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Abstract

Background: The ability to reliably identify the state (activated, repressed, or latent) of any molecular process
in the tumor of a patient from an individual whole-genome gene expression profile obtained from microarray
or RNA sequencing (RNA-seq) promises important clinical utility. Unfortunately, all previous bioinformatics tools are only
applicable in large and diverse panels of patients, or are limited to a single specific pathway/process (e.g. proliferation).

Methods: Using a panel of 4510 whole-genome gene expression profiles from 10 different studies we built and selected
models predicting the activation status of a compendium of 1733 different biological processes. Using a second
independent validation dataset of 742 patients we validated the final list of 1773 models to be included in a de novo tool
entitled absolute inference of patient signatures (AIPS). We also evaluated the prognostic significance of the 1773
individual models to predict outcome in all and in specific breast cancer subtypes.

Results: We described the development of the de novo tool entitled AIPS that can identify the activation status of
a panel of 1733 different biological processes from an individual breast cancer microarray or RNA-seq profile without
recourse to a broad cohort of patients. We demonstrated that AIPS is stable compared to previous tools, as the inferred
pathway state is not affected by the composition of a dataset. We also showed that pathway states inferred by AIPS
are in agreement with previous tools but use far fewer genes. We determined that several AIPS-defined pathways are
prognostic across and within molecularly and clinically define subtypes (two-sided log-rank test false discovery rate
(FDR) <5%). Interestingly, 74.5% (1291/1733) of the models are able to distinguish patients with luminal A cancer from
those with luminal B cancer (Fisher’s exact test FDR <5%).

Conclusion: AIPS represents the first tool that would allow an individual breast cancer patient to obtain a thorough
knowledge of the molecular processes active in their tumor from only one individual gene expression (N-of-1) profile.
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Background
There are many pathway analysis approaches that seek to
determine whether a specific molecular process or cellular
response is activated, repressed, or latent in a given patient
sample including pathway level analysis of gene expression
(PLAGE) [1], zscore [2], single sample gene set enrichment
analysis (ssGSEA) [3], functional analysis of individual

microarray expression (FAIME) [4], gene set variation
analysis (GSVA) [5], Pathifier [6], N-of-1 [7] and diversity
arrays technology (DART) [8]. To make predictions, all of
these methods require a suitable database of gene signa-
tures, where each signature is composed of a set of genes
with expression levels that correlate with different activa-
tion states of the specific molecular process or biological
response. Typically, these approaches return a score that
measures the level of activation of the process or response.
There are important limitations associated with these

existing approaches. First, the vast majority (ssGSEA,
GSVA, Pathifier, FAIME and DART) generate scores that
are not easily interpreted in isolation. More specifically,
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the score for an individual pathway in a tumor must be
interpreted relative to the distribution of scores for all
patients in a large cohort. This is certainly problematic
for situations where only the sample from the target
patient is available without recourse to a large dataset of
patients for interpretation, a scenario that often occurs
in clinical investigations and in the clinic.
Second, the relativistic nature of some of the existing

methods makes them highly sensitive to the specific
composition of the patient’s dataset [9, 10]. For example,
scores for a given pathway in a specific patient will vary
depending on the clinicopathological and molecular
characteristics of the other tumors/patients in the dataset.
This is analogous to the instability that was previously
described for methods that determine breast cancer sub-
type when the fraction of patients with estrogen receptor
(ER)-positive or HER2-positive cancer varies between
datasets [9, 10]. Techniques such as N-of-1 [7] are poten-
tially not as prone to these problems. However, they
require both a normal and a tumor sample from the same
patient, which is difficult to obtain and is not yet standard
clinical practice.
Ideally, a tool to measure the activation of a pathway

via a gene signature should have the following four
essential properties: (1) it should be applicable to gene
expression profiles of single patients without recourse to
or need for a larger cohort for comparative analysis; (2)
the calls should be “stable”, i.e. predictions should not be
influenced by the composition of a comparative patient
cohort; (3) it should function across a large range of plat-
forms (e.g. various microarrays and RNA-seq technologies);
and (4) the prediction of the state of each gene signature in
a patient’s tumor should be justified statistically. Unfortu-
nately, to our knowledge, there is no approach currently
available that meets all these four criteria.
Here we present an approach entitled absolute inference

of patient signatures (AIPS) that builds upon our previ-
ously described absolute intrinsic molecular subtyping
(AIMS) method to predict the breast cancer subtype in a
manner respecting the aforementioned properties 1–4 [9].
The absolute, stable and general properties of AIMS are
generalized from markers of subtype classification to a
large set of gene expression signatures representing an
extremely diverse array of biological processes, pathways
and functions, encompassing the hallmarks of breast and
other cancers. The tool allows the molecular dissection of
a single tumor for all relevant biological processes that are
activated or repressed at the transcriptional level, and
greatly extend the current technologies that measure just
a single process (e.g. proliferation, immune-related infor-
mation, etc.).

Methods
Supplemental methods are provided in Additional file 1.

Testing the stability of current approaches for assigning
pathway activation scores
This analysis took advantage of the implementations
of ssGSEA, PLAGE, zscore and GSVA in the GSVA
Bioconductor package [5]. We restricted our attention
to the 4725 gene signature in C2 (curated gene sets)
from the MSigDB [11]. Using the complete Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) gene expression dataset (n = 1992), we
assigned gene signature activation scores using one of the
four approaches for all gene sets in the C2 collections to
all patients in METABRIC. This produces a matrix MALL

in which MALL (Pi,GSj) corresponds to the score assigned
to patient Pi using gene set GSj. We repeated the score
assignment a second time by applying the approach to
only the ER-positive patients in the METABRIC dataset
and obtained a second matrix of scores MER+ in which
MER+(Pi,GSj) corresponds to the score assigned to patient
Pi using gene set GSj. We repeated this analysis for the
ER-negative patients to obtain a third matrix MER-. The
distributions presented in Fig. 1a are obtained from the
absolute difference between the MALL and MER+ or MER-

matrix. For example, the distribution for the ER-positive
patients are computed by |MALL(Pi,GSj) - MER+(Pi,GSj)|
for all ER-positive patients and all the gene sets GSj.

