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Background: The outbreak of coronavirus disease 2019 (COVID-19) has become a
global public health concern. Many inpatients with COVID-19 have shown clinical
symptoms related to sepsis, which will aggravate the deterioration of patients’
condition. We aim to diagnose Viral Sepsis Caused by SARS-CoV-2 by analyzing
laboratory test data of patients with COVID-19 and establish an early predictive model
for sepsis risk among patients with COVID-19.

Methods: This study retrospectively investigated laboratory test data of 2,453 patients with
COVID-19 from electronic health records. Extreme gradient boosting (XGBoost) was
employed to build four models with different feature subsets of a total of 69 collected
indicators. Meanwhile, the explainable Shapley Additive ePlanation (SHAP) method was
adopted to interpret predictive results and to analyze the feature importance of risk factors.

Findings: The model for classifying COVID-19 viral sepsis with seven coagulation function
indicators achieved the area under the receiver operating characteristic curve (AUC)
0.9213 (95% CI, 89.94–94.31%), sensitivity 97.17% (95% CI, 94.97–98.46%), and
specificity 82.05% (95% CI, 77.24–86.06%). The model for identifying COVID-19
coagulation disorders with eight features provided an average of 3.68 (±) 4.60 days in
advance for early warning prediction with 0.9298 AUC (95% CI, 86.91–99.04%), 82.22%
sensitivity (95% CI, 67.41–91.49%), and 84.00% specificity (95% CI, 63.08–94.75%).

Interpretation: We found that an abnormality of the coagulation function was related to
the occurrence of sepsis and the other routine laboratory test represented by
inflammatory factors had a moderate predictive value on coagulopathy, which indicated
that early warning of sepsis in COVID-19 patients could be achieved by our established
model to improve the patient’s prognosis and to reduce mortality.
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INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19) in
Wuhan, China, has developed into a global pandemic and
major public health concern (Tu et al., 2020; Zhou et al.,
2020). As of November 23, 2020, around 58 million patients
have been diagnosed with severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) infection, and 14 million (2.37%)
patients have died, according to the latest statistical data from
Johns Hopkins University. Compared with severe acute
respiratory syndrome (SARS) and Middle East Respiratory
Syndrome (MERS), SARS-COV-2 infection is less lethal. Due
to the high infectivity of this virus, it has however, caused more
severe and fatal cases (Tu et al., 2020; Vlachodimitropoulou
Koumoutsea et al., 2020). Currently, the cure for COVID-19 is
essentially dependent on the patient’s immune system and no
specific drugs are available (Cao et al., 2020; The Lancet, 2020).
So far, a variety of vaccines have been announced, each with their
own good efficacy, but most of them have been released through
press releases, and there is still scientific uncertainty (The Lancet,
2020; Nat Nanotechnol, 2020). Therefore, it is crucial to monitor
COVID-19 patients closely and to issue an early warning to
prevent deterioration.

