (1/7) to citrated blood and mixed by gentle inversion
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before platelet-rich plasma (PRP) was isolated by centrifugation at 200 xg for 17 minutes at
room temperature. PRP was pooled and 0.5 μM PGI2 was added before centrifugation at 1000
xg for 10 minutes at room temperature. Platelets were resuspended in 1ml Tyrodes-HEPES
buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM 4-(2-hydro-
xyethyl)-1-piperazineethanesulfonic acid (HEPES), 5 mM glucose, 1 mM MgCl2, pH 7.3, pre-
warmed to 30°C and 150 μl ACD. The volume was adjusted to 25ml with Tyrodes-HEPES
buffer, followed by addition of 3 ml ACD and 0.5 μM PGI2. Cells were centrifuged at 1000 xg
for 10 minutes at room temperature and the resultant cell pellet was resuspended in pre-
warmed Tyrodes buffer to a final cell density of 4x108 cells/ml (aggregations) or 2x109 cells/ml
(peptide pull downs) and rested for at least 30 minutes before use. Where appropriate, 1 mM
ethylene glycol tetraacetic acid (EGTA), 10 μM indomethacin and 2 U/ml apyrase were added
to inhibit platelet aggregation (referred to as non-aggregating conditions).

Isolation of platelet-rich plasma from whole blood

Platelet-rich plasma was separated from citrated whole blood (without ACD) by centrifugation
at 200 xg for 20 minutes.

Light transmission aggregometry

Platelets or PRP (250 μl) were stimulated with agonist at 37°C with continuous stirring (1200
rpm) in an optical aggregometer. For drug studies, platelets or PRP were incubated with drug
under non-stirring conditions at 30°C for the desired time prior to the addition of agonist
under stirring conditions. Aggregation was monitored using AGRO/LINK8 software (Chrono-
log Corp., Pennsylvania, U.S.A).

Assessment of intracellular Ca2+ release

Washed human platelets (4×108 cells/ml) were incubated with 3 μM fura-2-AM for 1 hour at
30°C. Unloaded fura-2-AM was removed by centrifugation (10 mins, 1000 xg) and platelets re-
suspended in HEPES-Tyrodes buffer at 4×108 cells/ml. To measure ADP-induced Ca2+ release,
fura-2-AM was loaded into PRP. Changes in fluorescence were measured using a Tecan plate
reader using excitation wavelengths of 340 nm and 380 nm.

Western blotting

Samples were prepared and processed as described in [22, 23]

Fluorescent labeling of free surface thiols

Using a method adapted from [24], washed platelets (100 μl at 4x108/ml) were treated with
compounds for 30 minutes at room temperature before the addition of DyLight-maleimide
488 (1 μM) for a further 15 minutes at room temperature, to label free thiols. Unbound dye
was quenched with 2x reduced glutathione before samples were lysed by the addition of SDS-
loading dye supplemented with 100 mM DTT and boiled for 10 minutes at 70°C.

Thrombus formation under flow

The Bioflux200 system (Fluxion, South San Francisco, CA) was used to analyse thrombus for-
mation in human whole blood under flow. Microchannels were coated with 0.1 mg�mL−1 colla-
gen I (monomeric collagen from calf skin, Sigma, UK) for 1–2 hours at 37°C before blocking
with 1% BSA in Tyrodes-HEPES buffer and washing with Tyrodes-HEPES buffer. Whole
blood was incubated with drug or vehicle before the addition of 1 μM DiOC6 10 minutes before
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the blood was added to the wells. Thrombus formation was visualized by fluorescence micros-
copy at a shear rate of 1000 s−1. Representative pictures were taken at 10 min and surface area
coverage was determined using Image J.

Biotin labelling of free cell surface thiols and purification of biotinylated

glycoproteins

Free cell surface thiols were alkylated with 2.5mM EZ-Link iodoacetyl-LC-biotin for 30 min-
utes at room temperature, after which free label was quenched with 5 mM reduced glutathione.
Platelets were lysed with 0.5% SDS and centrifuged to remove cell debris. Biotinylated cell sur-
face glycoproteins were isolated using a two-step affinity purification. Firstly glycoproteins
were affinity purified from the lysates by binding to a 300 μl lentil lectin sepharose column,
washing with 10 column volumes of PBS/0.01% Tx100 and eluting with 10% methyl-ɑ-D-
gluco-pyranoside in PBS/0.01% Tx100. Secondly, biotin-labelled glycoproteins were isolated
from the glycoprotein mixture by binding to a 300 ml monomeric avidin column, washing
with 10 column volumes of PBS/0.01% Tx100 and elution with 5 mM biotin in PBS/0.01%
Tx100. Samples were prepared from mass spectrometry as previously reported.

