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Abstract

Current tools used in the reconstruction of ancestral gene orders often fall into event-based and adjacency-based methods
according to the principles they follow. Event-based methods such as GRAPPA are very accurate but with extremely high
complexity, while more recent methods based on gene adjacencies such as InferCARsPro is relatively faster, but often
produces an excessive number of chromosomes. This issue is mitigated by newer methods such as GapAdj, however it
sacrifices a considerable portion of accuracy. We recently developed an adjacency-based method in the probabilistic
framework called PMAG to infer ancestral gene orders. PMAG relies on calculating the conditional probabilities of gene
adjacencies that are found in the leaf genomes using the Bayes’ theorem. It uses a novel transition model which accounts
for adjacency changes along the tree branches as well as a re-rooting procedure to prevent any information loss. In this
paper, we improved PMAG with a new method to assemble gene adjacencies into valid gene orders, using an exact solver
for traveling salesman problem (TSP) to maximize the overall conditional probabilities. We conducted a series of simulation
experiments using a wide range of configurations. The first set of experiments was to verify the effectiveness of our strategy
of using the better transition model and re-rooting the tree under the targeted ancestral genome. PMAG was then
thoroughly compared in terms of three measurements with its four major competitors including InferCARsPro, GapAdj,
GASTS and SCJ in order to assess their performances. According to the results, PMAG demonstrates superior performance in
terms of adjacency, distance and assembly accuracies, and yet achieves comparable running time, even all TSP instances
were solved exactly. PMAG is available for free at http://phylo.cse.sc.edu.
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Introduction

Overview
Evolutionary biologists have had a long tradition in recon-

structing genomes of extinct ancestral species. Mutations in a

genomic sequence are made up not only at the level of base-pair

changes but also by rearrangement operations on chromosomal

structures such as inversions, transpositions, fissions and fusions

[2]. Over the past few years, ancestral gene-order inference has

brought profound predictions of protein functional shift and

positive selection [3].

Methods for ancestral genome reconstruction either assume a

given phylogeny that represents the evolutionary history among

given species or search the most appropriate tree along with a set of

ancestral genomes to fit the observed data. Depending on how the

gene-order data is interpreted and handled, methods for solving the

latter can be partitioned into two groups: event-based methods and

adjacency-based methods. Event-based methods typically search for

the set of ancestral gene orders that minimizes the sum of

rearrangement distances over all edges of the given phylogeny.

However, methods seeking exact solutions following such paradigm

(such as GRAPPA [4], MGR [5,6]) have already encountered huge

difficulties in handling modern genomes due to their NP-hard

complexity. In consequence, methods such as GASTS [7] were

developed to provide heuristic solutions. In addition to event-based

methods, a number of adjacency-based methods have been

proposed such as SCJ [8], InferCARsPro [9] and GapAdj [10].

Instead of explicitly considering a predefined set of rearrangement

events, these methods take gene adjacencies into account and treat

them as binary characters with present and absence states. In this

way, by viewing the gene order as a set of gene adjacencies, the goal

is to determine which adjacencies are contained in the genome.

We recently developed an adjacency-based method in the

probabilistic framework called PMAG [1] to reconstruct ancestral

genomic orders given a phylogeny. In this paper, we improved

PMAG to introduce a better algorithm that can assemble gene

orders with fewer contigs, hence provided better accuracy. This

new algorithm is also faster, enabling us to handle larger datasets.

Through simulation experiments, we verify the usefulness of our

biased transition model and re-rooting procedure we incorporate

in the program. Then the performance of PMAG is evaluated

against other existing methods including InferCARsPro, GapAdj,

SCJ and GASTS under a wide range of settings.
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Genome rearrangement
Given a set of n genes fg1,g2, � � � ,gng, a genome can be

represented by an ordering of these genes. To indicate the

strandedness of genes, each gene is assigned with an orientation

that is either positive, written gi, or negative, written {gi. Two

genes i and j are said to be adjacent in genome G if i is

immediately followed by j, or, equivalently, {j is immediately

followed by {i. A breakpoint of two genomes is defined as an

adjacency appears in one but not in the other.