For COVID-19, in addition to lung injury, impaired liver and
kidney function, and microcirculatory dysfunction in some
patients fulfilled the criteria synonymous with sepsis and septic
shock based on the Sepsis-3 International Consensus (Guan
et al., 2020; Li et al., 2020; Zhang et al., 2020). Sepsis is defined
as life-threatening organ dysfunction caused by a dysregulated
host response to infection (such as bacterial, viral, and/or fungal
infections) (Singer et al., 2016). The mortality rate due to sepsis is
high, indicating that it is still one of the main causes of death in
the world. Identification and treatment of sepsis are a matter of
great concern in the medical field and need to be solved urgently
(Gaieski et al., 2013; Grondman et al., 2020; Li et al., 2020). A
broad range of pathogens can cause sepsis, including bacterial,
fungal, or viral pathogens. Although bacterial infections were the
main cause of sepsis in these patients, the clinical research and
diagnosis of Viral Sepsis still remains very rare (Lin et al., 2018;
Musher, 2019; Grondman et al., 2020). Viral Sepsis secondary to
viral pneumonia has been reported (Musher, 2019). For patients
with COVID-19, secondary Viral Sepsis may be one of the
critical causes of patients’ death. The view that the condition of
COVID-19 patients is complicated by sepsis, causing aggravation
and even death has been widely recognized (Connors and Levy,
2020). In COVID-19, the main reason for this phenomenon is
because severe COVID-19 is accompanied by hyper-cytokinemia
(Giamarellos-Bourboulis et al., 2020). Tumor necrosis factor-a
(TNF-a) and interleukin-6 (IL-6) production by circulating
monocytes were persistent, a complex pattern different from
influenza or bacterial sepsis (Audo et al., 2020). Furthermore,
interleukin-10 (IL-10) has been reported to be a unique feature of
the COVID-19 cytokine storm, and its concentrations strongly
correlated with those of IL-6 and other inflammatory markers
such as C-reactive protein (Lu et al., 2020). The cytokine storm
would damage the epithelium of the lungs and lead to
extrapulmonary manifestations (cardiovascular, renal, hepatic,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
gastrointestinal, ocular, dermatologic, and neurological) (Falasca
et al., 2020; Johnson et al., 2020; Maxwell et al., 2020). And it
induces acute respiratory distress syndrome (ARDS) and
secondary sepsis, which often leads to multiorgan failure and
death (Lu et al., 2020; Opoka-Winiarska et al., 2020).

With the emerging demands for auxiliary diagnosis and
computational tools, several works have been proposed for
sepsis prediction in the common medical settings using
machine learning. For example, Fohner et al. used latent
Dirichlet Allocation as the un-supervised learning model to
assess clinical heterogeneity in sepsis, and Taylor et al. applied
the random forest model to predict the in‐hospital mortality in
emergency department patients with sepsis (Taylor et al., 2016;
Fohner et al., 2019). Extreme Gradient Boosting (Xgboost), as it
functions as an iterative refit of weak classifiers to residuals of
previous models (Yao et al., 2020), has become one of the most
popular machine learning models, outperforming other models.
It has been widely used in different scenarios in medical
application (Li and Zhang, 2020; Ogunleye and Wang, 2020),
and there is no exception for sepsis (Zabihi et al., 2019; Yao et al.,
2020). To our knowledge, there is no analytical tool to predict
which COVID-19 patients are most likely to develop sepsis in
the near future. Furthermore, explainable machine learning is the
future direction in the medical application as it can offer more
credible and traceable outcomes for clinicians (Tonekaboni et al.,
2019). As a model which explains unrelated methods, SHAP
(Lundberg and Lee, 2017) started to draw the attention of
researchers gradually.

To our knowledge, there is no analytical tool that predicts
which COVID-19 patients are most likely to develop sepsis in the
near future. Our research aims to use interpretable machine
learning to identify risk factors for Viral Sepsis Caused by
SARS-CoV-2 (VSCS-2) and to rationalize these indicators using
knowledge about viral sepsis. On this basis, the laboratory
indicators used for early warning of VSCS-2 were developed and
provided some enlightenment for the study of respiratory viruses.
Predictive models were established to predict coagualopathy using
the laboratory indicators, and issue warning for the early diagnosis
and treatment of VSCS-2 to allow better prognosis.
METHODS

Materials
This study was carried out at Tongji Hospital (the largest hospital
in central China) and was approved by the ethical committee of
Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, China. A total of 2,453 patients with
COVID-19 (1,257 males, 1,196 females) were recruited between
December 2019 and March 2020. These patients were diagnosed
with nucleic acid testing or clinical diagnosis. The age distribution
of the 2,453 patients with COVID-19 is 55.7 ± 15.3 years old.

Identification of Risk Factors for VSCS-2
We used Extreme gradient boosting (Xgboost) (Chen and
Guestrin, 2016), which has been actively promoted in the
medical community, and the Shapley Additive ePlanation
March 2021 | Volume 10 | Article 586054
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(SHAP) (Lundberg and Lee, 2017) method, a tool for analyzing
the impact of each feature on the prediction, to find the most
relevant risk factors for VSCS-2.