Preparation of gene expression datasets
We utilized the same training set as described in Paquet
et al. [9] with the exception of the dataset of Loi et al.,
because after careful examination, this dataset was mainly
composed of ER-positive samples and had evidence of
batch effects with ER-negative samples (Table 1). Briefly,
we generated the training set by downloading all of the
original normalized dataset from the Gene Expression
Omnibus (GEO) and ArrayExpress (Table 1). The normal-
ized data are used directly for the region of independence
(ROI)95 assignments (see Additional file 1 for a descrip-
tion of the ROI95), but as AIPS requires quantification of
raw gene expression, we also downloaded the raw gene
expression data and pre-processed them to remove back-
ground artifacts when applicable (mostly for the micro-
array platforms).
The McGill validation dataset was generated on the

Human Affymetrix Gene ST platform as previously
described in Tofigh et al. [12]. For the METABRIC
dataset we kept the 12 replicate samples described by
the authors of the original publication [13]. As these
correspond to less than 0.2% of our training set, their
inclusion does not significantly affect any of the presented
results. The final analyses and models were restricted to the
Entrez IDs present on all the platforms in the training and
validation datasets. When multiple probes map to the same
Entrez ID, the ROI95 assignments used the most variable
probe (using the interquartile range (IQR)). Unfortunately,
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the AIPS models cannot rely on such an approach because
the assignments must be performed in the context of only
a single sample. Therefore, the IQR cannot be used. The
AIPS models used the probe with the highest raw gene
expression in downstream analyses. We favored this solu-
tion over taking the mean of all probes because we believe
that using the mean would bias the approach by favoring
genes with more probes, as they would have less variance.
On the other hand, it could also introduce noise because
we cannot really expect all the isoforms of a gene to have
similar levels of expression.

Assembling a large collection of harmonized gene
signatures
We collected 6466 gene signatures from different sources
including MSigDB (C1 to C7, n = 6183 [11]), GeneSigDB
(n = 188, [14]), and breast-cancer-specific gene signatures
obtained from the literature (n = 95). The number of sig-
natures from each source is depicted in Fig. 2a. Entrez IDs
were used in order to guarantee distinct, unambiguous
gene names, identifications and symbols. As best possible,
we determined the “directionality” of expression for each
gene within each signature, and used this information to

A

B

C

D

Fig. 1 Instability of current pathway activation inference tools and example application of the region of independence (ROI). a Absolute
difference between the score obtained from a specific pathway activation tool (gene set variation analysis (GSVA), single sample gene set
enrichment analysis (ssGSEA), zscore, or pathway level analysis of gene expression (PLAGE)) using all patients from the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) dataset, and the score obtained when this dataset is restricted to either estrogen receptor
(ER)-negative (ER-) samples (left) or ER-positive (ER+) samples (right). b Heatmap depicts the ROI induced over the rank-sum-base ordering of
patients in the METABRIC dataset using the estrogen activation gene signature from Doane et al. with the probability (1) and cumulative distribution
function (2) for the random trials, in addition to the final assignments (3) into low, high and independent regions (defined as the 95% CI of the index
of the random trials). c Distribution of the low, independent and high assignments defined by the ROI95 in the function of the clinical
subtypes (defined by ER and human epidermal growth factor receptor 2 (HER2) status). d Class assignments defined by the ROI95 are
prognostic with 5 years survival (log-rank test P < 0.00001)
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partition the genes into the overexpressed and underex-
pressed subsets.

Development of AIPS
The pipeline to generate AIPS models is summarized in
Fig. 3a and contains two major steps: winnowing to in-
formative gene signatures in breast cancer, followed by
the selection of reliable absolute models.

Winnowing to informative gene signatures in breast
cancer
The numbers refer to Fig. 3a.

(1)We applied the ROI95 on the 6466 gene signatures
in our collection using the largest of our gene
expression datasets (METABRIC, n = 1992). The size
of the dataset helps to ensure that the ROI95 will
have sufficient samples to precisely identify the
region of independence (see Additional file 1 for a
description of the ROI95)

(2)To estimate significance, we also performed the
same analysis but first randomly permuted the genes
in the METABRIC dataset prior to applying the ROI95.
In this manner, we are able to identify those gene
signatures that behave essentially like random
gene signatures. For every gene signature in the
non-permuted versus permuted dataset we generated

distributions from the percentage of patients assigned
to the low, independent or high classes (Fig. 3b)

(3)We selected a value of 0.8 to apply to the percentage
of patients in the independent class as a cutoff to filter
out non-informative gene signatures. This conservative
cutoff still induces a sufficient number of patients
within each of the three classes (low, independent,
and high) to enable training of our models. A 0.8
cutoff on the percentage of independent assigned
patients for a given signature retains 3472 gene
signatures, which we consider to be informative in
breast cancer (Fig. 2c).

Building and selecting reliable absolute models from the
informative gene signatures

(4)Our gene expression training set consists of 4510
patients across different datasets generated via six
different technological platforms (Table 1). The
ROI95 was applied to each signature on each
individual normalized dataset in the training set.
Variability in the patient composition across the
different datasets (e.g. heterogeneity in receptor
status or other clinical variables; Table 1) and the
diverse range of platforms in our training set rules
out an approach that builds a merged normalized
meta-dataset

Table 1 Characteristics of the breast cancer datasets used in this study

Dataset Training/
validation

Platform Number of
samples

ER+ Her2+ BasalL Her2E LumA LumB NormaL

expO Bittner M. (www.intgen.org) Training Affymetrix
(U133 Plus 2.0)

312 65.7% 28.1% 21.2% 16.3% 31.4% 18.9% 12.2%

Lu et al. Breast Cancer Res Treat 2008 [40] Training Affymetrix
(U133 Plus 2.0)

127 58.3% 23.6% 26.8% 17.3% 37.0% 16.5% 2.4%

Li et al. Nat Med 2010 [41] Training Affymetrix
(U133 Plus 2.0)

115 60.9% 31.3% 27.0% 16.5% 36.5% 18.3% 1.7%

Parker et al. J Clin Oncol 2009 [25] Training Agilent 226 58.2% 12.4% 31.0% 12.4% 33.2% 16.4% 7.1%