Let G be the multi-chromosomal genome with signed ordering

fa1,a2, � � � ,ang, fb1,b2, � � � ,bmg, � � � (f� � �gindicates a chromo-

some). An inversion (also called reversal) between indices i and j
(iƒj) of chromosome a, produces a chromosome a’ with linear

ordering

a1,a2, � � � ,ai{1,{aj ,{aj{1, � � � ,{ai,ajz1, � � � ,an:

For example, the identity genome f1,2,3,4,5,6g is transformed

into f1,{4,{3,{2,5,6g when the gene block f2,3,4g is inverted.

A transposition on a chromosome a acts on three indices i,j,k,

with iƒj and k =[½i,j�, picking up the interval ai, � � � ,aj and

inserting it immediately after ak. Thus the chromosome a of the

genome is replaced by (assume kwj):

a1, � � � ,ai{1,ajz1, � � � ,ak,ai,aiz1, � � � ,aj ,akz1, � � � ,an:

For example, genome f1,2,3,4,5,6g is transformed into

f1,5,2,3,4,6g when the gene block f2,3,4g is moved in front of

gene 6.

A translocation on a genome G acts on two chromosomes

a~fa1,a2, � � � ,ang and b~fb1,b2, � � � ,bmg. Given two indices i,j,
it picks up the interval ai, � � � ,an and bj , � � � ,bm and then changes

their places. Thus the two chromosomes a,b of genome G become

fa1,a2, � � � ,ai{1,bj , � � � ,bmg,fb1,b2, � � � ,bj{1,ai, � � � ,ang

Yancopoulos [11] proposed a universal double-cut-and-join

operation that accounts for inversions, transposition and translo-

cations which resulted in a new genomic distance that can be

computed in linear time. In particular, a DCJ operation consists of

cutting two connections (breakpoints) in the genome, and rejoining

the resulting four unconnected ends in two new pairs. Although

there is no direct biological evidence for DCJ operations, these

operations are very attractive because they provide a simpler and

unifying model for genome rearrangement.

Later the Single-Cut-or-Join (SCJ) [12] operation was proposed

as a basis for a new rearrangement distance between multi-

chromosomal genomes, leading to very fast algorithms. The SCJ

operation is modeled on the two most fundamental rearrangement

operations—the cutting and joining of adjacencies. A cutting

operation breaks an adjacency into two telomeres, and a joining

operation is performed in the opposite way by pairing two

telomeres into an adjacency. Any cutting or joining applied to the

genome will be called a Single-Cut-or-Join (SCJ) operation. Since

the genome is represented as a set of adjacencies, a cutting can also

be viewed as the removal of an adjacency from the set while the

joining is the addition of an adjacency.

Event-based methods typically iterate over each internal node to

solve for the median genomes until the sum of rearrangement

events over all edge distances (tree score) is minimized. The

median problem can be formalized as follows: given a set of m
genomes with permutations fxig1ƒiƒm and a distance measure-

ment d , find another permutation xt such that the median score

defined as
Pm

i~1 d(xi,xt) is minimized. However solving even the

simplest case when m equals to three is NP-hard for most distance

measurements [13,14]. Among all existing median solvers, the best

is the DCJ median solver proposed by Xu and Sankoff (ASMedian

[15]) based on the concept of adequate sub-graph and decomposes

a multiple breakpoint graph [16] into smaller and easier graphs.

Although ASMedian could remarkably scale down the computa-

tional expenses of median searching, it yet runs very slow when the

genomes are distant. Based on ASMedian, Xu developed its

heuristic algorithm GASTS that can quickly score a fixed

phylogenetic tree and enables us to attack previously unapproach-

able problems by GRAPPA and MGR, as demonstrated on a set

of vertebrate genome with over 2,000 genes.

Ancestral gene-order reconstruction based on gene
adjacencies

Over recent years, a collection of models based on the study of

gene adjacencies have been proposed for solving various

rearrangement problems. In these models, each gene adjacency

is considered as a binary character and the problem of

reconstructing ancestral genomes can then be reduced as deciding,

for every adjacency, whether an ancestral genome contains the

adjacency.

The breakpoint-like model, single-cut-or-join (SCJ), utilized the

Fitch’s algorithm to reconstruct ancestors based on binary

characters in terms of gene adjacencies; however, the characters

are not independent, since conflicting adjacencies cannot belong

simultaneously to the same genome. The SCJ’s strategy of solving

the conflict is simply to initialize the root with absence thus any

ambiguity state will be resolved at the root as absence. This

method is regarded as the only known distance for which the

ancestral genome reconstruction problem has a polynomial time

solution [8].