We built the first classification model to have a general
understating of VSCS-2 (Figure 1). According to sepsis-1
criteria (Table 1), the recruited COVID-19 patients were
classified into two groups: VSCS-2 group (1,376 patients,
56.1%) and pure COVID-19 patient group (1,077 patients,
43.9%). Due to the complex pathogens of sepsis, this study
tries to incorporate selected laboratory test items with clinical
signs and symptoms. They are inflammatory factors, coagulation
factors, and blood routines that may favor the occurrence of
VSCS-2. Additionally, the biochemical blood indicators that can
indicate the function of the pancreas, liver, kidney, glucose
metabolism, and myocardial injury are also included. The total
69 indicators, are classified into four types (Supplementary
Table 1). All the indicators of patients were extracted from
their electronic health records. Here, 2,453 samples were divided
according to 7:3, with 1,717 cases in the training set and 736 cases
in the testing set.

Based on the knowledge of viral sepsis and the results of the
first classification model, we noted a strong correlation between
coagulation disorders and VSCS-2. To verify our hypothesis,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
seven coagulation function indicators were used to build the second
classification model to explore the link between coagulation
function and VSCS-2. The indicators are prothrombin time (PT),
prothrombin activity (PTA), activated partial thromboplastin time
(APTT), thrombin time (Tt), international standardized ratio
(INR), D-dimer (DD), and fibrinogen (FIB). The population was
also divided into the training set and the testing set according to the
7:3 ratio.

Predictive Models for Coagulation
Disorder
To further analyze the factors related to coagulation disorders, we
used the coagulation function factors to re-evaluate the 2,453
patients with COVID-19 and to identify whether they had
coagulation disorders. If one of the following criteria (PT > 14.5
seconds; DD > 0.5 ug/mL; APTT > 42 seconds; and PTA < 75%) is
met, the patient was considered as having coagulation disorder.
Otherwise, the patient is considered to have normal blood
coagulation. Finally, 988 patients with COVID-19 were labeled
as having abnormal coagulation function, while 510 patients had
normal coagulation function, giving a total of 1,498 patients.
From the 69 indicators (see Supplementary Table 1), 22 blood
routine factors, eight inflammatory factors, and 15 selected blood
biochemistry indicators, a total of 45 features were used to build
the first predictive model to classify and predict COVID-19
coagulopathy. This model aimed to find laboratory indicators
that have an important impact on COVID-19 coagulopathy.

To identify the predictive ability of the laboratory test factors
for coagulation dysfunction, we randomly extracted 70 samples
from 1,498 patients whose detection time of inflammatory
and blood routine factors was before the detection time of
coagulation. This time interval between the inflammatory and
FIGURE 1 | The overview of the four models. The aim of the first classification model for the early identification of VSCS-2 is to identify the risk factors. The second
classification model for VSCS-2 is to further clarify the relationship between seven coagulation indicators and VSCS-2. The first predictive model is to classify and
predict COVID-19 coagulopathy, which hints VSCS-2 from coagulation disorder. The second predictive model implemented the prediction of coagulation disorder
with as few inflammatory and blood routine indicators as possible.
TABLE 1 | Systemic Inflammatory Response Syndrome (SIRS) criteria.

Meeting at least two of the four criteria

(1) body temperature > 38.3 or <36.3°C
(2) heart rate > 90 beats/min
(3) respiration rate > 20 breaths/min or PaCO2 < 32mmHg

(4) white cell count > 12xl09 cells/L or < 4xl09 cells/L
March 2021 | Volume 10 | Article 586054
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coagulation factors forms an observation window of the disease
course. The 70 samples were used as the testing set, of which 45
are abnormal blood coagulation samples, and 25 are normal
coagulation samples. Finally, the training set contains 1,428
samples, including 943 abnormal coagulation samples and 485
normal coagulation samples.

