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Background: Intervention of neuroinflammation in central nervous system (CNS)
represents a potential therapeutic strategy for a host of brain disorders. The scorpion
Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat
inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion
venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown
to reduce seizure susceptibility in a rat epileptic model and protect against cerebral
ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal
hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present
study aimed to investigate whether SVHRP has anti-inflammatory property in brain.

Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS)
injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal
injection) on inflammagen-induced expression of pro-inflammatory factors and microglia
activation. The effect of SVHRP (2–20 μg/ml) on neuroinflammation was further
investigated in primary brain cell cultures containing microglia as well as the
immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR
were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor
necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in hippocampus of animals. Protein
levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated
protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology
in animal hippocampus or cell cultures and cellular distribution of p65 were shown by
immunostaining.

Results: Morphological study demonstrated that activation of microglia, the main
component that mediates the neuroinflammatory process, was inhibited by SVHRP in
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both LPS mouse and cellular model. Our results also showed dramatic increases in the
expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was
significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP
attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell
toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by
SVHRP.

Conclusion:Our study demonstrates that SVHRP is able to inhibit neuroinflammation and
microglia activation, which may underlie the therapeutic effects of BmK-derived materials,
suggesting that BmK venom could be a potential source for CNS drug development.

Keywords: SVHRP, anti-inflammation, microglia, NF-κB, MAPKs

INTRODUCTION

Neuroinflammation characterized by upregulation of pro-
inflammatory factors may represent a common mechanism for
both neurodegenerative diseases (Yuan et al., 2019) such as
Alzheimer’s disease (AD) (Calsolaro and Edison, 2016) and
Parkinson’s disease (PD) (Gelders et al., 2018) and mental
disorders such as major depression (Miller et al., 2009).
Microglia, the resident immune-competent cells in CNS, are
the primary source for pro-inflammatory cytokines and
implicated as pivotal mediators of neuroinflammation
(Umpierre and Wu, 2020). Microglia are exquisitely sensitive
to their microenvironment and able to detect even the minor
disturbances in CNS homeostasis (Costa et al., 2017),
transforming into a so-called activated state from the “resting”
state in response to neuronal damage or immunologic challenges.
Activated microglia undergo morphological change, upregulate
cell-surface receptors and increase the secretion of neurotrophic
factors and various proinflammatory/cytotoxic factors, to clear
tissue debris and repair tissue damage, or fight against microbes
(Miller et al., 2009; Umpierre and Wu, 2020). However, excessive
production and accumulation of cytotoxic factors such as the pro-
inflammatory cytokines and reactive oxygen and nitrogen species
contribute to neuronal damage and neurodegenerative processes
(Miller et al., 2009; Lima Giacobbo et al., 2019; Umpierre andWu,
2020). Therefore, suppressing microglia overactivation and
neuroinflammation is an important therapeutic strategy in the
drug development for brain diseases, and microglia inhibitors
derived from natural products have received much attention.

Crude drugs of plant or animal origin have been used in
traditional medicine in the Orient for thousands of years. The
scorpion Buthus martensii Karsch (BmK) is a very mild species
widely distributed in East Asia. BmK extract and BmK venom
have been commonly used in Oriental medicine to relieve chronic
pain and treat epilepsy, convulsion, stroke and rheumatoid
arthritis. One common feature of these diseases is
inflammation, implicating that BmK-derived materials might
possess anti-inflammatory property. Actually, venoms from a
diverse range of venomous animals have become valuable source
for drug development as they are very rich in peptide toxins with
high specificity and potency for particular molecular targets
(Undheim et al., 2016). Quite a few peptide toxins from BmK

venom have been shown to affect ion channel functions, and have
anticonvulsant, anti-tumor, and analgesic activities (Uzair et al.,
2018). However, no component with anti-inflammatory property
has been identified from BmK or scorpion venom (SV) of any
scorpion species.