The other type of model that handles gene adjacencies relies on

two separate steps. First, the weight or probability that a gene

adjacency is present in a genome is computed independently.

Then those gene adjacencies are assembled into a valid ancestral

genome. InferCAR [17] and its probabilistic version InferCAR-

sPro are the pioneering methods based on this model. In this

model, all combinations of gene adjacencies are considered, and

their probabilities are computed by a variant of the Fitch’s

parsimony algorithm. Finally, a greedy heuristic is used for to

assemble the genes into a valid genome.

Later by relaxing the constraint of gene adjacency to gapped

adjacency, GapAdj is proposed with the computation of a rigorous

score for each potential ancestral adjacency (a,b), reflecting the

maximum number of times a and b can be adjacent for any setting

of ancestral genomes, as well as an algorithm to generate more

reliable amount of chromosomes. Simulation experiments con-

ducted by GapAdj show that GapAdj often ended up with a

completely assembled genome, but resulted in a higher error rate

that InferCAR.

Algorithmic details

Our recent method Probabilistic Method of Ancestral Genomics
(PMAG) [1] is also based on adjacencies and uses a probabilistic

framework. It requires a given topology of the input genomes

(assumed to be the phylogeny) and places the known genomes at

the leaves. PMAG first encodes the gene orders into binary

sequences and estimates the parameters in the transition model for

Reconstruct Ancestral Genomes
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adjacency changes. It then checks each ancestral (internal) node in

turn, and each will be computed independently by going through

the following three steps: it first re-roots the input tree to have the

target ancestor as the root of a new tree; it then uses a probabilistic

inference tool to compute the conditional probabilities of all

adjacencies; at last it uses a greedy algorithm similar to that

presented in [17] to assemble a valid gene order. The last step is

very critical, but the greedy algorithm tends to produce excessive

number of contigs, indicating that it is very easy to get trapped in

local optima. In this paper, we introduce a new assembly

algorithm, which not only improves the accuracy of the assembled

gene orders, but also reduce the number of contigs to be very close

to the true result. The following are the details of our algorithm.

Re-rooting the phylogeny
Before we can infer the ancestral genome of an internal node,

we must first re-root the given phylogeny tree to that node, making

it the root of the new tree, which is a standard procedure and has

already been used in [1,9]. The underlying rationale is that the

calculation of probabilities follows a bottom-up manner such that

only the species in the sub-tree of the target node are considered, it

will result in loss of information if the node is not the root. As we

are dealing with binary trees, the re-rooting procedure will need

some extra work to preserve the tree structure as demonstrated in

Figure 1. In this figure, as the ancestral node we have interest in is

genome A1, to re-root the tree on this genome, we have to add an

auxiliary node A1’, but set the branch length between A1 and A1’
(dashed edge) as always 0.

Obtaining probabilities of adjacencies
A gene order can be expressed as a sequence of adjacency

information that specifies the presence or absence of all the

adjacencies [18,19]. Denote the head of a gene i by ih and its tail

by it. We refer zi as an indication of the direction from head to

tail (ih?it) and otherwise {i as (it?ih). We further write 1 (0) to

indicate the presence (absence) of the adjacency and we consider

only those adjacencies and telomeres that appear at least once in

the input genomes.

Since we are handling binary sequences with two characters, we

use a general time-reversible framework to simulate the transitions

from presence (1) to absence (0) and vice versa. Since each genome

contains nzO(1) adjacencies and telomeres where n is the gene

number and O(1) equals to the number of linear chromosomes in

the genome, thus the probability that an adjacency changes from

presence (1) to absence (0) in the sequence is 2
nzO(1)

under one

operation. Since there are up to
2nz2

2

� �
possible adjacencies

and telomeres, the probability for an adjacency changing from

absence (0) to presence (1) is 2
2n2zO(n)

. Therefore, we come to the

conclusion that the transition from 1 to 0 is roughly 2n times more

likely than that from 0 to 1.

To show how the transition model and the re-rooting procedure

can respectively influence the performance of PMAG, we compare

PMAG to its three variants through simulations (see details later):

N Naive: The naive version of PMAG with a neutral model of

adjacency changes and fixed tree topology for all ancestral

nodes.