Mass Spectrometry

After desalting on a C18 micro column, the samples were resuspended in 0.1% formic acid con-
taining 2% acetonitrile and analysed on an Ultimate 3000 UHPLC (Dionex) coupled to a QEx-
active mass spectrometer (Thermo Fisher Scientific). Samples were injected directly on an in-
house packed 25 cm C18 (Bishoff 3 micron bead diameter) column. Separation of peptides was
achieved with the following gradient 5–30% buffer B over 90 min, 30–55% buffer B over 20
minutes and 98% buffer B for 5 minutes (buffer A: 0.1% formic acid, buffer B: 0.1% formic acid
in acetonitrile) at a flow rate of 300nl/minute. Data were acquired in a data-dependent mode,
automatically switching from MS to collision induced dissociation MS/MS on the top 20 most
abundant ions with a precursor ion scan range of 350–1650 m/z. Full scan MS spectra were
acquired at a resolution of 70,000 and MS/MS scans at 17,500 at a target value 3 x 106 and 1 x
105 ions respectively. Dynamic exclusion was enabled with exclusion duration of 40 seconds.

Data analysis and quantitation

RAW data files were converted to the mzXML format and analysed using the to the University
of Oxford in-house Central Proteomics Facilities Pipeline (CPFP version 2.1.2). The datasets
from all three donors were combined but grouped within the software into DMSO control,
PMX 464-treated and PX-12-treated. The data were searched with carbamidomethyl cysteine,
oxidized methionine, deamidated asparagine/glutamine, and EZ-Link iodoacetyl-LC-Biotin as
variable modifications. Precursor mass tolerance was set at ±20 ppm and MS/MS fragment ion
tolerance at ±0.02 Da. Searches were performed against the Swissprot human database. All
searches were performed against a concatenated target/decoy database, providing an empirical
false discovery rate (FDR), results are reported at a 1 per cent target/decoy FDR for both pep-
tides and proteins. SINQ at the protein level were performed on the grouped datasets to pro-
vide quantitative estimates of the relative protein abundance between DMSO treated and thiol
inhibitor treated samples for proteins identified with at least two unique peptides.

Statistical analysis of in vitro and ex vivo data

Statistical analysis was carried out using GraphPad Prism software. See Figure legends for spe-
cific details of analysis.
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Results

Free thiols in platelet surface proteins are altered by Trx inhibitors

Washed human platelets were incubated with Trx inhibitors (PMX 464 and PX-12), a PDI
inhibitor (rutin), or vehicle alone (DMSO) for 30 minutes, before proteins containing free thi-
ols were alkylated with the cysteine-reactive conjugate DyLight Maleimide-488, which is conju-
gated to the cell impermeant Alexa Fluor 488 dye. Free dye was quenched before samples were
lysed and separated by SDS-PAGE; labeled proteins were visualized using a Typhoon Imager
(Fig 1). N-ethylmaleimide (NEM) reacts with free thiols and was used as a control to demon-
strate that we could detect a decrease in free thiols using this approach. Both PX-12 and PMX
464 (but not rutin) decreased the extent of free thiol labeling at the platelet surface. There were
selective effects on some, but not all, protein species, suggesting that the two Trx inhibitors
have different selectivity profiles.

LC-MS/MS reveals a number of potential thioredoxin substrates at the

cell surface of resting platelets

We next employed an unbiased mass spectrometry approach to identify proteins whose redox
profile was affected by PX-12 and PMX 464. Washed human platelets from three donors were
incubated with Trx inhibitors or vehicle (DMSO) before labeling with the sulfhydryl-reactive
compound iodoacetyl-LC-biotin.The abundance of biotin-labeled peptides in the treatment
groups was compared to that of the control group (DMSO) and is represented as a ratio
(Table 1). A value<1 indicates that drug treatment reduces the abundance of a given free
thiol-containing peptide (red), while a value>1 indicates that abundance increases (green).
Generally, PMX 464 decreases free thiols (ratio<1) more consistently than PX-12, but both
inhibitors reduce the abundance of free thiols overall. Interestingly, GPVI peptides were identi-
fied, as were a number of peptides from integrins, as well as vWF and its receptor complex.