Curtis et al. Nature 2012 (METABRIC) [13] Training Illumina
(HT-12 v3)

1992 76.2% 12.5% 20.5% 16.0% 26.7% 22.8% 14.0%

Guedj et al. Oncogene 2012 [42] Training Affymetrix
(U133 Plus 2.0)

537 75.9% 13.0% 16.2% 17.1% 24.8% 24.2% 17.7%

TCGA Nature 2012 [23] Training Agilent 233 79.3% 21.9% 22.3% 15.5% 30.9% 21.0% 10.3%

Miller et al. PNAS 2005 [43] Training Affymetrix
(U133AB)

251 86.2% 13.1% 15.9% 18.3% 25.1% 20.3% 20.3%

Pawitan et al. Breast Cancer Res 2005 [44] Training Affymetrix
(U133AB)

159 N/A 13.8% 12.6% 13.8% 28.3% 27.7% 17.6%

TCGA Nature 2012 [23] Training RNA-seq
(Illumina)

558 77.9% 24.2% 19.2% 12.9% 30.5% 22.2% 15.2%

McGill [12] Validation Affymetrix Gene ST 429 78.1% 18.5% 20.5% 17.4% 37.6% 16.2% 8.1%

TCGA Nature 2012 [23] Validation RNA-seq
(Illumina)

313 72.6% 11.9% 19.2% 13.4% 35.8% 15.3% 16.3%

ER+ estrogen-receptor-positive, Her2+ human epidermal growth factor receptor 2-positive, BasalL basal-like intrinsic subtype, Her2E Her2-enriched intrinsic
subtype, LumA luminal A intrinsic subtype, LumB luminal B intrinsic subtype, NormaL normal-like intrinsic subtype, RNA-seq RNA sequencing, METABRIC Molecular
Taxonomy of Breast Cancer International Consortium, TCGA The Cancer Genome Atlas
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(5)Step (4) provides statuses (low, independent, and
high) for 3472 signatures in each of 4510 patients.
A model is learnt for each such signature as follows.
First, we consider every possible pair of genes x and y
in the expression dataset, and we ask how strongly the
rule “if expression of x is greater than y, then classify
signature as high” is associated with the ROI95
assignments. This is repeated for a modification of
the rule where x is less than y, and for the other
activation statuses of independent and low. This
process is performed on the entire training set and
weights are assigned to every patient in a way to
give equal weight to the individual datasets i.e.
patients from smaller datasets are given more
weight than patients from larger datasets. Then, for
each signature, the K most highly associated rules
are chosen from the ranked list of all possible gene
pair rules. The optimal number of rules K is chosen
using 10-fold cross-validation for each model. The
final K rules are combined into a single probabilistic
model via a naive Bayes’ classifier

(6)Following the generation of models corresponding
to absolute versions that mimic the ROI95 in step
(5), we remove those models that do not achieve

sufficiently high agreement with the gold standard
ROI95 (Bonferroni-adjusted P value <0.05 on kappa
statistics, Fig. 3b). Given the fact that many or
most of the gene signatures in our database were
constructed in contexts outside of breast cancer
or cancer in general, there is no reason to expect
all gene signatures to be informative and to induce
good absolute models. After this filtering, we have
1733 absolute models that well mimic the ROI95
gold standard in the training set. This set constitutes
the final version of AIPS.

(7)The final list of 1733 models (AIPS) was applied to
the validation set and their agreement compared to
the agreement in the training set (Fig. 3b).

Kallisto and RSEM on single RNA-seq profiles
We used Kallisto version 0.42.4, RSEM version 1.2.15
and bowtie2 version 2.1.0. We ran Kallisto on the ensembl
transcripts build provided on the Kallisto website
(Homo_sapiens.GRCh38.rel79.cdna.all.fa) using the command
“kallisto quant -i Homo_sapiens.GRCh38.rel79.cd
na.all.idx –plaintext”. We ran RSEM on the UCSC
hg19 gene annotation (2014-06-02) using rsem-calculate-
expression in paired-end mode.

Fig. 2 Selection of the informative list of 3472 gene signatures. a Distribution of the number of genes per signature and overall number of
signatures from each sources of signatures. b Distribution of the proportion of patients assigned to the low, independent and high classes by the
region of independence (ROI)95 computed for all signatures and obtained after random permutation of gene labels over the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) dataset. c Percentage of informative signatures for each of the different sources

Paquet et al. Breast Cancer Research  (2017) 19:32 Page 5 of 15



Fig. 3 (See legend on next page.)
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Statistical analyses
All the statistical tests performed in this study are two-
sided. For the log-rank test and survival analyses we used
the package “survival” in R version 2.15. For analysis of
Cohen’s kappa statistics and the significance we used the
implementation available in the “fmsb” R package. All the
visualizations were performed using custom R scripts.
We ran the survival analyses for the 1733 AIPS models

on different cohorts of patients defined using either the
molecularly defined subtype or the clinically defined
subtypes. We also ran association analyses to study the
association between the clinical and molecular subtypes
and the low, independent, and high partitioning obtained
from AIPS. For the proliferation score we used the
Kruskal–Wallis test to evaluate the association with
AIPS partitioning. We combined the P values obtained
from both the survival analyses and and analyses of
association using the Benjamini-Hochberg method to
obtain a final false discovery rate (FDR). We considered
an event to be significant with FDR <5%.