N Naive+Model: Naive method cooperating with the biased

transition model.

N Naive+Re-rooting: Naive method cooperating with the re-

rooting procedure.

Figure 2 summarizes the comparison result using the smaller

datasets among the four methods with tree diameters from 1n (easy

case) to 5n (very difficult). In general, higher tree diameter

effectively increased the difficulties and hence reduced the portion

of correct adjacencies all methods can recover. Unsurprisingly the

Naive method is the least accurate in all cases, and both Naive+
Model and Naive+Re-rooting can independently enhance the

accuracy of Naive method. By incorporating both mechanisms,

PMAG not only inherited both improvements, but also obtained

additional improvements as well, suggesting the transition model

and the re-rooting procedure be useful and indispensable for our

method.

Computing probabilities of gene adjacencies and
assemble gene orders

Once we have the tree topology and binary sequences encoding

the input gene orders, we use the extended probabilistic approach

for sequence data described by Yang [20] to infer the ancestral

gene orders at the root node, as described in detail in [1].

In the binary sequences, each site k represents an adjacency

with character either 0 (absence) or 1 (presence); for each site at

the root node, we seek to calculate the conditional probability of

observing that adjacency. Suppose x is the root of a given tree,

then the conditional probability that node x has the character sx at

site k, given Dx representing the observed data at site k in all

Figure 1. Re-rooting the phylogeny tree from the original root to the ancestral node under inference which is A1 in this case.
Auxiliary node A’ is added to preserve its binary structure.
doi:10.1371/journal.pone.0108796.g001
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leaves of the sub-tree rooted at x, is

P(sxDDx)~
P(sx)P(DxDsx)

P(Dx)
~

psx Lx(sx)P
sx psx Lx(sx)

where psx is the character frequency for sx.

For a site k, its conditional probability in the form of Lx(sx) is

defined as the probability of observing the leaves that belong to the

sub-tree rooted at x, given that the character of site k at node x is

sx. It can be calculated recursively in a post-order traversal fashion

suggested by Felsenstein [1,21] as:

Lx(sx)~

1 if x is a leaf with character ~ sx at the site

0 if x is a leaf with character = sx at the site

½P sf
psx sf

(tf )Lf (sf )�|½P sg psxsg (tg)Lg(sg)� otherwise

8><
>:

where f and g are the two direct descendants of x. pij(t) defines

the transition probability that character i changes to j after an

evolutionary distance t. As the true branch lengths are not

available, we take advantage of the widely-used maximum-

likelihood estimation from the binary sequences at the leaves to

estimate the branch length.

Following the deduction of transition probability in [21], our

transition-probability matrix can be written as

pij(t)~pjze{t(dij{pj)

Here the dij is 1 if i~j, otherwise dij is 0.

We use RAxML [22] as it has a method to handle binary

sequences efficiently and follows the steps suggested by Yang [20].

We modified RAxML so that it takes into account the biased

transition model.

Our improvement over [1] is a better algorithm to assemble

gene adjacencies and telomere into a valid gene order, with the

requirement that each gene appears exactly once in the ancestral

genome. In general, a higher probability of the presence state

implies an adjacency or telomere should be more likely to be

included in the ancestor; however, the decision on choosing an

adjacency or telomere cannot be solely made upon its own

probability as each gene can only be selected once. In the original

PMAG, ancestral adjacencies are assembled by the greedy

heuristic based on the adjacency graph proposed by Ma et al.
There are two issues with the greedy approach: 1) it can only

achieve a good approximation for closely related genomes; 2) it

tends to create new contigs instead of connecting genes, resulted in

an excessive number of contigs. In this paper, we develop the

following algorithm based on the observation from [23], i.e. it can

transform the problem of obtaining gene orders from (conflict)

adjacencies into an instance of Traveling Salesman Problem

(TSP). Although the TSP is NP-hard, it is a widely studied

problem with very good solvers exist.