Inhibition of Trx, but not PDI, had concentration-dependent effects on

agonist-induced intracellular Ca2+ release

Having found that Trx inhibitors altered the prevalence of thiol-labeled peptides, including those
relating to proteins involved in platelet adhesion and activation, we sought to experimentally ver-
ify these findings by assessing the effects of these compounds on platelet function. In the first
instance, inhibitors of PDI (rutin) or Trx (PX-12 and PMX 464) were added to fura2-loaded
washed human platelets (3 mins) prior to the addition of agonist to determine whether Trx inhib-
itors affected changes in the release of intracellular Ca2+ upon activation. PMX 464 demonstrated
a clear concentration-dependent inhibition of intracellular Ca2+ release in response to the GPVI-
specific agonist, CRP-XL, (IC50 ~10 μM, R2 0.93, Fig 2A), with PX-12 also inhibited CRP-XL-
induced Ca2+ release in a concentration-dependent manner (IC50 ~1 μM, R2 0.5, Fig 2A). Both
Trx inhibitors, at high concentrations (100 μM), reduced cytosolic Ca2+ release in response to
ADP by ~20% from maximum, but this was not a statistically significant change (Fig 2B). As
shown in Fig 2C and 2D, PX-12 at concentrations�10 μM induced agonist-independent
increases in intracellular Ca2+ release. It is noteworthy that PMX 464 had some minor effect on
U46619-induced Ca2+ release, but these effects were only evident at low U46619 concentrations
(0.1 μM), Fig 2E, IC50 20 μM, R2 = 0.6). Rutin had no effect on Ca2+ release by any agonist (Fig
2F). The data presented here suggest that the GPVI-ligand interaction, or some aspect of GPVI
function, is redox labile and positively regulated by Trx, as loss of Trx activity reduces CPR-XL-
induced intracellular Ca2+ release. To ensure that these effects were not attributable to a of loss of
GPVI from the cell surface, fluorescently-labeled HY101 anti-GPVI monoclonal antibody was
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used to quantify surface levels of the receptor. Whole blood samples were incubated with drug
(30 μM rutin and PMX 464, or 10 μM PX-12) or vehicle for either 10 (Fig 2G) or 30 minutes (Fig
2H), then fixed and assessed for anti-GPVI antibody binding to GPVI at the platelet surface by
flow cytometry. Surface levels of GPVI were not altered by vehicle or drug at either time point.

Kinetics is a determining factor for PMX 464-mediated inhibition of

CRP-XL-induced aggregation in platelet-rich plasma

To determine whether the effects on CRP-XL-induced Ca2+ release translated to an
impairment of physical aggregation, platelet-rich plasma (PRP) was isolated from whole blood
and incubated with drug before being assessed by light transmission aggregometry. CRP-XL-
induced aggregation (0.1 μg/ml) was severely and significantly impaired (>90% inhibition,
n = 4, p<0.0001) following a 10 min incubation with 30 μM PMX 464 (Fig 3Ai); shorter incu-
bations also reduced aggregation, but were less dramatic and not significant. There was also a
small but non-significant effect on aggregation induced by ADP at 30 minutes (Fig 3Aii), but
no effect on PAR1- or U46619-induced aggregation (Fig 3Aiii and 3Aiv, respectively). Example
aggregation traces for CRP-XL are shown in Fig 3B (10 minute incubation) with selectivity and
time-dependent effects summarised in Fig 3C and 3D. Further evidence that the effects of
PMX 464 comprise a temporal component, Fig 3E and 3F shows that a 10 minute incubation
with 30 μM PMX 464 increases the EC50 of CRP-XL to a similar extent as a 30 minute incuba-
tion with 10 μM PMX 464, suggesting that lower doses of drug can reach the same level of inhi-
bition as higher doses if the incubation period is extended. Inhibition of CRP-XL-induced
aggregation by PMX 464 was attenuated by the addition of an equimolar concentration of
recombinant Trx (S1 Fig). PX-12 was unable to induce the same degree of inhibition, even at
30-minutes (Fig 3G). Production of reactive oxygen species (ROS), which is released following
GPVI activation, was also reduced by PMX 464 in a concentration-dependent manner (S2 Fig).

