SUPPORTING INFORMATION for A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence Ming Jiang¹†, Mirjam C. W. Huizenga¹†, Jonah L. Wirt²†, Janos Paloczi³, Avand Amedi¹, Richard J. B. H. N. van der Berg⁴, Joerg Benz⁵, Ludovic Collin⁵, Hui Deng¹, Xinyu Di⁶, Wouter F. Driever¹, Bogdan F. Florea⁴, Uwe Grether⁵, Antonius P. A. Janssen¹, Thomas Hankemeier⁶, Laura H. Heitman⁷, Tsang-Wai Lam⁸, Florian Mohr¹, Anto Pavlovic⁵, Iris Ruf⁵, Helma van den Hurk⁸, Anna F. Stevens¹, Daan van der Vliet¹, Tom van der Wel¹, Matthias B. Wittwer⁵, Constant A.A. van Boeckel¹, Pal Pacher³, Andrea G. Hohmann^{2*}, Mario van der Stelt^{1*} ¹Department of Molecular Physiology, Leiden University & Oncode Institute, Netherlands; ²Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA; ³Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, Maryland, USA; ⁴Department of Bio-organic Synthesis, Leiden University, Netherlands; ⁵Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; ⁶Metabolomics and analytics center, Leiden University, Netherlands; ⁷Division of Drug Discovery and Safety, Leiden University & Oncode Institute, Netherlands; ⁸Pivot Park Screening Centre, Oss, Netherlands *Corresponding authors: m.van.der.stelt@chem.leidenuniv.nl; hohmanna@indiana.edu

1 2

3

4

5 6 7

8

9

10

111213

14

15

16

17

18

19

2021

22

23

†These authors contributed equally to this work

Supplementary Table 1 – High-throughput screening (HTS) data of the hMAGL activity assay.