Specifically, we will transform genes into cities and adjacency

probabilities into edge weights, and our goal is to find a tour that

traverses all genes with the largest combined probabilities along

the tour. As most TSP solver aims at finding a tour with minimum

cost, to use probabilities as edge weights, we convert them by

taking their logarithmic values. Suppose for an ancestral node K
and a set of m adjacencies A~fa1,a2,:::,amg and n telomeres

T~ft1,t2,:::,tng from leaf species, each with probabilities

P~fpa1
,:::,pam

,pt1
,:::,ptn

g, we can create the TSP graph G by

first splitting each gene g to two cities, denoted as gh and gt

respectively, and representing each telomere t by a unique vertex

ei, where 1ƒiƒn. To ensure a valid tour, we must connect gh and

gt in a tour; thus we set the cost between gh and gt as {?. For

any adjacency ( f ,g) [ A, we add an edge between f t and gh;

similar edges are added for other combinations of orientations

({f ,g), ( f ,{g) and ({f ,{g), as well as genes connecting to

telomeres. For the rest of edges, as we could not find a valid

probability, it means these edges should have a very low chance to

Figure 2. Comparison of adjacency accuracy between PMAG and its three premature versions. Datasets were simulated to have 10
genomes and 500 genes. X-axis represents the tree diameters from 1 to 5 times the number of genes.
doi:10.1371/journal.pone.0108796.g002
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be present in the ancestral genome; thus we set the edge weights to

z? to exclude them from the solution. In the solution path,

multiple contiguous caps are shrunk into a single one, and a gene

segment between two caps is taken as a chromosome.

One of the best and most used TSP solver is Concorde [24],

which we integrated it into MAG. For the solution path, multiple

contiguous extremities are shrunk to a single one and a gene

segment between two extremities is taken as a contig. Our

construction of TSP topology is in a spirit similar to GapAdj,

however GapAdj requires additional procedures and parameters

to adjust the contig number. Instead, our inference of the ancestral

genome is uniform and directly from the solution of TSP,

minimizing the risk of introducing artifacts.

Experimental Results

Experimental design
Since actual ancestors are rarely known for sure, it is difficult to

evaluate ancestral reconstruction methods with real datasets. In

Figure 3. Comparison of adjacency accuracy (top) and distance accuracy (bottom) between PMAG and SCJ. Datasets were produced by
the simulator provided in SCJ program that contain 32 genomes, each with five chromosomes and a total of 2,000 genes. X-axis represents the
expected number of events from 0.1 to 0.6 times the number of genes.
doi:10.1371/journal.pone.0108796.g003
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order to carry out a complete evaluation over a group of methods

under a wide range of configurations, we conducted a collection of

simulation experiments following the standard steps of such tests

that have been extensively adopted in genome rearrangement

studies [19,25].

In particular, a group of tree topologies were first generated

with respect to the expected tree diameters. An initial gene order

was assigned at the root so it can evolve down to the leaves

following the tree topology mimicking the natural process of

evolution, by carrying out a number of predefined evolutionary

events. In this way, we obtained the complete evolutionary history

of the model tree and the whole set of genomes it has.

Normally we utilized the simulator proposed by Lin et al. [26]

to produce birth-death tree topologies. Since SCJ has its own

simulator, we used that simulator for a fair comparison in the tests

involving SCJ. With a model tree, we can produce genomes of any

size by simply adjusting four main parameters: the number of

genomes m, the number of chromosome c, the number of genes n,

Figure 4. Comparison of adjacency accuracy between PMAG, InferCARsPro, GASTS and GapAdj: (top) datasets contain 10 genomes
and 500 genes; (bottom) datasets contain 20 genomes and 2000 genes. Standard deviations are given at the top of bars. X-axis represents
the tree diameters from 1 to 5 times the number of genes.
doi:10.1371/journal.pone.0108796.g004
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and the tree diameter d (equivalent to the branch length l in SCJ’s

simulator). For the following simulation experiments, we generated

datasets of two different sizes. First we generated a smaller datasets

with 10 genomes, each with 500 genes and five chromosomes to

closely mimic the rearrangement scenarios in bacterial genomes

with multi-chromosomes. We also produced datasets of larger size

contains 20 genomes, each with 2,000 genes and five chromo-

somes. Along each branch, we performed 80% random inversions

and 20% random translocations to account for intra- and inter-

chromosomal rearrangements.