Inhibition of Trx inhibits thrombus formation in whole blood under flow,

ristocetin-induced platelet agglutination, and clot retraction

Based on our in vitro observations that PMX 464 inhibited CRP-XL-induced Ca2+ release and
aggregation, we hypothesized that PMX 464, and possibly PX-12, would attenuate thrombus
formation on collagen in whole blood under flow. Whole blood was incubated with drug for 30
minutes at room temperature prior to being subjected to flow conditions approximating arte-
rial shear (1000s-1). Both PX-12 (3 μM, Fig 4A) and PMX 464 (30 μM, Fig 4D) reduced throm-
bus formation on type I collagen under flow conditions. Quantification of thrombi containing
DiOC6-labelled platelets revealed a ~30% reduction in surface coverage for both inhibitors
compared to DMSO control (PX-12 p = 0.002, Fig 4B and 4C; PMX 464 p = 0.024, Fig 4E and
4F).

As shown in Table 1, PMX 464 reduced the abundance of free thiol-containing peptides iso-
lated from vWF and its receptor complex. To determine whether this translated into direct
effects on the vWF-GPIb interaction, ristocetin-induced platelet agglutination was carried out.
As can be seen from Fig 5, pre-treating platelet-rich plasma with PMX 464 reduced platelet

Fig 1. The free thiol profile at the surface of platelets is modified by inhibitors of Trx, but not PDI.

Washed human platelets were incubated with compound (DMSO, rutin, PMX 464, PX-12 or NEM) for 30

minutes at 30˚C before addition of 1 μM DyeLight-maleimide. Samples were quenched with 20 μM reduced

glutathione before lysis and seperation by SDS-PAGE. DyeLight-maleimide 488 binding was visualised

using a Typhoon imager. NEM (1mM), which reacts with free thiols, and was used as a negative control.

Following scanning, samples were transfered onto nitrocellulose membrane and probed for Syk by Western

blotting to assess gel loading.

doi:10.1371/journal.pone.0163006.g001
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Table 1. Trx inhibitors alter the abundance of peptides with free thiols on the surface of resting human platelets.

SINQ ratios

Swissprot ID Gene Protein Description PSMs Unique Sequences % Coverage PMX 464 PX-12

Immunoglobulin superfamily domain containing proteins

A0A075B738 PECAM1 Platelet endothelial cell adhesion molecule 112 26 44.3 0.15 0.36

Q96AP7 ESAM Endothelial cell-selective adhesion molecule 55 11 36.7 0.05 0.55

O95866-2 G6B Isoform A of Protein G6b 38 6 30.5 0.07 0.74

Q15762 CD226 CD226 antigen 32 8 40.5 0.23 0.61

Q9BX67 JAM3 Junctional adhesion molecule C 24 4 12.9 0.15 0.24

Q5VY43 PEAR1 Platelet endothelial aggregation receptor 1 20 6 6.4 2.69 9.71

Q86YW5 TREML1 Trem-like transcript 1 protein 15 4 19 0.31 0

P19320-2 VCAM1 Vascular cell adhesion protein 1 13 7 11.1 0.07 1.22

Q9HCN6-2 GP6 Platelet glycoprotein VI 4 2 23.1 0 0.11

Selectins

P16109 SELP P-selectin 948 33 45.6 0.47 3.4

P14151-2 SELL Isoform 2 of L-selectin 13 3 4.8 0.86 6.04

Cell adhesion molecules

Q9Y624 F11R Junctional adhesion molecule A 77 12 43.5 0.14 0.72

P18433-2 PTPRA Receptor-type tyrosine-protein phosphatase alpha 20 9 13.6 0.01 0.57

P16284-2 PECAM1 Isoform 12 of Platelet endothelial cell adhesion molecule 18 26 45.6 0.23 0.85