SV heat-resistant peptide (SVHRP) is a heat resistant
component isolated from BmK venom in our laboratory, have
been shown to inhibit sodium channels in hippocampal neurons
(Zhang et al., 2007), reduce susceptibility to epileptic seizures in
rats (Sun et al., 2013), promote neurogenesis in adult mice (Wang
et al., 2014), attenuate glial fibrillary acidic protein (GFAP)
expression (Cao et al., 2015) and protect against cerebral
ischemia-reperfusion injury (Wang et al., 2020). In the present
study, we demonstrated that SVHRP treatment suppressed
inflammagen-induced production of proinflammatory factors
and microglia activation in vivo. Similar results were seen in
neuron-glia, mixed glia or microglia cultures stimulated by LPS.
Inhibition of nuclear factor-κB (NF-κB) and mitogen-activated
protein kinases (MAPKs) pathways may contribute to the anti-
inflammatory effect of SVHRP.

MATERIALS AND METHODS

Materials
Culture flasks and dishes were obtained from Nunc (Roskilde,
Denmark). Media including Dulbecco’s modified Eagles medium
(DMEM), N2 and B27 and fetal bovine serum (FBS) for cell
cultures were purchased from Invitrogen (Carlsbad, CA,
United States). Horse serum (HS) was from HyClone, Thermo
Scientific, United States LPS used for cell cultures from
Escherichia coli serotype O111:B4 was obtained from EMD
Millipore Corporation (Billerica, MA, United States). The
ELISA kit was obtained from KeyGEN Biotech (Nanjing,
China). The Griess reagent was from Beyotime Institute of
Biotechnology (Jiangsu, China). c-Jun N-terminal kinase (JNK)
and phospho-JNK, p38 and phospho-p38 MAPK antibodies were
from Cell Signaling Technology (Danvers, MA, United States).
NOS-2 (iNOS) antibody was obtained from Santa Cruz
Biotechnology. Iba-1 antibody was from WAKO (Osaka,
Japan). NF-κB p65 antibody was from EMD Millipore
Corporation (Billerica, MA, United States). Microtubule
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associated protein (MAP-2) and β-actin antibodies were from
Abcam (Cambridge, MA, United States). ABC reagents were
from Vector Laboratory (Burlingame, CA, United States).
Fluorescence-labeled secondary antibodies (Alexa Fluor 488,
Donkey Anti-Mouse; Alexa Fluor 594, Goat Anti-Rabbit) were
from invitrogen (Carlsbad, CA, United States). 4′,6-Diamidine-
2′-phenylindol-dihydrochloride (DAPI) was from Roche
Diagnostics GmbH (Indianapolis, Indiana, United States). LPS
for animal injection from Escherichia coli 055: B5 and other
chemicals and biochemicals were of analytical grade and were
purchased from Sigma Chemical Co. (St. Louis, MO,
United States).

Drug Preparation
SVHRP was isolated from BmK venom as described previously
(Wang et al., 2014; Cao et al., 2015; Wang et al., 2020). Briefly, the
crude venom from BmK was dissolved in ddH2O and heated at
100°C for 4 h before centrifugation. Then the supernatant was
further separated by FPLC (fast protein liquid chromatograph)
and fraction I (P1) was collected and used for cell or animal
treatment. Result from reverse-phase HPLC demonstrated the
purity of P1 (designated as SVHRP) was more than 99.5%.
SVHRP was freshly prepared as a stock solution (10 μg/μl) in
sterile deionized and distilled water and diluted to the desired
final concentrations in the treatment medium or normal
saline (NS).

Animals
C57BL/6 mice were housed in groups of three per cage under 12 h
light/12 h dark cycles in controlled environment with 45–65%
relative humidity at 22 ± 2°C. All animals had free access to food
and water. All procedures were in accordance with the guidelines
for the proper care and use of laboratory animals of the
institutional and national Committees of Animal Use and
Protection. The animal protocol was approved by the animal
study committees of the Dalian Medical University (Ethics
committee approval permit No. L2013011).

Establishment of Mice Model of
Inflammation and Administration of SVHRP
Animal model of neuroinflammation induced by LPS (Batista
et al., 2019) [5 mg/kg, intraperitoneal injection (i.p)]. C57BL/6
(BW 18–22 g) mice were injected with either SVHRP (125 µg/
5 ml/kg, i. p.) or NS (5 ml/kg i. p.) for 3 days before and 1 day after
LPS (LPS + SVHRP or LPS group 5 mg/kg, i. p.) or NS (SVHRP or
CTRL group) injection.