To determine the critical risk factors of coagulation
dysfunction with clinical significance, we selected the most
important features based on the first prediction model and the
analysis results of the SHAP method. To verify the effect of these
features and to provide a clinical reference, we developed the
second predictive model for COVID-19 coagulopathy.
RESULTS

The detailed demographics and laboratory characteristics
distribution are shown below in Table 2. The classification and
predictive performance of the four models are shown in Figure 2
and Table 3.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Correlation Between Coagulopathy
and VSCS-2
The classification performance of the first classification model
(Table 3) shows that the AUC of the model under ROC curve
was 0.9349 (95% CI, 91.42–95.56%), and the sensitivity and
specificity were 96.93% (95% CI, 94.68–98.29%) and 83.01%
(95% CI, 78.28–86.92%), respectively. Then, the critical risk
factors of the model are explained by the SHAP method. The
results (Figure 3) suggest that there is a strong correlation
between the coagulation function indicators and VSCS-2. The
largest contribution to the model was PT, the second was APTT,
and the sixth was DD. The AUC performance, 0.9213 (95% CI,
89.94–94.31%), of the second classification model (Table 3) also
hinted to the correlation between coagulation function indicators
and VSCS-2. As shown in Figure 2, the classification
performance of VSCS-2 using seven coagulation indicators is
very close to the model using all 69 indicators. The result also
shows that a variety of biochemistry and blood routine indicators
have a strong correlation with VSCS-2, such as estimated
Glomerular filtration rate (eGFR), Hematocrit (HCT), Creatinine
(Cr), and Total bilirubin (TBil).

The results of the single-factor analysis using the SHAPmethod
show (Supplementary Figure 1) that the impaired coagulation
function indicated VSCS-2. That is, the value of PT is roughly
higher than 12s, the APTT is above about 35s, and the value of DD
is almost higher than 0.5mg/L. These values are almost consistent
with the clinical detection of coagulation dysfunction. Figure 3
also shows that there is a strong correlation between inflammatory
indicators and VSCS-2, for example IL-10, TNF-a, IL-6,
hypersensitive C-reactive protein (hs-CRP), and Interleukin 2
Receptor (IL-2R). From the relevant analysis of the single-factor
analysis (Supplementary Figure 1), it is suggested that the
performance of PT is closely related to IL-6, TNF-a, and
Interleukin 8 (IL-8). The performance of APTT is closely related
to Glucose (Glu), calibration Calcium (cCa), and estimated
Glomerular filtration rate (eGFR). The DD is closely related to
Basophil percentage (BASOP), Eosinophilia percentage (EOP),
and Eosinophilia absolute value (EOA).

Inflammatory Indicators Predict
Coagulation Disorder
The performance of the first predictive model (Table 3) shows
that the AUC, sensitivity, and specificity reaches 0.9484 (95% CI,
89.71–99.97%), 88.89% (95% CI, 75.15–95.83%), and 88.00%
(95% CI, 67.64–98.85%), respectively. The SHAP analysis
(Figure 4) of the model suggested that the inflammatory
indicators, hs-CRP, IL-6, and IL-2R, are significantly suggestive
of coagulation disorders. Furthermore, Immune-related blood
routine indicators globulin (GLB), Total protein (TP),
Lymphocyte absolute value (LYMPHA), and Neutrophil
percentage (NEUTP) also rank at the forefront. According to
the statistical analysis of 70 test samples, the model can provide
an average of 3.68 (±) 4.60 days (Figure 5) in advance early
warning of COVID-19 coagulation disorders.

From the single-factor analysis results (Supplementary
Figure 2), the trend boundary of hs-CRP is obvious. The value
TABLE 2 | Demographic and laboratory characteristics of the included participants.