O43866 CD5L CD5 antigen-like 4 2 5.2 0 1.91

Von Willibrand factor interacting proteins

P04275 VWF von Willebrand factor 1034 86 35.2 0.31 1.08

P07359 GP1BA Platelet glycoprotein Ib alpha chain 761 22 28.1 0.2 0.89

P40197 GP5 Platelet glycoprotein V 384 21 55 0.15 0.67

P14770 GP9 Platelet glycoprotein IX 63 5 30.5 0.24 1.04

Semaphorins and plexins

Q9ULL4-2 PLXNB3 Isoform 2 of Plexin-B3 243 38 26.5 0.21 1.13

O15031 PLXNB2 Plexin-B2 160 27 19.6 0.35 0.9

Q92854 SEMA4D Semaphorin-4D 148 17 23 0.16 0.5

Q9HCM2 PLXNA4 Plexin-A4 128 35 22 0.18 0.99

P98172 EFNB1 Ephrin-B1 25 7 26.6 0.04 0.58

Q6UX71 PLXDC2 Plexin domain-containing protein 2 20 5 11 0.04 1.89

Q13591 SEMA5A Semaphorin-5A 14 5 4.7 0.07 0.28

Integrins

P08514 ITGA2B Integrin alpha-IIb 1267 40 48.2 0.22 0.59

P05556 ITGB1 Integrin beta-1 780 43 52.8 0.28 1.2

P23229-3 ITGA6 Isoform Alpha-6X1B of Integrin alpha-6 407 45 54.7 0.18 0.68

P05106 ITGB3 Integrin beta-3 352 32 43.9 0.1 0.59

P17301 ITGA2 Integrin alpha-2 220 37 44.2 0.09 0.45

P18084 ITGB5 Integrin beta-5 156 19 24.5 0.28 0.76

P08648 ITGA5 Integrin alpha-5 37 11 13 0.04 0.17

Redox related

P07237 P4HB Protein disulfide-isomerase 232 28 52.2 0.23 0.36

P30041 PRDX6 Peroxiredoxin-6 230 17 79.5 0.42 1.46

P30101 PDIA3 Protein disulfide-isomerase A3 198 26 55.4 0.13 0.58

Q06830 PRDX1 Peroxiredoxin-1 118 10 49.2 0.68 0.78

P32119 PRDX2 Peroxiredoxin-2 88 11 42.4 0.62 0.87

Q15084-2 PDIA6 Isoform 2 of Protein disulfide-isomerase A6 81 11 27.9 0.08 0.36

(Continued )
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agglutination induced by ristocetin (B) compared to DMSO alone (A). PX-12 and rutin had no
effect (Fig 5C and 5D), consistent with the data in Table 1 and in Fig 3. To ensure that loss of
ristocetin-induced vWF-GPIb binding observed following PMX 464 incubation is not due to
the loss of GPIb from the cell surface, samples from Fig 1 were again separated by SDS-PAGE
as assessed for GPIb levels. As can be seen in Fig 5E, the high and low molecular weight species
corresponding to GPIb were unaltered by incubation with inhibitors when compared to
DMSO (n = 3). Peptides corresponding to the ɑIIbβ3 integrin were also identified in the prote-
omics experiment and we observed an inhibition of clot retraction in PRP by PMX 464 (S3
Fig).

Discussion

Post-translational modification of proteins allows for rapid changes in protein activity without
lengthy and energetically expensive de novo synthesis. It underscores a plethora of essential cel-
lular processes and allows for incredibly rapid responses to spatiotemporal cues. There are a
considerable number of different types of post-translational modifications including phosphor-
ylation, methylation, nitrosylation, sulfation, and reduction/oxidation of disulphide bonds,
among others. Regulation of disulphide bond chemistry is not only essential for the proper
folding of proteins in the endoplasmic reticulum, but can also regulate protein activity and
function[25]. Allosteric disulphide bonds contribute to the regulation and fine tuning of essen-
tial biological processes, including thrombosis and inflammation, and appropriate reduction/
oxidation biochemistry is key to maintaining cell function and viability, and changes in this
balance underscores myriad pathophysiological conditions[14, 15].