Tissue Preparation and
Immunohistochemical Staining
Tissue preparation and IHC staining were performed as described
by Wang et al. (2014). Mice were anesthetized with chloral
hydrate and perfused with 4% paraformaldehyde solution. The
brains were post-fixed and cryoprotected before serial 15 μm
coronal sections were made with a cryostat (Leica CM 3050 S,
Leica Microsystems AG, Wetzlar, Germany). The slices that

contain ventral hippocampus were used for the IHC staining.
Iba-1 primary antibody (1:1,000) was used to stain microglia in
combination with biotinylated secondary antibody and ABC
reagents. The bound complex was visualized by color
development with diaminobenzidine (DAB). The slides were
visualized with a microscopy (leica Microsystems DM400B,
Wetzlar, Germany) and digitally photographed.

Immunofluorescence Staining
Tissue preparation and IF staining were performed as described
by Wang et al. (2014). Tissue slide or cultured cells fixed with 4%
paraformaldehyde (20 min) and permeabilized with 0.1% Triton-
x-100 in PBS (15 min), were incubated with 5% BSA solution
(60 min) at room temperature and diluted primary antibodies at
4°C (overnight). After three washing steps with PBS the cells were
incubated with the corresponding fluorescent secondary
antibodies (1 h). Additionally, cells were stained with the
nuclear dye DAPI (10 min) after p65 staining. Cells were
visualized using a fluorescence microscopy (leica Microsystems
DM400B, Wetzlar, Germany) for Iba-1 and Map-2 staining and
laser confocal scanning microscopy (Leica TCS SP5, Wetzlar,
Germany) for p65 staining.

Cells Cultures
Mouse primary cortical neuron-glia, mixed glia and enriched
microglia cultures were prepared from the brains of 1-day-old
C57BL/6 mice, as described by Chen et al. (2013) with some
modifications. Briefly, cortical tissues were triturated after
removing the meninges and blood vessels. Cells were seeded
into 24-well culture plates or flasks precoated with poly-D-lysine.
Seeding medium for neuron-glia and mixed glia cultures
contained DMEM supplemented with 10% FBS, 10% heat-
inactivated HS, 1 g/L glucose, 2 mM L-glutamine, 50 U/ml
penicillin and 50 μg/ml streptomycin. The medium for
neuron-glia culture was replaced 24 h and 3 days after the
initial seeding (5 × 105/0.5 ml/well) with fresh maintenance
medium which contained DMEM supplemented with 1% N2,
2% B27, 5% HS, 2 mM L-glutamine, 50 U/ml penicillin and
50 μg/ml streptomycin. The culture was then used for
treatment on day 7. The medium for mixed glia was changed
every 3 days with seeding medium. On day 12, the mixed glia
culture seeded in plates was used for treatment. Microglia
collected from mixed glia culture in flasks by shaking were
seeded into 24-well plates and used for treatment 24 h after
seeding. The immortalized murine microglia cell line BV2 was
purchased from Cell Resource Centre of Chinese academy of
medical sciences (Beijing, China). Primary cultures and BV2 cells
were pretreated with SVHRP for 1 h before LPS challenge
(100 ng/ml).

Nitrite Assay
Cells were treated with LPS (100 ng/ml) for 24 h before the
supernatants were collected. Nitrite was determined
immediately by a colorimetric reaction with Griess reagent.
Briefly, 50 µl of culture supernatant and 50 µl of Griess reagent
were incubated in the dark at room temperature for 10 min. The
absorbance at 540 nm was measured with a microplate reader
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(iMark, Bio-Rad Laboratories, Tokyo, Japan). The sample nitrite
concentration, which is an indicator of nitric oxide production,
was determined from a sodium nitrite standard curve.

Enzyme-Linked Immunosorbent Assays
Cells were stimulated with LPS for 6 h before supernatants were
collected. The levels of TNF-α in the culture medium were
assessed with commercial ELISA kit according to the
manufacturer’s instructions.