The following three measurements were used to assess the

predicted ancestral genomes. We first calculated the adjacency

accuracy C as the total number of correctly inferred adjacencies

(i.e. those also appear in the true ancestral genomes) divided by the

total number of adjacencies in both true genome and predicted

genome. Second, we calculated distance accuracy D defined as the

DCJ distance between a predicted ancestor and its corresponding

Figure 5. Comparison of distance accuracy between PMAG, InferCARsPro, GASTS and GapAdj: (top) datasets contain 10 genomes
and 500 genes; (bottom) datasets contain 20 genomes and 2000 genes. Standard deviations are given at the top of bars. X-axis represents
the tree diameters from 1 to 5 times the number of genes.
doi:10.1371/journal.pone.0108796.g005
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Figure 6. Comparison of assembly accuracy between PMAG, InferCARsPro, GASTS and GapAdj: (top) datasets contain 10 genomes
and 500 genes; (bottom) datasets contain 20 genomes and 2000 genes. X-axis represents the tree diameters from 1 to 5 times the number
of genes.
doi:10.1371/journal.pone.0108796.g006

Table 1. Comparison of assembly accuracy between PMAG and SCJ under different expected numbers of evolutionary events
along a tree branch. (n equals to the number of genes).

Tree Diameter 0.1n 0.2n 0.3n 0.4n 0.5n 0.6n

PMAG 0 0.13 0.30 0.45 0.48 0.63

SCJ 157 476 785 1031 1280 1413

doi:10.1371/journal.pone.0108796.t001
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true genome. Apparently for the genome rearrangement study,

distance accuracy is more appropriate as it not only considers the

adjacency changes, but also takes differences in genome structures

into account. Finally, to assess the assembly capabilities, we

computed assembly accuracy A as the absolute differences of the

number of chromosomes between a predicted ancestor and its

corresponding truth. For each dataset, the average of each

measurement across all ancestors was computed and for each tree

diameter, we produced 10 datasets and reported their average, as

well as their standard deviation.

Evaluation of PMAG against SCJ
Simulator embedded in the SCJ was used, and the measure-

ment of difficulty became the branch length l, denoting the

expected number of evolutionary events along an edge of the tree

which is sampled from an uniform distribution on the set

f1,2,3:::dg, where d equals to l|n and n is the number of genes.

As before, those events consisted of 80% of inversions and 20%

translocations. Since SCJ and PMAG are both fast enough, we

therefore generated a set of larger dataset containing 32 genomes,

each with five chromosomes and a total of 2,000 genes.

Figure 3 demonstrates the adjacency accuracy and the distance

accuracy of PMAG and SCJ respectively. This figure clearly

suggests that PMAG can significantly outperform SCJ in all tested

cases.

Evaluation of PMAG against other methods
In this section, we picked three main competitors from both

event-based and adjacency-based methods, and compared them

with PMAG. In particular we supplied InferCARsPro with multi-

chromosomal genomic distances as its branch lengths computed

by GRIMM [27]. Moreover, in GapAdj, the cutoff value and

maximal iterations were set to 0:6 and 25 as suggested by the

authors. The event-based method GASTS was simply run by

providing the true tree and the input genomes. Results of

InferCARsPro under large tree diameters were missing as it failed

to finish the tests in three days.

Figure 4 shows the results measured by the adjacency accura-

cies. When the tree diameters were 1n, all methods were able to

produce highly accurate ancestral genomes (w90%) and the

differences among methods were not significant. In particular,

GASTS was the most accurate method, while the performances of

PMAG and InferCARsPro were similar, and both were better

than GapAdj. As the tree diameters went larger, GASTS quickly

became unreliable which is consistent with the experimental

findings reported in the study of GASTS [7]. In all tests, PMAG

showed great robustness against disturbance and achieved the

highest adjacency accuracy when the tree diameter grows greater

than 2n. Figure 5 shows the results measured by the distance

accuracies. In general, the relative performances of various

methods in distance measurement are very similar to the

adjacency accuracies.

Comparison of performances on assembly
The final step of adjacency-based methods often involves

assembly of adjacencies into contiguous segments which can be

viewed as chromosomes or more precisely contigs. Previous

methods InferCARsPro employing a greedy algorithm for

assembly often ends up with an excessive number of contigs.

Later the assembly accuracy was improved by GapAdj using the

concept of gapped adjacencies with a sacrifice of accuracy.