There is increasing evidence that thiol isomerases play significant roles in thrombosis and
haemostasis, mainly through effects on plasma proteins[13, 26] and integrins[14, 27], and to
date, PDIs have been the most intensively studied in this regard [12, 27–30]. Trx is another

Table 1. (Continued)

SINQ ratios

Swissprot ID Gene Protein Description PSMs Unique Sequences % Coverage PMX 464 PX-12

Q8NBM8 PCYOX1L Prenylcysteine oxidase-like 66 5 11.1 0.24 1.09

P10599 TXN Thioredoxin 50 6 51.4 1.19 1.11

Q13162 PRDX4 Peroxiredoxin-4 48 6 36 0.79 2.14

P13667 PDIA4 Protein disulfide-isomerase A4 46 16 27.9 0.17 0.43

O43396 TXNL1 Thioredoxin-like protein 1 20 6 27 0.05 0.4

Q86YB8 ERO1LB ERO1-like protein beta 18 8 20.1 0.03 0.17

P49908 SEPP1 Selenoprotein P 12 3 8.4 0.1 0.84

Q9H3N1 TMX1 Thioredoxin-related transmembrane protein 1 10 3 11.1 0.09 0

Q8NBS9-2 TXNDC5 Isoform 2 of Thioredoxin domain-containing protein 5 9 4 14.5 0 2.04

P35754 GLRX Glutaredoxin-1 6 2 11.3 0.43 0.43

Q96JJ7 TMX3 Protein disulfide-isomerase TMX3 4 4 8.6 0 0

Other

P07996 THBS1 Thrombospondin-1 1379 62 62.7 0.14 0.62

Q02413 DSG1 Desmoglein-1 521 35 45 1.19 0.68

O14672 ADAM10 ADAM 10 57 8 11.9 0.16 1.22

P40238 MPL Thrombopoietin receptor 48 8 13.1 0.1 0.84

P01033 TIMP1 Metalloproteinase inhibitor 1 38 4 22.7 0.16 0.58

P02775 PPBP Platelet basic protein 29 5 27.3 0.43 2.85

doi:10.1371/journal.pone.0163006.t001
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Fig 2. GPVI-mediated Ca2+ release is sensitive to inhibitors of Trx-R and Trx. Washed human platelets were loaded with 3 μM fura2-AM and Ca2+

release monitored at 340nm and 380nm. Fluorescence was monitored for 5 cycles to obtain a baseline reading, following which drug was added for

approx. three minutes for a further 10 cycles, before addition of agonist (1 μg/ml CRP, 0.5 U/ml thrombin, 0.31M U46619, or 20 μM ADP). PMX 464 and

PX-12 inhibited CRP-XL-induced Ca2+ release in a concentration-dependent manner (A), with a modest, but non-significant effect on Ca2+ release

induced by ADP (B). PX-12 induced Ca2+ release independently of agonist at or above concentrations of 10 μM (C and D). PMX 464 inhibited Ca2

+ release by U46619 at 0.1μM (E, R2 0.6), but not at 0.3 μM or 1 μM. Rutin had no effect on Ca2+ release by any agonist (F, thrombin, black triangles;

CRP-XL black circles; U46619, black diamonds; ADP, black squares). To determine whether Trx and PDI inhibitors were inducing receptor shedding,

whole blood was incubated with drug (30 μM rutin, 10 μM PX-12, 30 μM PMX 464) or vehicle for 10 minutes (G) or 30 minutes (H), to which was added

anti-GPVI antibody conjugated to AlexaFluor 647 to quantify cell surface levels for GPVI by flow cytometry (n = 4, +SEM, one-way ANOVA, Bonferroni

post-hoc test).

doi:10.1371/journal.pone.0163006.g002
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thiol isomerase that can reduce a broad range of substrates, from small molecules to proteins.
Together with peroxiredoxin, Trx-1 can scavenge hydrogen peroxide as well as directly reduc-
ing protein disulphide bonds to affect protein structure and/or activity (e.g. HIF1a[31], p53
[32], CD4[7, 8], CD132[11], PDI[33], MPK38[17], ASK1[34], and the C-propeptide region of
human pro ɑ1 type I collagen[35]). Known to be important in cancer pathology, as well as
inflammation, cytokine signalling [11, 36], and HIV infection via gp120[7], its role in thrombo-
sis and haemostasis remains largely unknown. Levels of Trx have been reported in platelets[37]
and exceed that reported for PDI or the closely related ERp proteins, and we set out to test the
hypothesis that Trx, like PDI, affects platelet function. We found that inhibition of Trx with
small molecule inhibitors decreases the abundance of proteins containing free thiols on the sur-
face of resting platelets. Then, using a proteomics approach, we found that, more specifically,
treatment of platelets with PMX 464 and PX-12 decreased the abundance of free thiol-contain-
ing peptides from a number of surface proteins involved in adhesion and activation, including