Results
Current single sample pathway assignment tools are unstable
The currently available tools including PLAGE [1], z-score
[2], ssGSEA [3], and GSVA [5] infer activation scores for a
given patient relative to a large cohort of patient profiles.
We asked if, and to what degree, scores determined in this
relativistic manner, were affected by perturbations to
the composition of patients in the comparative dataset.
Towards this end, the activation of gene signatures from
MSigDB C2 (literature curated) [12] were measured using
the METABRIC dataset [13] in three distinct ways: using
(1) patients with only ER-positive samples, (2) patients with
only ER-negative samples, and (3) all patients. Figure 1a

depicts the distribution of the absolute differences between
the activation scores obtained by each tool using only
ER-positive samples versus the scores obtained for all
patients from METABRIC. This is repeated to compare
ER-negative-specific scores versus all patients from
METABRIC.
We observed a significant difference in the inferred

activation score for all of the tested approaches (Wilcoxon’s
P value < 0.0001 for all), with the largest differences ob-
served for the ER-positive versus pan-METABRIC com-
parisons (Fig. 1a). Although the scores obtained from
the four tools are incomparable, the results show that
scores are influenced by perturbations in the patient
composition of the dataset, establishing that none of
these current approaches are absolute [9]. Analogous
results were obtained when the dataset was stratified by
HER2 status and grade (Additional file 2: Figure S1),
suggesting that many clinicopathological factors may
influence pathway activation tools in this manner. Con-
cretely, if those approaches were to be used in a clinical
context, conclusions about the activation status of any
given pathway would be greatly influenced by the com-
parative “control” group used by the treating clinician.

A simple method to measure signature activation
The instability described above is analogous to what we
and others have previously reported in the context of
bioinformatics tools such as prediction analysis of
microarray 50 (PAM50) that infer breast cancer subtype
from gene expression profiles [9, 10]. In our previous
work (AIMS), we developed a so-called absolute method
that used only a gene expression profile from the target
patient without recourse to or need of a larger compen-
dium of patient profiles for comparative analysis [9]. Our

(See figure on previous page.)
Fig. 3 Generation and validation of the absolute inference of patient signatures (AIPS) models. a Pipeline used for the development of AIPS: (1)
using our curated list of 6466 gene signatures, we used the region of independence (ROI)95 to obtain assignments in the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) dataset; (2) using a cutoff of 80% for the percentage of independent patients we selected the
informative gene signatures (GS); (3) we obtained a list of 3472 informative gene signatures; (4) using the 4510 samples in our training set and
the 3472 informative gene signatures we obtained the gold standard assignments for the training set; (5) using an approach similar to absolute
intrinsic molecular subtyping (AIMS) (Paquet et al.) we trained 3472 absolute models mimicking the 3472 informative gene signatures; (6) we
selected the final list of models that constitute AIPS by requiring significant agreement with the ROI95 assignments in all the individual datasets
present in the training set; and (7) we validated the final list of 1733 AIPS models in the validation set. b Distributions of the kappa statistics for
the selected 1733 models forming AIPS (green) and the 1739 models not forming AIPS (gray) in the entire training set (using the median of the
individual training sets), the individual training sets, and the validation set. c Heatmaps depict the percentage of samples of a given class obtained from
the ROI95 (e.g. low, independent (ind.), or high) assigned to another class by AIPS in the training and validation sets. d Number of genes utilized in the
ROI95 versus the AIPS models. e The ROI95 example for an epidermal growth factor receptor (EGFR) signature from MSigDB in the McGill validation
dataset. AIPS assignments are presented at the top of the heatmap. f Heatmap ordered using the Euclidean distance and the Ward’s linkage method
presenting the different rules utilized in the AIPS-EGFR models (red means the rule is true and white means the rule is false). Underlined genes in rules
marked by a star are enriched in genes upregulated by EGFR in MCF7 cell lines [22]. g Confusion matrix representing the agreement between the single
sample AIPS-EGFR model and the whole-cohort ROI95 assignments. h Confusion matrix representing the agreement between the AIPS-EGFR assignments
performed on the same RNA extraction but different platforms (RNA sequencing (RNA-seq) versus microarray). i Boxplots depicting the distribution of the
percentage of agreement for the AIPS partitions done on The Cancer Genome Atlas (TCGA) samples profiled on both microarray and RNA-seq. We also
present a background distribution generated from shuffling the labels 100 times. ER estrogen receptor, HER2 human epidermal growth factor receptor 2,
PAM50 prediction analysis of microarray 50
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goal here is to generalize and improve this framework to
allow such absolute assignments to be made for any given
molecular pathway or process for which there is a suitable
gene signature.
The construction of our tool requires several compo-

nents: (1) a collection of gene signatures that cover relevant
biological processes including the hallmark molecular path-
ways/processes of breast cancer; (2) a suitably large collec-
tion of gene expression profiles of clinical breast cancer
samples (ideally generated via both microarray and RNA-
seq technologies) partitioned into training and validation
datasets; and (3) a “gold standard” set of positive and nega-
tive patient profiles for each pathway with known activation
status.
With respect to (1), we curated a collection of 6466 gene

signatures from various databases of gene signatures in-
cluding MSigDB [11] and GeneSigDB [14], which we com-
plemented with our own in-house work to curate gene
signatures especially applicable to breast cancer (n = 188,
see “Methods” and Fig. 2a). With respect to (2), our training
dataset comprised 4510 gene expression profiles obtained
from 10 different cohorts on six different platforms
(Table 1). We used our previously published dataset
for validation (Affymetrix Gene ST, n = 429 patients [12])
and the most recent RNA-seq data from The Cancer
Genome Atlas (TCGA) project (Table 1). We next describe
how we estimate our gold standard.

Estimation of the activation levels of each gene signature
Our goal is to train our AIPS algorithm to accurately
infer the activation status of a given pathway within an
expression profile of a patient. In order to train our algo-
rithm, we require examples of patients that have activation
statuses that we believe to be correct for each gene signa-
ture of interest. Furthermore, the examples must cover all
possible states (e.g. high, low, and latent activation). The
nature of human clinical samples, however, does not allow
us to determine the activation status of a pathway in a
direct, rigorous manner. Therefore our gold standard
learning set must be comprised of estimations of statuses
across the relevant expression datasets (item (2) as
mentioned previously).
For each biological process of interest (item (1) as men-

tioned previously), we applied a de novo non-parametric
rank-based method that partitions the patients in our
dataset into three classes depending on the pattern of
expression exhibited by the genes within the signature.
The three classes correspond to those patients that appear
to have high activation of the signature, low activation of
the signature, and a set of patients where the expression
of the genes within the signature lose their characteristic
pattern of pairwise correlation (Fig. 1b provides an
example). The latter class is assigned to patients where
the corresponding gene expression patterns are pairwise

independent, thus supporting neither high nor low activa-
tion of the underlying pathway.
This de novo non-parametric test, referred to as the