Our measurement of accuracy only counts adjacencies correctly

recovered. However, for two assembled gene orders with similar

adjacency accuracy, the one with the number of contigs close to

the number of chromosomes should be viewed as having better

accuracy. Thus, we summarized the number of contigs produced

by various methods and computed the averages of assembly

accuracy for all cases in Figure 6. From the figure, the event-based

method GASTS without the need for assembly of gene adjacencies

produced the most relevant number of contigs. Among the

adjacency-based methods, PMAG showed much better assembly

performance, and its performance was very close to GASTS. As

expected, the greedy assembly used in InferCARsPro produced

the least relevant number of contigs. By examining Figure 4, we

found that although PMAG returned more contigs than GASTS,

its distance and adjacency accuracies were better, indicating that

GASTS had a tendency to introduce bad adjacencies in order to

keep the number of contigs small.

Table 2. Time consumptions of four methods (including the previous greedy version of PMAG in analyzing large datasets under
different tree diameters. (n equals to the number of genes).

Tree Diameter PMAG GapAdj GASTS PMAG-Greedy

1n 13 min 10 min 1 min 1 min

2n 13 min 12 min 10 min 3 min

3n 15 min 12 min 45 min 3 min

4n 18 min 14 min 120 min 4 min

5n 20 min 16 min 159 min 5 min

doi:10.1371/journal.pone.0108796.t002

Table 3. Comparison of the adjacency accuracy between PMAG and its greedy version. The number of genomes is 20 and the
number of genes is 2,000.

Tree Diameter 1n 2n 3n 4n 5n

PMAG 98.7 93.5 89.7 82.2 79.5

PMAG-Greedy 98.5 93.2 88.6 80.2 77.8

doi:10.1371/journal.pone.0108796.t003
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Table 1 shows the assembly accuracies of PMAG and SCJ.

From the table, PMAG yielded very accurate amount of contigs;

however, since SCJ is overly conservative, it missed a large portion

of true adjacencies and produced a massive amount of contigs. In

other words, SCJ has difficulty in assembling gene orders due to its

overly simplified cost to weigh adjacencies.

Time efficiency
All tests were conducted on a workstation with 2.4 GHz CPUs

and 4 GB RAM. In general, SCJ is undoubtedly the fastest and

can return results in just a few seconds. In the experiments with

small datasets, InferCARsPro required the most amount of time

and the other three methods can always finish within a minute.

We summarized the time consumptions of PMAG, GapAdj,

GASTS and the previous greedy version of PMAG in handling

large datasets in table 2. From the table, the running time of

PMAG and GapAdj were very close and stable, and tree diameters

did not remarkably slow down these programs. On the other hand,

GASTS severely suffered from large tree diameters, suggesting its

potential limitation in handling genomes that are distant to each

other.

Comparing PMAG with Its Previous Version
We compared PMAG with its greedy version to evaluate the

new TSP approach. Table 3 and Table 4 showed the adjacency

and assembly accuracy, respectively. These tables suggested that

although the TSP solver was about 10 times slower than the

greedy solver (Table 2), the new PMAG method had achieved

improved adjacency accuracy with much better performance in

term of the number of recovered contigs.

Conclusions and Future Work

In this paper, we introduced the adjacency-based method

PMAG in the probabilistic framework for ancestral gene-order

inference. PMAG determines the state for each adjacency in the

binary encoding to be either present or absent in an ancestral

genome according to its conditional probability. Ancestral gene

orders are finally assemblies by connecting individual adjacencies

into continuous regions using a TSP approach Experimental

results reveal that PMAG can not only accurately infer ancestral

genomes, and also did a good job in assembling adjacencies into

valid gene orders. Finally, PMAG is fast and also stable across a

wide range of configurations.

However, much work remains to be done. As PMAG relies on

gene adjacencies, how to recover adjacencies lost in evolution (thus

not shown in leave genomes) is an interesting problem. In the

current implementation, these adjacencies have no definite edge

weight and they are all set as z?. As a result, the TSP tour is

prevented from passing through them, although they may be

better choices. Our experiments showed that these adjacencies

account for about 25% of errors in PMAG; thus, we need to devise

a method that can assign better edge weights to missing

adjacencies. Since each internal node can be computed indepen-

dently, the speed of PMAG can be further improved by utilizing

the presence of multiple computing cores in modern CPUs by

placing each node’s computation on a core.
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