Fig 3. PMX 464 selectively inhibits CRP-XL-induced aggregation in PRP in a time-dependent manner. PRP isolated from healthy

human volunteers was incubated with 30 μM PMX 464 or vehicle (DMSO) for 30s, 2m or 10m at room temperature before being assess by

light transmission aggregometry (A); example traces are shown in B. PMX 464 selectively and significantly inhibited CRP-XL-induced

aggregation with a 10 minutes incubation (C, DMSO in white, PMX 464 in black, n = 4, +SEM, 2-way ANOVA). Increasing the incubation time

of PMX 464 potentiated the level of inhibition seen with CRP-XL-induced PRP aggregation (D, black bars = 2 minutes, white bars = 10

minutes, horizontal stripes = 30 minutes). As shown in E and F, a 10 min incubation with 30 μM PMX 464 increased the EC50 of CRP-XL

~5-fold (E, 8 pM to 40 pM, p = 0.0316, two-tailed t-test with Bonferroni correction), while a 30 minute incubation with 10 μM PMX 464

increased the EC50 of CRP-XL by 5pM to 30pM (~6-fold, p = 0.0334, two-tailed t-test with Bonferroni correction). PX-12 (30 minutes, 3 μM

PX-12) did not inhibit CRP-XL-induced PRP aggregation (G; n = 4, p = 0.1, 2-tailed t-test with Bonferroni correction).

doi:10.1371/journal.pone.0163006.g003

Fig 4. PMX 464 and PX-12 inhibit thrombus formation over Type I collagen in whole blood under flow conditions. Images of the channels are

shown in A (30 μM PMX 464) and D (3 μM PX-12) and quantified to show variation between donors for both drugs (B and E, respectively), as well as an

overall summary (C and F, respectively), n = 5, +/- SEM, 2-tailed t-test with Bonferroni correction.

doi:10.1371/journal.pone.0163006.g004
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GPVI. This data was then validated using a series of platelet functional assays that demon-
strated that these drugs, particularly PMX 464, inhibited GPVI-mediated platelet activation
and thrombus formation, as well as the interaction of vWF with its receptor complex, as evi-
denced by an impairment of risctocetin-inducedvWF-GPIb binding. Our data suggests that
thiol reductases, particularly Trx, maintain a basal level of free thiols on the resting platelet sur-
face that is essential for activation. It should be noted that PX-12 and PMX 464 are commer-
cially available Trx inhibitors, but their selectivity has not been clearly defined; the differences
we see between these drugs in the proteomics and functional data could be attributable to dif-
ferences in their selectivity profiles (i.e. for other oxidoreductases), or related to their potency
for Trx itself. To undertake a fully comprehensive study of these drugs in terms of selectivity
and efficacy is beyond the scope of this study, but it is important to bare this in mind when
considering the data. Regardless, it was previously thought that secretion of thiol reductases/
isomerases post-activation was the key redox event in thrombus formation, but our data, for
the first time, highlights a novel role for redox regulation pre-activation, as Trx inhibitors dis-
able platelet responses to key activating factors. This is in contrast to other biological systems,
such as the immune system, where reduction of allosteric disulphides such as CD132 and
CD44 inhibits receptor function[11, 38].

This study not only highlights the importance of allosteric disulphides to the reactivity of
resting platelets, but the functional data shown above also validates the use of global proteo-
mics approaches to identify proteins that are redox labile.

Trx inhibitors showed selectivity for the adhesion/activation receptors GPVI and GPIb; we
saw minor effects on responses to ADP at high concentrations of drug, as well as an inhibition
of Ca2+ release induced by low concentrations of the thromboxane A2 receptor (TPR) agonist
U46619, but these were not significant. Both TPR and P2Y12 both have labile disulphide bonds
that could be affected by reduction/oxidation at the cell surface. Indeed, TPR has been shown
to be redox labile[39], while P2Y12 has a labile disulphide (Cyc97-Cys175) known to undergo
covalent modification by the active metabolites of P2Y12 antagonists[40].

We also observed a temporal effect for the efficacy of PMX 464. Longer incubations
enhanced the inhibitory effect of this drug in a GPVI-selective manner. PMX 464 is a Trx
inhibitor, and not, to the best of our knowledge, a GPVI antagonist, which may account for the
time-dependency we observe; substrates of the NADPH/Trx-R/Trx system will be reduced
when the system is active but will not immediately be inactivated when the system is impaired.