Characteristics Overall

Age, mean±std years 55.7±15.3
Gender, n (%)
Male 1257 (51.2)
Female 1196 (48.8)

Laboratory test, means±sd,
Hs-CRP (mg/L) 32.28±47.81
PCT (ng/mL) 0.23±1.59
IL-6 (pg/ml) 28.97±220.67
IL-1 (pg/ml) 6.45±7.84
TNF-a (pg/ml) 8.73±4.49
IL-2R (U/mL) 599.45±411.67
IL-8 (pg/ml) 19.25±38.75
IL-10 (pg/ml) 6.50±5.93
PT (s) 13.87±1.44
PTA (%) 92.40±13.10
APTT (s) 39.60±6.96
Tt (s) 16.82±4.19
INR 1.07±0.15
DD (mg/mL) 1.86±4.07
FIB (g/L) 4.47±1.46
RBC(*10^12/L) 4.67±2.9
WBC (*10^9/L) 6.59±6.73
NEUTA (*10^9/L) 4.06±2.37
NEUTP (%) 65.00±12.74
LYMPHA (*10^9/L) 1.34±0.61
PLT (*10^9/L) 227.75±89.83
GLB (g/L) 31.87±5.35
ALT (U/L) 30.51±33.24
PAB (mg/L) 209.31±87.52
TBil (mmol/L) 10.21±13.77
TP (g/L) 69.15±6.12
AST(GOT) (U/L) 30.32±25.12
Urea (mmol/L) 278.31±100.28
UA (mmol/L) 5.00±3.24
Egfr (ml/min/1.73m^2) 90.98±21.18
CK (U/L) 101.95±177.31
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of 40±5 mg/L or even more increases the probability of
coagulation disorder, and if it is below this threshold, the risk
of abnormal coagulation is relatively low. If IL-6 is above 10–15
pg/mL, or IL-2R above 600 m/mL, the probability of
coagulopathy risk is higher. If IL-6 is below 10–15 pg/mL, or
IL-2R below 500 m/mL, the probability is lower. Moreover, all of
the LYMPHA below 1.5 10^9/L, GLB above 28 g/L, or TP below
70 g/L can positively indicate the risk of VSCS-2.

In the second prediction model, we used the ablation
experiment method to successfully add the crucial features
obtained from Figure 4 and the medical analysis. The XGBoost
is used to analyze the performance of the models (Table 4). The
SHAP method is applied to analyze the influence of eight
features on the prediction results (Supplementary Figure 3)
and the single-factor influence of the features (Supplementary
Figure 4).
DISCUSSION

Sepsis is a concerning public health problem as the host’s
response to the source of infection results in significant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org March 2021 | Volume 10 | Article 5860545
morbidity and mortality (Kempker et al., 2018; Alhazzani et al.,
2020). Currently, sepsis with subsequent multiorgan dysfunction
is one of the main causes of death in COVID-19 patients, and
several previous studies have looked at the question of activation
of the coagulation system in advanced or severe patients
with SARS-CoV-2 infection (Li et al., 2020; Tang et al., 2020).
Reliable definitions and increased attention are of utmost
necessity in the medical domain, as proper and early treatment
of illness demands an accurate preceding diagnosis (Fan
et al., 2016). Therefore, novel technologies and detection
methods allow for the rapid and accurate identification of
sepsis, or even coagulopathy in patients with SARS-CoV-2
infection are especially urgently needed for the control and
management of the disease in clinical practice (Channappanavar
et al., 2016).

The present study enrolled approximately 2,500 patients to
examine the feasibility and efficiency of measuring markers in
routine laboratory tests for the diagnosis and prediction of sepsis
in patients with SARS-CoV-2 infection. It was found that the
abnormality of the coagulation function highly suggested the
occurrence of sepsis and the other parameters represented by
inflammatory factors including IL-2R, IL-6, and hs-CRP had a
moderate predictive value on coagulopathy. The established
TABLE 3 | Performance of the four models.