ROI at quantile q (ROIq), proceeds as follows. In a uni-
variate fashion, each gene within a given signature is
used to rank all patients from the lowest to the highest
expression. In some cases, the direction of expression
of each gene within the signature is known a priori
(e.g. the gene is overexpressed or underexpressed in
samples with activation of the target pathway). Before
ranking, we first negate any expression measurements
for genes that are known to be underexpressed: such
genes that are negatively correlated with activation of
the signature, order the patients in the reverse order.
Now for each patient, the ranks of all k genes from the
signature are summed (see Additional file 1 for full
details). The patients are then linearly ordered from
the lowest to the highest rank. The approach of mapping
expression data to a linear order, which has been used
previously in breast cancer [15], makes intuitive sense
as we can view the expression of each molecular process
or pathway as having a state between “turned off” and
“turned on” completely. Figure 1b depicts a proof-of-
concept linear ordering for an estrogen response signature
from Doane et al. [16] using the METABRIC dataset
(Table 1). Broadly speaking, such linear orders highlight
patients at the left hand side that have low or negative
expression of the signature, patients at the right hand side
that have high or positive expression of the signature, and
a region in the middle corresponding to patients with
gene expression patterns that are independent. We refer
to this as the observed linear order.
The second step in the ROIq procedure identifies the

left and right boundaries of the low and high regions
within the observed linear order. This is done via a
permutation test where an “artificial” patient “n + 1” is
created. Each of the k genes in the signature rank patient
n + 1 with a uniformly randomly chosen number from
(0… n + 1). Summing the randomized rank over all k
genes in the signature, the position of patient n + 1 is
computed within the observed linear order. This is re-
peated a suitably large number of times (e.g. n = 10,000).
The ROIq is defined as the region that contains q% of
the randomly generated samples (Fig. 1b bottom and see
Additional file 1).
As expected, the patient ordering at ROI95 for the

estrogen response signature depicted in Fig. 1b is strongly
associated with breast cancer subtype as defined by ER
and HER2 status. In particular, the low activation region
of the ordering (left) is enriched for ER-negative and/or
HER2-positive tumors (Fisher’s exact test, P < 0.000001,
Fig. 1b, c), whereas the high activation region corresponds
almost exclusively to ER-positive/HER2-negative tumors
(Fisher’s exact test, P < 0.000001, Fig. 1b, c). Given that
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ER-positive status is strongly associated with good out-
come in breast cancer [12, 17, 18], the patient partition
produced by the ROI95 is strongly prognostic (log-rank
P < 0.0001, Fig. 1d). Although only a single proof of
concept example, the results suggest that the ROIq ap-
proach is capable of assigning pathway activation in
breast cancer expression datasets. A more thorough
investigation of the ROI95 is presented in Additional file 1.
The analyses suggest that the ROI95 approach can faith-
fully recapitulate the low, independent, and high partitions
of patients over a large range of biologically plausible pa-
rameters. For example, using simulated data, we tested the
impact of several parameters including, for example, the
gene signature size, fraction of patients in each category,
and the strength of the signal on the capacity of the ROI95
approach to correctly assign patients in the low, independ-
ent, and high categories. We confirmed using this simu-
lated set of data that the ROI95 is a robust approach
within a wide range of parameters (see Additional file 1
and Additional file 2: Figure S2 and S3).

Identification of informative and non-informative gene
signatures
To better ensure that the ROI95 is accurately determining
pathway status, we applied the method to all gene sig-
natures in our collection (n = 6466, Fig. 2a) using the
METABRIC dataset (n = 1992). The fraction of low, in-
dependent, and high samples across all signatures in
our collection is presented in Fig. 2b. As a control, the
gene labels of the METABRIC dataset were randomly
permuted. This procedure should, with high probability,
break the vast majority of gene-gene correlations within
signatures, causing the fraction of uninformative genes to
rise. We should then observe an increase in the independ-
ent partition of the ROI95 with a concomitant decrease in
the size of the low and high partitions. The results depicted
in Fig. 2b confirm this, and suggest that for a large propor-
tion of the signatures, the ROI95 method is indeed assign-
ing activation status in a very non-random fashion.
The results depicted in Fig. 2b also suggest that the

ROI95 method assigned almost every patient to the
intermediate partition for some signatures. In other
words, the ROI95 method applied to these specific
gene signatures was not distinguishable from random
expression patterns. We removed all such gene signa-
tures from further consideration, in particular, a gene
signature was removed when the fraction of samples
in the ROI95 region exceed 0.8, as this is no better
than partitions generated by random sampling. This
led to a list of 3472 signatures that we considered
informative in the context of breast cancer. A cutoff
on the ROI95 region will exclude gene signatures activated
or repressed in less than 20% of samples. Although more
liberal thresholds could be used when studying an

individual gene signature, we chose this conservative
threshold here to enable our high-throughput global
analyses.
Given that our gene signatures were collected from vari-

ous sources, we asked whether any particular source was
enriched for uninformative signatures. Of the remaining in-
formative signatures, pathway databases such as BioCarta,
Kyoto Encyclopedia of genes and genomes (KEGG) and
Gene Ontology (GO) have higher fractions of signatures
that have near random behavior (bottom of Fig. 2c). We
note that sources that contributing signatures from
transcriptional profiling have a higher proportion of
non-random signatures (top of Fig. 2c).

Absolute single-sample gene signature activation in
breast cancer
Based on the aforementioned results, we used the ROI95
method with the 3472 informative signatures to the
training and validation datasets for calling signature activa-
tion levels using only the expression profile of a given single
patient. The approach used here broadly follows our AIMS
method that infers breast cancer subtype (Fig. 3a; also [9]).
First, the ROI95 is applied to each informative signature

across 10 expression datasets generated from several
microarrays (one-color and two-color) and RNA-seq
platforms totaling 4510 samples (Table 1). This large
and diverse training dataset provides us with more
confidence that biases for specific clinicopathological or
other patient variables are ablated, or at least reduced
[9]. Our learning set consists of activation statuses
(low, independent, and high) for 3472 signatures in
each of 4510 patients from the training set.
Now, for each signature a model is learnt as follows.