RNA Isolation and Quantitative PCR
Mice were anesthetized with chloral hydrate followed by
immediate decapitation. Hippocampus on both sides was
collected and frozen immediately in liquid nitrogen and stored
at −80°C until homogenization. Total RNA from hippocampus
was isolated by the TRIzol extraction method (Invitrogen,
Carlsbad, CA). Total RNA was reverse transcribed with RT
Primer Mix using PrimeScript™ RT Reagent Kit (Perfect Real
Time) (Takara, RR047A). Real-time PCR were conducted with
the SYBR® Premix Ex Taq™ II (Takara Code: DRR081A). The
primers used in real-time PCR were synthesized by Takara
Biotechnology (Dalian) and listed in table 1. Real-time PCR
was conducted on Rotor-Gene Q (09021296, QIAGEN Hilden,
Germany) for 40 cycles. After an initial denaturation step at 95°C
for 30 s, temperature cycling was initiated. Each cycle consisted of
95°C for 5 s and 60°C for 30 s. Amplification specificity was
checked using melting curve following the manufacturer’s
instructions. Relative gene expression was calculated by the
2−ΔΔCT method (Wang et al., 2014).

Western Blot Analysis
Total protein and cytosolic or nuclear protein were extracted
from cells and equal amounts of protein samples were subjected
to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto immunoblot polyvinylidene difluoride
membranes (Chemicon, Temecula, CA) for immunoblotting
with different antibodies. A chemiluminescence detection
system (ECL, Amersham, Berkshire, England) was used to
detected the antigen-antibody complexes. The intensity of the
bands was analyzed by Molecular Imager Chemic Doc XR system
(Bio-Rad, Hercules, CA, United States).

Fractionation of Nuclear and Cytoplasmic
Proteins
Both the nuclear and cytoplasmic proteins from cells were
extracted using a Nuclear-Cytosol Extraction Kit (Applygen
Technologies; P1200; Beijing, China), following the
manufacturer’s instructions.

Image Analysis of IHC and IF Staining
Images were captured via a digital camera (LEICA DFC310FX)
mounted onto a microscopy (leica Microsystems DM400B,
Wetzlar, Germany). For primary cultures (n � 3–4), 4 marginal
fields and 1 central field of the coverslips where cells growed on
were selected randamly for image capture with 10X objective.
Moreover, average gray scale was measured to reflect staining

density. For brain slices, four representative images (2088*1,560
pixels) were taken of the hippocampus from each mouse (n � 3).
A threshold for positive staining was determined for cell bodies
and processes that were marked by Iba-1 immunostaining.
Results were demonstrated as the average percent area of the
positive staining for all representative images (Norden et al.,
2016).

Statistical Analysis
All the experiments were performed at least in triplicate. All data
were presented as the mean ± SEM. Statistical analysis was carried
out by one-way analysis of variance (ANOVA) followed by
Fisher’s Least Significant Difference (LSD) test. p < 0.05 was
considered statistically significant.

RESULTS

SVHRP Inhibits Inflammagen-Induced
Microglia Activation and Inflammatory
Response in Hippocampus
Neuroinflammation characterized by the activation of microglia.
To elucidate the effect of SVHRP on microglia activation, LPS-
induced inflammation mouse model were used. We stained the
coronal sections of the hippocampus of each group of mice with
antibodies against Iba-1 that is a marker for microglia. Over
activation of microglia cells (highly amoeboid cells and a greater
number of Iba-1 positive cells) was shown in LPS model mice
contrast to that in CTRL group, however, the morphology and
number of microglia cells in LPS injected mice treated with
SVHRP (LPS + SVHRP) were more similar to that in CTRL
group (ramified cells) suggesting an inhibitory effect of SVHRP
on microglia (Figures 1A,B).

It is known that inflammation is associated with upregulation
of a variety of pro-inflammastory factors such as IL-1β, TNF-α,
and IL-6 in hippocampus of mice injected with LPS systemically
(Umpierre and Wu, 2020). In our study, mRNA levels of iNOS,
TNF-α (Figure 1C) and iNOS protein level (Figures 1D,E) were
dramatically increased in hippocampus of mice injected with LPS
systemically in comparison with CTRL group, which can be
suppressed by SVHRP treatment (LPS + SVHRP). That was,
SVHRP inhibited LPS-induced upregulation of TNF-α and iNOS
in hippocampus. Together, these results demonstrate that
SVHRP has strong inhibitory effect on neuroinflammatory
response in vivo.