Accuracy
(%)

AUC 95% CI for AUC
(%)

Sensitivity
(%)

95% CI for sensitivity
(%)

Specificity
(%)

95% CI for specificity
(%)

F1
(%)

The 1st classification
model

91.03 0.9349 91.42–95.56 96.93 94.68–
98.29

83.01 78.28
–86.92

92.57

The 2nd classification
model

90.76 0.9213 89.94–94.31 97.17 94.97–
98.46

82.05 77.24–
86.06

92.38

The 1st predictive model 88.57 0.9484 89.71–99.97 88.89 75.15–
95.83

88.00 67.64–
98.85

90.91

The 2nd predictive model 82.86 0.9298 86.91–99.04 82.22 67.41–
91.49

84.00 63.08–
94.75

86.05
A B

FIGURE 2 | The ROC curves of the four models. (A) AUCs of the two classification models under the ROC curve. XGBoost_69 refers to the ROC curve of the first
classification model, and XGBoost_7 refers to the ROC curve of the second classification model. The performance of XGFBoost_7 model (long dotted line) is very
close to the performance of XGBoost_69 model (solid line). The performance of the XGBoost models is superior to Adaboost_69 and Logistic Regression_69.
(B) AUCs of the two prediction models under the ROC curve. XGBoost_45 represents the ROC curve of the first predictive model, and XGBoost_8 represents
the ROC curve of the second predictive model. The performance of XGBoost_8 model (long dotted line) is very close to XGBoost-45 (solid line).
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model using the combination of former markers such as
inflammatory indexes had the potential for the early warning
of sepsis in COVID-19 patients. It could help and guide
clinicians to conduct available measures to improve the
patient’s prognosis. To the best of our knowledge, this study is
the first clinical evaluation targeted at the early diagnosis of
sepsis in patients with COVID-19 using machine learning.

The existing shreds of evidence do not answer the question of
which patients overreact in terms of hyper-inflammation and
“cytokine storm”; although other people have slight signs, the
same microorganism may be found on their airways. So, it is
exciting and meaningful to contemplate and speculate on the
reasons for the various patterns of change before the occurrence
of sepsis in SARS-CoV-2 infection.

It has been well studied that cytokines play an essential part in
the immune system during viral infections. A fast and effectively
organized intuitive immune response is the vanguard of defense
against viral infections. But an imbalanced and over immune
response can lead to damage to the immune organism (Law et al.,
2005; Tynell et al., 2016; Ye et al., 2020). In vitro experiments
have shown that after SARS infection, mainly airway epithelial
cells, dendritic cells, monocytes, and macrophages participate in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the release of chemokines and cytokines (Scheuplein et al., 2015;
Tynell et al., 2016). After MERS infection, plasma cell-like
dendritic cells are mainly involved in the release of chemokines
and cytokines (Giannakopoulos et al., 2017). According to
our data, after SARS-CoV-2 infection, the generation of
inflammatory storms is mainly involved in T lymphocytes.
Sepsis might be associated with endogenous activation of
coagulation and fibrinolysis during COVID-19. Several studies
demonstrated that dysregulation of procoagulant and fibrinolytic
pathways may uniquely contribute to the pathophysiology of
sepsis. However, this issue should be further investigated to
obtain more details (Bouck et al., 2020; Colantuoni et al., 2020;
Jose et al., 2020; Kang et al., 2020).

Based on our findings, we think that the former activated
inflammation may be the forerunner of later coagulopathy,
which further degenerates into septic shock and finally causes
multi organ dysfunctions. This assumption is consistent with the
previous theory that reducing inflammation as one of the
conventional methods to sepsis pathophysiology and resilience
is considered an intuitive way in which organisms respond to
microorganisms (Gotts and Matthay, 2016; Rosen et al., 2019).
The intrinsic mechanism might be that the cell subsets mainly
A B