First, we consider every possible pair of genes x and y in
the expression dataset, and we ask how strongly the rule
“if expression of x is greater than y, then classify signa-
ture as high” is associated with our gold standard learn-
ing set. This is repeated for a modification of the rule
where x is less than y, and for the other activation sta-
tuses of independent and low. Then, for each signature,
the K most highly associated rules are chosen from the
ranked list of all possible gene pair rules. The K rules
are combined into a single probabilistic model using a
naive Bayes’ classifier, and validated on an independent
dataset (n = 742 samples, Table 1) [12].
The last step of our approach consists in selecting

only those models with strong agreement with the
ROI95 approach using a cutoff of 0.05 on the Bonferroni
adjusted Kappa’s statistics P value. The two filtering
steps that consist of first filtering out non-informative
gene sets and then keeping models with significant
agreement are essential to provide a set of reliable
models (Fig. 3a).
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Approximately 50% of informative signatures are
amenable to absolute assignment
To ensure that our models are applicable across different
technologies, we only retained models that significantly
agreed with the gold standard in all 10 of the training data-
sets (kappa statistics Bonferroni-adjusted P value <0.05).
This resulted in the retention of 1733 models (1733/3472,
approximately 50%). We observed that the retained models
had better agreement with the gold standard in the
validation dataset in comparison with the models that
were removed (Fig. 3b). This observation suggests that
our training procedure did not introduce any significant
over-fitting as selected models behave similarly in the
training and validation sets and also all the models
obtain a significant kappa statistic in the validation set
(kappa statistics P values <0.01 for all).
We also stress here that the validation dataset contains

data generated on a microarray platform (Affymetrix
Gene ST) not present in the training dataset, suggesting
that AIPS assignments are applicable on technologies
not utilized in the training procedure. AIPS correctly
assigns activation status for samples either assigned low
or high activation (mostly red (approximately 80%) for
the low-low and high-high lines in Fig. 3c). About 60%
of samples were assigned to the independent class over
all the 1773 models,
For the samples in the gold standard that were assigned

independent status, AIPS correctly assigned this status in
60% of the cases, suggesting that predictions made for
samples in the independent class are generally less reliable
than predictions made for the low or high classes
(mostly yellow for the “ind.-ind.” tagged line in Fig. 3c).
Importantly, we rarely observed cases were AIPS pre-
dicted high activation when the gold standard was low,
and vice versa (mostly blue for the low-high and high
lines in Fig. 3c).
Last, we note that the AIPS models used fewer genes

to infer pathway activation status than the original ROI95
method to generate the gold standard (median 50 versus
200 genes for AIPS versus ROI95 respectively; Wilcoxon’s
test P < 0.0001, Fig. 3d).
Overall, these analyses confirmed that AIPS could

accurately recapitulate the assignments of the gold stand-
ard. The 1733 AIPS models are listed in Additional file 3:
Table S1 and pathway activation assignments can be
computed for new individual samples using our AIPS R
package [19].

Absolute assignment of EGFR pathway activation using AIPS
Epidermal growth factor receptor (EGFR) is well-studied
in breast cancer with high activation of this pathway
associated with poor patient outcome [20, 21]. We
examined the behavior of our AIPS-EGFR model in the
McGill validation dataset (Fig. 3e–g). We observed that

the activation of samples at the far left and right (low
and high respectively) are nearly perfectly inferred by
AIPS (kappa = 0.54, P < 0.0001) with the majority of
disagreements related to samples in the independent
region (Fig. 3e–g). Figure 3f depicts the simple binary
rules used by the AIPS model for the EGFR signature
across the patient samples. There is a large cluster of
EGFR-high patients associated with the PAM50 basal-
like (BasalL) subtype, and a second large cluster of
EGFR-low patients associated with luminal A and
luminal B subtypes, a finding consistent with previous
studies [20, 21].
Interestingly, gene set enrichment analysis of the genes

selected to participate in the binary rules revealed an en-
richment for genes upregulated by EGFR in MCF7 cells
(FDR q value = 1.45e-17) [22]. Furthermore, all of these
genes are on the right side (or left side) of binary rules
associated (or not-associated) with high EGFR activation
(rules marked by an asterisk in the heatmap of Fig. 3f ).
Although AIPS selects gene pair rules for each model
from the large space of all possible gene pairs, it still
surprisingly often selects genes that were present in
the original signature, and therefore are likely good
markers of the underlying biological processes. The
enrichment of genes from the original signature was
also reported for other “absolute” models such as
AIMS [9]. Almost all of our AIPS models had such en-
richment (1335 out of 1733 models (77%), Additional
file 2: Figure S5). It is important to note that although
most models statistically significantly overlapped the
original signature, the number of genes from the ori-
ginal signature was still below 10%, suggesting that
AIPS models do require many other genes to mimic
the ROI95 assignments.
We asked if the absolute nature of the AIPS method

would result in a more consistent EGFR model across
gene expression platforms. In particular, we asked if
our AIPS model inferred the same activation status for
the EGFR pathway in both the microarray and RNA-
seq platform for the same patient. Using TCGA data
for 398 patients [23], AIPS assignments agreed on 87%
of patients between both platforms (Fig. 3h, kappa =
0.81, P < 0.0001). Systematic analysis over the entire
partitions (n = 1733 models) revealed that this agree-
ment value is representative of almost all the partitions
induced by AIPS and is significantly different from a
random distribution (Fig. 3i, Wilcoxon’s test P <
0.0001, all kappa statistics P < 0.0001) supporting the
argument that absolute assignments are robust across
multiple platforms [9]. Together these results suggest
that AIPS is capable of inferring signature activation
levels with comparable performance to relativistic tools
but with the added benefits of an absolute single sam-
ple approach.
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AIPS assignments agree with whole-cohort inferred pathway
scores
Our goal was to compare AIPS assignments with a second
approach from the literature that takes full advantage of an
entire dataset to assign signature activation scores. In par-
ticular, we used 21 non-redundant scores from the publica-
tion of Gatza et al. generated from breast cancer RNA-seq
expression data from the TCGA project (n = 456) [24].
Concomitantly, we estimated activation status using our
AIPS models for these signatures on the same patients.
Overall good agreement between AIPS and the pathway
scores from Gatza et al. was observed (Fig. 4a) although
the two approaches are quite dissimilar.
Figure 4a suggests that well-known breast cancer