SVHRP Inhibits LPS-Induced
Neuroinflammation in vitro
To examine whether SVHRP could act on brain cells directly, we
applied SVHRP to CNS cell cultures and checked whether it can
inhibit neuroinflammation. We conducted the investigation in
three types of cultures including neuron-glia coculture
(containing neurons, astrocytes and microglia), mixed glia
culture (containing astrocytes and microglia) and microglia
culture. LPS is an inflammagen that induce the inflammatory
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response through binding to the toll-like receptor four that is
mainly present in microglia in CNS (Umpierre and Wu, 2020).
Although LPS has no or little effect on neurons or astrocytes,
neuron-glia coculture and mixed glia culture were employed here
because they can better mimic the in vivo condition as neurons
and astrocytes have crosstalk with microglia and regulate their
activities (Chen et al., 2013).

As decreases in pro-inflammatory factor production and Iba-1
expression could also be the consequence of toxicity of SVHRP,
we examined whether SVHRP is toxic in these cultures. Our
results showed that SVHRP treatment for 48 h slightly increased
cell number of Iba-1 positive cells in enriched microglia
(Supplementary Figure S1A) and mixed glia cultures
(Supplementary Figure S1B) and cell viability in BV2 cells
(Supplementary Figure S1C) at all doses (2–50 μg/ml)
observed, but the increases were not statistically significant
except for the dose of 50 μg/ml. These results suggested that

SVHRP might promote the proliferation of microglia but was
not toxic at doses we investigated. SVHRP was also
neuroprotective in neuron-glia cocultures (Supplementary
Figure S2) and neuron-enriched cultures. IF staining
against Iba-1 was performed to investigate the
morphological changes in microglia. The results showed
that LPS treatment elicited significant increases in Iba-1
staining density, which was inhibited by SVHRP (20 μg/ml)
treatment, no matter in neuron-glia (Figure 2A), mixglia
(Figure 2B) or enriched microglia (Figure 2C) culture. LPS
or SVHRP (20 μg/ml) had little effect on cell number of
microglia (Figure 2A–Cb).

Additionally, results from nitrite measurement indicated
that SVHRP (2–20 μg/ml) treatment dose-dependently
decreased the production of NO induced by LPS in neuron-
glia coculture, with more than 50% reduction at 20 μg/ml
(Figure 3A). Smaller but significant inhibitions on NO

FIGURE 1 | SVHRP inhibits inflammagen-inducedmicroglia activation and inflammatory response in hippocampus. Mice were injected with SVHRP (LPS + SVHRP
or SVHRP group, 125 µg/5 ml/kg, i.p.) or NS (LPS or CTRL group, 1 ml/kg, i.p.) for 3 days before and 1 day after LPS treatment (5 mg/kg, i.p.) before the mouse brains
were harvested for immuno-staining for Iba-1. (A) Representative images of Iba-1 staining (IF staining, upper three panels and IHC staining, lower two panels) in
hippocampus were demonstrated. (B) The average percent area of Iba-1 positive staining of four groups was analyzed using the images from IHC staining. (C)
mRNA expressions of TNF-α and iNOS from hippocampus were measured by real-time PCR and calculated using 2−ΔΔCT method with GAPDH as the internal reference
gene. The expression of iNOS protein from hippocampus was assessed by western blot. (D) Representative blot for iNOS and (E) quantification of iNOS protein
normalized to β-actin. The data were expressed as the means ± SEM (n ≥ 3 for each group). #p < 0.05 compared with CTRL group, *p < 0.05 compared with LPS group.
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production by SVHRP (20 μg/ml) in mixed glia (Figure 3B)
and BV2 microglia (Figure 3C) cultures were also seen. LPS-
induced upregulation in iNOS protein expression was
suppressed by SVHRP (20 μg/ml) in all these cultures
(Figures 3D–F), suggesting that decreased NO production
by SVHRP is due to reduced level of iNOS. SVHRP alone
seemed to elevate iNOS level in these cultures although the
increases were not significant (Figures 3D–F). Consistent with
NO production, LPS-induced TNF-α release was significantly
attenuated by SVHRP (20 μg/ml) in these cultures (Figures
3G–I). In summary, these results suggest that SVHRP can

inhibit LPS-induced microglia activation and
neuroinflammation without non-specific toxicity.