FIGURE 3 | The top 30 features importance were obtained by the SHAP analysis in the first classification model. Here, a total of 69 features were used to classify
1,376 cases of COVID-19 sepsis and 1,077 cases of COVID-19 non-sepsis. (A) The features importance of the first classification model based on additivity (shows
the top 30 out of 69). The Y-axis is the feature. The abscissa shows the importance of each feature, given by the mean value (SHAP value) of the absolute value of a
feature’s influence on the target variable. It suggests the influence of features on model classification. (B) The overall analysis of the influence of each feature (also
shows the top 30 only). It indicates not only the influence of features but also represents how the influence is impacted. Each row in the figure represents a feature,
and the abscissa is the SHAP value. A point represents a sample. The color closed to red indicates the larger value, while the color closed to blue indicates the
smaller value. For example, IL-10 is an essential feature and is negatively correlated with VSCS-2, which is, the smaller the value, the higher chance for the
determination of VSCS-2.
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composed of lymphocytes are activated and secrete cytokines
and chemokines during the body’s early immune response, then
gradually become exhausted and tent to apoptosis (Mira et al.,
2017; Patel et al., 2019). Multiple organs of the patient are
damaged due to excessive inflammation and disorder of the
endogenous coagulation activation pathway (Gomez and
Kellum, 2016; Shen et al., 2019). All of the above finally leads
to the collapse of the body’s homeostasis.

There are also some limitations in this study. First, the scale of
patients included in this study is reasonably large, but they all
come from a single center. Further validation in more centers
with more patient cases and complete laboratory test data need
to be verified in the future. Second, even though the current
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
study adds to the understanding of the progress of sepsis
syndromes, this is a retrospective study and lacks verification
in vivo. There is much work yet to be performed to understand
these changes entirely. Finally, the lack of some test items may
cause a bias and subsequently misleading results, so the
conclusions we obtained in this study need to be confirmed in
a prospective design.

In summary, our study provides a preliminary understanding
of sepsis in patients with SARS-CoV-2 infection. We found that
inflammation and coagulopathy might play a prominent part as
a precursor in progress. We envisage that our findings could
serve as an instrumental tool for diagnosing and predicting sepsis
during COVID-19 treatment.
A B

FIGURE 4 | The top 30 features importance were obtained by SHAP analysis in the first predictive model. A total of 45 features were used to classify 953 cases of
COVID-19 coagulation dysfunction and 1,077 cases of normal COVID-19 coagulation. (A) The features importance of the first predictive model based on additivity
(take the top 30). (B) The overall analysis of the influence of each feature (take the top 30).
TABLE 4 | The ablation experiments of the second predictive model.

Accuracy (%) AUC (%) 95% CI for AUC (%) Sensitivity (%) 95% CI for sensitivity (%) Specificity (%) 95% CI for specificity (%) F1 (%)

hs-CRP 68.75 81.28 71.2–91.27 66.67 50.95–79.56 72.00 50.40–87.13 73.17
+IL-6 74.29 79.56 68.92–90.19 80.00 64.95–89.91 64.00 42.62–81.29 80.00
+IL-2R 75.71 83.38 74.00–92.76 77.78 62.52–88.29 72.00 50.41–87.12 80.46
+PCT 75.71 79.56 68.96–90.15 75.56 60.14–86.61 76.00 54.48–89.84 80.00
+TNF-a 74.29 83.91 74.60–93.22 71.11 55.48–83.16 80.00 58.87–92.39 78.05
+LYMPHA 78.57 87.38 78.88–95.88 73.33 57.79–84.90 88.00 67.66–96.85 81.48
+NEUTP 80.00 90.58 83.59–97.56 73.33 57.79–84.90 92.00 72.50–98.60 82.50
+RBC 82.86 92.98 86.91–99.04 82.22 67.41–91.49 84.00 63.08–94.75 86.05
Marc
h 2021 | Volume 10 | Article
The first experiment only used the hs-CRP value as a single input feature of the model. Then IL-6 was added to the second column, that is, the model used hs-CRP and IL-6 as input
features. Finally, when taking eight features, including Red Blood Cell Count (RBC), the model’s performance is very close to the prediction model with 45 features.
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