biological processes are recapitulated by AIPS assign-
ments. For example, patients with the luminal A or B
subtype (LumA or LumB) are mostly assigned to the
AIPS-high class for the ER gene signature, consistent
with the fact that subtypes are enriched form ER-positive
patients [9, 25]. Also, the AIPS assignments are in good
agreement with the proliferation, ESC human and MYC
DUKE pathway scores as these processes are known to be
associated with the highly proliferative basal-like (BasalL),
Her2 and LumB subtypes [25, 26]. We also observed a sig-
nificant proportion of Her2-positive patients assigned to
the AIPS-high Her2 gene signature. The interferon alpha
and gamma, STAT1 and TNF alpha pathway scores are in
good agreement with the AIPS assignments; these pro-
cesses are associated with the BasalL subtype [27]. The
P53 WT signature from AIPS is in good agreement with
the pathway scores and is enriched for the LumA subtype
that has been shown to be depleted of P53 mutations [23].
Generally, if AIPS modules and the pathway scores of

Gatza et al. are in good agreement, then the patients

within the high class of AIPS should also have the high-
est pathway scores according to Gatza et al. We tested
the agreement between these two approaches and ob-
served a strong relationship (Wilcoxon’s P < 1.4e-14 for
all, Additional file 2: Figure S4A). Overall this analysis
suggests that the “single-sample” AIPS approach is in
good agreement with an approach that uses an entire
cohort of samples to judge activation.

Sample partitions induced by AIPS are prognostic and
associated with breast cancer subtypes
As there are many pathways and process that are known
to vary in their expression across breast cancer subtypes,
we investigated the relationship between patient subtype
(called using the AIMS tool [9] or using clinical informa-
tion) and the entire patient partitions generated by AIPS
on the McGill dataset (Table 1).
We first studied the relationship between the partitions

induced by AIPS and survival for the different molecular
and clinical subtypes (Fig. 5a, b). We noticed that almost
half (42.4%) of the partitions are significantly associated
with survival if the analysis is performed on the entire
cohort (Fig. 5a, b; Additional file 3: Table S1). This
number drops drastically if we restrict the survival analysis
to patients of given subtype. For example, only around 5%
of the partitions are significantly associated with survival
for the BasalL, Her2 and Luminal A and to close to
nothing for the LumB and normal-like (NormalL)
subtypes. Similarly, for the clinical subtypes, we found
between 30 and 50% of partitions associated with the
ER-positve, Her2-negative and ER-positive/Her2-nega-
tive subtypes. Those numbers drops between 3 and 6%
for the ER-negative, Her2-positive and ER-negative/
Her2-negative subtypes. We found almost no partitions

A

Fig. 4 Assignment by absolute inference of patient signatures (AIPS) agrees with whole-cohort pathway scoring tools. a Comparison between the
pathway scores retrieved from Gatza et al. and AIPS. The ordering of the rows and columns is preserved between the two heatmaps. BasalL,
basal-like, HER2 human epidermal growth factor receptor 2, LumA luminal A, LumB luminal B, ER estrogen receptor, TGFB transforming growth
factor beta, EGFR epidermal growth factor receptor, VEGF vascular endothelial growth factor, IFN interferon
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Fig. 5 Absolute inference of patient signatures (AIPS) models are prognostic. a Right heatmap depicts the global partitions made by AIPS on the
McGill validation dataset (n = 429, cyan low, gray independent, orange high). Left significant associations (false discovery rate (FDR) <5%) induced
from AIPS partitions. Far left associations with survival (log-rank test) using the molecular and clinical subtypes and far right significant overlap
with the clinical and proliferation molecular subtypes (Fisher’s exact test). b Presentation of the numbers and percentages of AIPS partitions that
are significantly (FDR <5%) associated with either survival or overlap. c Top each bar represents the number of times a patient in the McGill
validation dataset was assigned to the low class across all 1733 AIPS partitions. Color indicates the subtype of the patient. Bottom distribution of
number of times patients of each subtype were assigned to the low class using AIPS partitions. d Distribution of the number of 100-bp paired-end
reads use in the Kallisto quantification (n = 96). e Time taken in minutes for Kallisto quantification and AIPS partitions as a function of the number of
paired-end reads. Line represents a linear fit of the data. f Kallisto versus RSEM AIPS partitions agreement versus a background distribution agreement
obtained from randomly shuffling the labels 100 times. BasalL, basal-like, HER2 human epidermal growth factor receptor 2, LumA luminal A,
LumB luminal B, ER estrogen receptor, NormalL normal-like
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associated with the ER-positive/Her2-positive and ER-
negative/Her2-positive clinical subtypes (Fig. 5a, b;
Additional file 3: Table S1).
We also studied the association between AIPS parti-

tions and the molecular, ER, Her2 and proliferation score
[25] using Fisher’s exact test (Fig. 5a, b). We found that
between 85 and 92% of the partitions are associated with
the different grouping with the exception of the Her2
subtype and the clinical features (Fig. 5a, b). Almost all
(92.4%) partitions are associated with proliferation.
We also examined the frequency of patients classified as

low over the entire set of 1733 AIPS models (Fig. 5c).
Patients with the LumA and NormalL subtyptes obtained
a significantly higher number of assignments compared to
the those with the remaining subtypes, with an increase of
between 200 and 250 in low assignments (Fig. 5c).