The impairment of GPVI and GPIb activity is not due to loss of these receptors from the
cell surface as levels of GPVI are unchanged by drug incubation, and GPIb showed no evidence
of shedding. The fact that inhibition is observed in washed platelets as well as PRP and whole
blood implies that loss of receptor function is also not due to the alkylation of free thiols by
plasma components, as alkylating agents present in blood plasma, such as homocysteine and
glutathione, will have been removed.

In addition to changes in the abundance of thiol-containing peptides from GPVI and GPIb,
changes in other proteins known to be important for platelet activity and function were
observed (ADAM10, TPO receptor, G6b, TREM-like transcript-1, PECAM-1, thioredoxin
domain-containing proteins including PDI and ERp57), as well as those involved in adhesion
and activation (GPV, GPIX, the ɑ2b and β3 integrins, JAMs, etc). This indicates that

Fig 5. PMX 464 attenuates ristocetin-induced platelet agglutination. PMX 464 (30 μM) reduced platelet agglutination induced by

ristocetin in platelet rich plasma (A-D, n = 5, +/- SEM, one-way ANOVA, Bonferroni multiple comparisons test). Samples of washed

platelets incubated with drug or vehicle were separated by SDS-PAGE and levels of GPIb assessed by Western blotting (E).

doi:10.1371/journal.pone.0163006.g005
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maintenance of basal thiol levels in a number of platelet surface proteins may influence reactiv-
ity and function, but their contribution to overall platelet activity will require further
investigation.

Redox regulation of allosteric disulphide bonds in the proteins listed in Table 1 indicate that
Trx modulates platelet reactivity and supports thrombus formation, especially with regards to
GPVI and GPIb. The fact that PMX 464 and PX-12 have little or no effect on platelet responses
to thrombin, ADP, or U46619 suggests that Trx activity is not required for the later stages of
thrombus formation (growth and stability), for which PDI is known to be functionally impor-
tant. Selective targeting these oxidoreductases may offer the opportunity to temporally modu-
late thrombus formation.

This study demonstrates a clear and profound effect on GPVI-induced platelet activation
and aggregation, both in washed platelets, PRP, and a whole blood setting by Trx inhibitors, as
well as effects on GPIb. This indicates that the NADPH/thioredoxin reductase/thioredoxin sys-
tem helps to ensure that platelets are reactive to collagen, supporting adherence and activation
at sites of injury and the initiation of thrombus formation. This selective effect could be of clini-
cal benefit if inhibiting the GPVI-collagen or vWF-GPIb interaction with small molecules lives
up to the promise shown by biological agents, especially with regards to ischemic stroke[41–
44].

Supporting Information

S1 Fig. Recombinant reducedTrx attenuates PMX 464-mediated inhibition of CRP-XL-
induced aggregation in PRP. PMX 464 inhibits CRP-XL-induced aggregation of PRP, with a
concomitant increase in the EC50 of CRP-XL and a rightward shift of the curve (A, n = 6, +/-
SEM). Addtion of equimolar recombinant reduced Trx just prior to drug addition attenuates
the effects of PMX 464 (A and B, n = 4–6, one-way ANOVA, Barlett’s test for equal variances
post hoc test).
(EPS)

S2 Fig. PMX 464 attenuates reactive oxygen species generation induced by CRP-XL. Reac-
tive oxygen species (ROS) was detected using the ROS dye H2DCFDA, and production of fluo-
rescent DCF was detected using a plate reader assay format. CRP-XL induces ROS generation
in a dose dependent manner, and this is attenuated by PMX 464 (A, n = 3, +SEM). PMX 464
significantly reduces ROS formation at high (10 μg/ml CRP-XL, B) and moderate (11g/ml
CRP-XL, C). Sample size (n) = 3, +SEM, 1-way ANOVA, Bonferroni multiple comparison post
hoc test (� p< 0.05, �� p < 0.01).
(EPS)

S3 Fig. PMX 464 attenuates clot retraction.PMX 464 inhbited clot retraction in PRP (n = 4,
+/- SEM, one-way ANOVA, Bonferroni correction).
(EPS)
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