Inactivation of NF-κB and MAPKs May
Contribute to the Anti-Inflammatory Effect
of SVHRP
To further elucidate the mechanisms underlying the inhibition
of LPS-elicited inflammatory response by SVHRP, we
examined the effect of SVHRP on activation of NF-κB,
which is a key transcription factor involved in the

FIGURE 2 | SVHRP attenuates LPS-induced upregulation of Iba-1 inmicroglia. IF staining for Iba-1 in primary neuron-glia (A), mixed glia (B), and enrichedmicroglia
(C) cultures were performed 24 h after LPS treatment. Cells were pretreated with vehicle or SVHRP (20 μg/ml) for 1 h before LPS challenge. (a)Representative images of
Iba-1 positive cells (400×, Bar � 50 μm). (b) Cell number and average grey scale for Iba-1 staining were shown. The data were the means ± SEM (n ≥ 3 for each cell
preparation). #p < 0.05 compared with CTRL group, *p < 0.05 compared with LPS group.
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upregulation of pro-inflammatory mediators such as TNF-α
and iNOS (Miller et al., 2009; Umpierre and Wu, 2020).
Translocation of p65 subunit of NF-κB from cytoplasm to
nucleus was evaluated by western blot or fluorescence
microscopy and used as an index of NF-κB activation.
Semi-quantitation of p65 protein by western blot analysis
demonstrated an increased nuclear/cytosolic ratio in LPS-
stimulated cells, which was significantly reduced by SVHRP
in both mixed glia (Figure 4A) and BV2 cells (Figure 4B). The
localization of p65 in BV2 cells was also revealed by IF staining
of p65 with the nuclei visualized by DAPI staining. Consistent

with the result from western blot, most of the BV2 cells
stimulated with LPS showed translocation of p65 to the
nucleus, which is significantly reduced by SVHRP
(Figure 4C). Along with NF-κB, MAPKs are known to play
a critical role in the signaling pathways that induce a series of
proinflammatory cytokines and iNOS in glial cells (Miller
et al., 2009). In mixed glia culture (Figures 5A,B) and BV2

cells (Figures 5C,D), LPS-elicited phosphorylation of p38 and
JNK could be notably suppressed by SVHRP. These results
suggest that the anti-inflammatory effect of SVHRP might be
associated with the inhibition of NF-κB and MAPKs pathways.

FIGURE 3 | SVHRP inhibits LPS-induced NO production, iNOS protein expression and inhibits LPS-induced TNF-α production in vitro. Primary
neuron-glia culture (A, D), mixed glia culture (B, E) and BV2 cells (C, F) were pretreated with vehicle or SVHRP (at indicated concentrations or 20 μg/ml) for 1 h followed
by LPS treatment (100 ng/ml) for 24 h. (A–C) Nitrite in the supernatant was measured with Griess reagent to monitor NO production. (D–F) Protein expression of iNOS
was analyzed with western blot 24 h after LPS treatment. (G–I) TNF-α in the supernatant was measured with ELISA assay. The data were the means ± SEM (n ≥ 3
for each cell preparation). #p < 0.05, ##p < 0.01 compared with CTRL group, *p < 0.05, **p < 0.01 compared with LPS group.
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DISCUSSION

In this study, we demonstrated that SVHRP, a component from
BmK venom, was capable of inhibiting neuroinflammation and
microglia activation both in vivo and in vitro. Microglia are
sensitive to various stimuli such as neuronal death and
infection. In contrast, LPS-induced neuroinflammation is the
consequence of direct effect of the inflammagen on microglia

(Miller et al., 2009; Umpierre and Wu, 2020). SVHRP was shown
to suppress the production of pro-inflammatory factors and
microglia activation in both contexts (Figures 1–3). In
addition, SVHRP attenuated LPS-induced activation of NF-κB
and MAPKs pathways that are critical for downstream gene
expression of pro-inflammatory factors in vitro (Figure 4). All
these effects can be seen inmicroglia cultures (Figures 2C, 3C,F,I,
4B,C, 5C,D), so it is definite that SVHRP can target microglia