AIPS applied on single RNA-seq samples can be performed
in a timely fashion
AIPS should enable a significant amount of information
to be extracted from single RNA-seq samples and the
growing number of single-cell sequencing datasets. We
measured the time necessary to obtain AIPS partitions
from a single RNA-seq profile using Kallisto, a fast pseu-
doalignment program used to obtain transcript quantifi-
cation from sequencing data [28].
Using 100-bp paired-end sequencing data (median of

155 million paired-ends per patient [28], n = 96, Fig. 5d)
we monitored the time taken to obtain transcript quantifi-
cation and AIPS partitions using a single central process-
ing unit (CPU). Overall, it required a median 21.6 minutes
to obtain AIPS partitions for an individual patient directly
from raw paired-end sequencing data (Fig. 5e).
Given that different transcript quantification pipelines

return slightly different results, we evaluated the agree-
ment between AIPS partitions made using Kallisto quanti-
fication to partitions made using an alternative approach
(Bowtie2 [29] + RSEM [30]). Overall, we found significant
agreement between AIPS partitions made from the two
quantification approaches (Wilcoxon’s test P < 0.0001 and
all kappa statistics P < 0.0001) with a median agreement of
approximately 85% (Fig. 5f). Together this establishes that
AIPS could be applied in a time-effective manner on
single-sample RNA-seq data with the aid of a sufficiently
fast pseudoalignment program e.g. Kallisto.

Discussion
The work presented here is predicated upon the observa-
tion that existing pathway analysis tools are relativistic in
nature. In essence, the tools make use of a large panel of
samples to “judge” whether there is evidence that the given
pathway is underexpressed or overexpressed relative to the
panel. We showed here that the scores returned by these
tools are sensitive to the composition of patients within the

dataset, using a large breast cancer gene expression dataset.
More precisely, we showed that the scores returned by
these tools vary when the frequency of specific clinicopath-
ological variables is perturbed. Although we have shown
this is true for grade, ER and HER2 status, it is likely that
many other variables that were assessed (e.g. age, claudin-
low status, tumor size) and or not assessed (e.g. tumoral
heterogeneity, clonal complexity, lifestyle and information
on exposure of the patient) can also affect the estimations
of pathway activity using these tools [31–33]. This is non-
unintuitive: if the gene expression profile of a patient is
included in two different datasets with marked differences
in the overall composition of patients (e.g. they differ on
the fraction of ER-positive patients), in one dataset a target
pathway could be assessed as having high activation but in
the second dataset as low. As these, or similar variables, are
involved in most, if not all cancers, it is highly likely that
this degenerate behavior is not restricted to studies of
breast carcinoma. Clearly an “absolute” tool that ablates this
“relativistic” behavior would be a step in the right direction.
The main focus of this study is the development of a

de novo framework to estimate the activity of a given
pathway using only a single sample. Here we have trained
and validated predictive models for 1733 gene signatures
for these pathways using a large compendium of breast
cancer gene expression profiles. The profiles originate from
several distinct microarray and RNA-seq platforms. In
order to develop a suitable training and validation dataset,
we developed the notion of the q% region of independence
(ROIq), which assigns simple discrete levels of activation for
a given gene signature and a sufficiently large dataset. Using
a large number of synthetic datasets we have shown that
the method is robust and can faithfully retrieve low and
high activation for many gene signatures within realistic
configurations (see Additional file 1). By extending our
previous AIMS methodology [9] with this gold standard,
we were able to generate 3472 absolute single-sample gene
signature activation models of which approximately 50%
(1733/3472) performed sufficiently well as to be included
in AIPS. We have shown that the AIPS models are more
compact, their assignments are reproducible when the
same patient is profiled using two distinct platforms, and
the models are highly prognostic. Moreover we showed
that our ability to estimate the activation of most path-
ways is not reduced when switching from a relativistic to
an absolute method.
AIPS provides 1733 models that are immediately

applicable to new breast cancer samples even when
they are profiled in isolation, outside of a large cohort
to make comparative assessments. Furthermore, we have
shown that AIPS models are prognostic and compare
favorably to other whole-cohort approaches, and that
AIPS could be applied effectively to RNA-seq data. The
term “absolute” expresses the idea that pathway

Paquet et al. Breast Cancer Research  (2017) 19:32 Page 13 of 15



assessment made on such a new “isolated” sample is a
function only of the learning phase for each of the 1733
models, and is not done relative to a comparative cohort.
This is, to the best of our knowledge, a marked difference
from all other pathway tools currently available. The
power of this approach is that it allows us to completely
define and control the learning set, removing biases and
potential confounding variables in downstream analysis.
This is not possible with other current approaches where
pathway analyses are affected by the other patient profiles
in the cohort. Of course, here “absolute” does not imply
that pathway assessments are perfect nor can the method
judge in all cases the state of a pathway in a tumor relative
to a healthy normal control. However, the presence of
normal-like samples in our training sets allows us to
assess such an “absolute state” of the pathway (the AIPS R
package includes this analysis). Of course, the quality and
definition of the AIPS models is still a function of the
training set. In other words, modifications to the training
set might impact model definitions, but here we trained
our models over multiple large cohorts in order to
minimize the risk that small specialized datasets would
skew model parameters. Further refinement and cur-
ation of the learning dataset might potentially lead to
absolute models.
Although there is a steadily increasing number of

breast cancer gene signatures derived from microarray
and RNA-seq based studies, at best a dozen of these
signatures are currently directly available to clinicians
and patients [34, 35] and almost all of them are suspected
to be essentially sophisticated multigene predictors of pro-
liferation [12, 26, 36, 37]. Given an expression profile of a
patient sample, AIPS is able to estimate the activation
of 1733 of the pathways, molecular processes and func-
tions simultaneously in a timely fashion. This repre-
sents a step towards a clinically feasible tool that would
provide healthcare providers and clinicians with im-
portant information on many aspects of the tumor
beyond proliferation.

Conclusions
Kim et al. [38] recently reiterated our observation of
the relativistic nature of all current clinical gene
expression-based prognostic tests and acknowledge
the problematic nature of this situation. The authors
suggest that an absolute method could be used with
RNA sequencing data to robustly identify patients with
a luminal A subtype that may not need chemotherapy in a
manner analogous to Oncotype Dx [39]. AIPS represents
such a solution and our analyses here suggest that 70% of
models (1203/1733) are able to distinguish patients with
luminal A cancer from patients with luminal B cancer
(FDR <0.01 (Fisher’s exact test), Additional file 3: Table

S1). This will provide a broad range of molecular pathways
and processes to develop an absolute clinical test to meas-
ure patient benefit from chemotherapy.
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