FIGURE 4 | SVHRP attenuates p65 translocation from cytoplasm to nuclei in mixed glia and BV2 cultures. Mixed glia and BV2 cultures were pretreated
with vehicle or SVHRP (20 μg/ml) for 1 h, followed by LPS treatment (100 ng/ml) for 1 h. Cytoplasmic and nuclear extracts were separated by SDS-PAGE and
immunoblotted with anti-p65 antibody. Representative blots and quantification of nuclear/cytosolic ratio of p65 were shown for mixed glia culture (A) and BV2 cells (B).
The data were the means ± SEM (n ≥ 3 for each cell preparation). #p < 0.05 compared with CTRL group, *p < 0.05 compared with LPS group. (C) Representative
image using laser confocal scanning microscopy showed subcellular localization of p65 subunit with DAPI indicating nuclei in BV2 cells. Bar � 25 μm.
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directly. The anti-inflammatory effects of SVHRP in vivo and
in co-cultures containing microglia are probably due to the
direct action on microglia, as these cells are the pivotal
mediators of neuroinflammation. Although SVHRP is a

component derived from toxic venom, it did not cause
reduction in either cell number or viability of microglia at
doses used in this study (Figures 2A–C; Supplementary
Figure S1). SVHRP was also neuroprotective in neuron-glia

FIGURE 5 | SVHRP suppresses LPS-induced phosphorylation of p38 and JNKMAPKs in mixed glia and BV2 cultures.Mixed glia and BV2 cultures were
pretreated with vehicle or SVHRP (20 μg/ml) for 1 h, followed by LPS treatment (100 ng/ml) for 1 h. Cell lysates were subjected to western blot analysis using antibodies
specific for phosphorylated forms of p38 or JNKMAPK. The relative protein levels were quantified by densitometry scanning and normalized to total p38 or JNKMAPKs
and β-actin. Representative blotting and quantification of relative band intensities of phosphorylated p38 (A) or JNK (B) in mixed glia culture and those in BV2 cells
(C, D) were shown. The data were the means ± SEM (n � 3). #p < 0.05 compared with vehicle group alone, *p < 0.05 compared with LPS group alone.
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cocultures (Supplementary Figure S2). Thus, our results
suggest that the anti-inflammatory effect of SVHRP is
specific and not due to cell toxicity.

Intervention of signaling pathways such as NF-κB has been
an important strategy in the development of anti-
inflammatory therapy (Jha et al., 2019). Inactivation of NF-
κB and MAPKs pathways might be critical for the anti-
inflammatory effect of SVHRP, it remains unknown,
however, what receptors or ion channels mediate this
action. Black et al. have reported that sodium channel
activity regulates microglia function including LPS-induced
inflammatory response (Hossain et al., 2018). It is likely that
SVHRP, a neuronal sodium channel blocker (Zhang et al.,
2007), may also act on microglial sodium channels and
modulate immune function of microglia (Alrashdi et al.,
2019). More evidence is needed to confirm that sodium
channels are direct target for SVHRP that mediates the
anti-inflammatory effect of it.

In Oriental medicine, BmK-derived materials have
traditionally been used to treat chronic pain, epilepsy and
rheumatoid arthritis, which are all inflammation-related
diseases. However, traditional remedies that frequently use
natural products are usually not supported by modern
evidence-based medicine due to, at least in part, the
missing knowledge of the effective components and
therapeutic mechanisms of natural drugs, even that they
could be therapeutically effective. Thus, great efforts have
been made to isolate and purify bioactive components from
crude drugs of plant or animal origin and study the cellular
and molecular mechanisms of these components. Both
neurons (Adams and Lewis, 2017; Zou et al., 2020) and
glial cells (Choi et al., 2011) could be target cells for
natural products including toxins from venomous animals
and compounds from medicinal herbs. Up to now, most of
the experimental studies on SV demonstrate that it causes
inflammation due to envenoming by scorpions (Choi et al.,
2011). Our study is the first that provide scientific evidence
for anti-inflammatory effect of component from SV. This
implicates that the therapeutic effect of traditional remedies
using BmK-related materials might derive from the anti-
inflammatory component in the venom.

CONCLUSION

Our study demonstrates that SVHRP, a heat-resistant component
from BmK venom, possesses anti-inflammatory property in CNS
both in vivo and in vitro. Natural products such as BmK venom
that has been proved to be effective in traditional medicines may
serve as good sources for drug development for CNS diseases
where neuroinflammation plays a critical role in the development
of these diseases.
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