coupled to an enzymatic cascade reaction that ultimately convert Ampiex™ Red into fluorescent resorufin. Key reagents Membrane fractions of hMAGL-FLAG-overexpressing HEK293 cells; 2-AG (Cayman); glycerol kinase (GK); glycerol-3-phosphat oxidase (GPO); horseradish peroxidase (HRP); ATP; Amplex™ Re (all Sigma Aldrich). Assay protocol Assay buffer (50 mM HEPES pH 7.4, 1 mM EDTA, 5 mM MgCl. 100 mM NaCl, 0.5% (w/w) BSA, 0.03% (w/w) Tween-20. Method: 1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells. 4. Add 2 μL of hMAGL membranes in assay buffer (final concentration 9 ng/μL). 5. Incubate for 30 min at rt. 6. Add 1 μL of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATF 10 μM Amplex™ Red, 25 μM 2-AG). 7. Incubate for 45 min at rt in the dark. 8. Read fluorescence intensity (excitation 531 nm, emission 595 nm) on Envision plate reader. Library Library size 233,820 compounds Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25.	Category	Parameter	Description
Primary measurement MAGI-mediated hydrolysis of 2-arachidonoylglycerol (2-AG coupled to an enzymatic cascade reaction that ultimately convert Amplex™ Red into fluorescent resorufin. Key reagents Membrane fractions of hMAGI-FLAG-overexpressing HEK293 cells; 2-AG (Cayman); glycerol kinase (GK); glycerol-3-phosphat oxidase (GPO); horseradish peroxidase (HRP); ATP; Amplex™ Re (all Sigma Aldrich). Assay protocol 1x Assay buffer (50 mM HEPES pH 7-4, 1 mM EDTA, 5 mM MgCl: 100 mM NaCl, 0.5% (w/w) BSA, 0.03% (w/w) Tween-20. Method: 1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells. 4. Add 2 μL of InMAGI. membranes in assay buffer (final concentration 9 ng/μL). 5. Incubate for 30 min at rt. 6. Add 1 μL of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATF 10 μM Amplex™ Red, 25 μM 2-AG). 7. Incubate for 45 min at rt in the dark. 8. Read fluorescence intensity (excitation 531 nm, emission 595 nm) on Envision plate reader. Library Library size 233,820 compounds Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) 10 μM, final DMSO concentration 0.5% tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25.	Assay	Type of assay	In vitro enzyme fluorescence-based activity assay
coupled to an enzymatic cascade reaction that ultimately convert Amplex™ Red into fluorescent resorufin. Key reagents Membrane fractions of hMAGL-FLAG-overexpressing HEK293 cells; 2-AG (Cayman); glycerol kinase (GK); glycerol-3-phosphat oxidase (GPO); horseradish peroxidase (HRP); ATP; Amplex™ Re (all Sigma Aldrich). Assay protocol 1x Assay buffer (50 mM HEPES pH 7.4, 1 mM EDTA, 5 mM MgCl. 100 mM NaCl, 0.5% (w/w) BSA, 0.03% (w/w) Tween-20. Method: 1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells. 4. Add 2 μL of hMAGL membranes in assay buffer (final concentration 9 ng/μL). 5. Incubate for 30 min at rt. 6. Add 1 μL of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATF 10 μM Amplex™ Red, 25 μM 2-AG). 7. Incubate for 45 min at rt in the dark. 8. Read fluorescence intensity (excitation 531 nm, emissions 595 nm) on Envision plate reader. Library Library size 233,820 compounds Concentrations (s) 233,820 compounds Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Privot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for th maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL substrate mix. Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS analysis Hit criteria Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.		Target	MAGL (human)
cells; 2-AG (Cayman); glycerol kinase (GK); glycerol-3-phosphat oxidase (GPO); horseradish peroxidase (HRP); ATP; Amplex™ Re (all Sigma Aldrich). Assay protocol 1x Assay buffer (50 mM HEPES pH 7.4, 1 mM EDTA, 5 mM MgCl. 100 mM NaCl, 0.5% (w/w) BSA, 0.03% (w/w) Tween-20. Method: 1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells. 4. Add 2 μL of hMAGL membranes in assay buffer (final concentration 9 ng/μL). 5. Incubate for 30 min at rt. 6. Add 1 μL of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATF 10 μM Amplex™ Red, 25 μM 2-AG). 7. Incubate for 45 min at rt in the dark. 8. Read fluorescence intensity (excitation 531 nm, emission 595 nm) on Envision plate reader. Library Library size 233,820 compounds Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Envision reader (Perkin Elmer) Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS Analysis Hit criteria Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.		Primary measurement	MAGL-mediated hydrolysis of 2-arachidonoylglycerol (2-AG), coupled to an enzymatic cascade reaction that ultimately converts Amplex™ Red into fluorescent resorufin.
Method: 1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells.		Key reagents	Membrane fractions of hMAGL-FLAG-overexpressing HEK293T cells; 2-AG (Cayman); glycerol kinase (GK); glycerol-3-phosphate oxidase (GPO); horseradish peroxidase (HRP); ATP; Amplex™ Red (all Sigma Aldrich).
1. Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) 2. Add 20 nL of DMSO to negative control (min) wells or 20 n of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). 3. Add 1 μL of assay buffer to all wells. 4. Add 2 μL of hMAGL membranes in assay buffer (final concentration 9 ng/μL). 5. Incubate for 30 min at rt. 6. Add 1 μ of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATF 10 μM Amplex™ Red, 25 μM 2-AG). 7. Incubate for 45 min at rt in the dark. 8. Read fluorescence intensity (excitation 531 nm, emission 595 nm) on Envision plate reader. Library Library size 233,820 compounds Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) 10 μM, final DMSO concentration 0.5% tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS analysis Hit criteria 2-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.		Assay protocol	1x Assay buffer (50 mM HEPES pH 7.4, 1 mM EDTA, 5 mM MgCl ₂ , 100 mM NaCl, 0.5% (w/w) BSA, 0.03% (w/w) Tween-20.
Source Cancer Drug Discovery Initiative (https://cddi.nl), performed a Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) 10 μM, final DMSO concentration 0.5% tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS analysis Testing DMSO or compounds; BioRAPTR for dispensing 1 μL substrate mix. Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25.			 Add 20 nL of compound (final concentration 10 μM, final DMSO concentration 0.5%) Add 20 nL of DMSO to negative control (min) wells or 20 nL of JZL184 to positive control (max) wells (final concentration 20 μM; 0.5% DMSO). Add 1 μL of assay buffer to all wells. Add 2 μL of hMAGL membranes in assay buffer (final concentration 9 ng/μL). Incubate for 30 min at rt. Add 1 μL of substrate mix in assay buffer (final concentrations 0.2 U/mL GK, GPO and HRP, 125 μM ATP, 10 μM Amplex™ Red, 25 μM 2-AG). Incubate for 45 min at rt in the dark. Read fluorescence intensity (excitation 531 nm, emission
Pivot Park Screening Centre B.V. in Oss, The Netherlands. Screen Format Black 1536-well plate (Corning #3724) Concentration(s) tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS analysis Hit criteria Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.	Library	Library size	
Concentration(s) tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for th maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGI membranes; Certus for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/B ratio from 4.16 to 10.25. Post-HTS analysis T-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.		Source	Cancer Drug Discovery Initiative (https://cddi.nl), performed at Pivot Park Screening Centre B.V. in Oss, The Netherlands.
tested Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGL membranes; Certus for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/B ratio from 4.16 to 10.25. Post-HTS analysis Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.	Screen	Format	Black 1536-well plate (Corning #3724)
Plate controls DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition). Dispensing system Echo-555 for dispensing DMSO or compounds; BioRAPTR for dispensing 1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGL membranes; Certus for dispensing 1 μL substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS analysis T-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.		· ·	10 μ M, final DMSO concentration 0.5%
dispensing 1 μ L assay buffer; Multidrop-Combi for dispensing 2 μ L hMAGL membranes; Certus for dispensing 1 μ L substrate mix. Detection instrument Envision reader (Perkin Elmer) Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS Hit criteria Z-score < -4.95 (z-score = $X - \mu/\sigma$) where $X =$ measured effect analysis			DMSO for the minimum effect (0% inhibition), 20 μM JZL184 for the maximum effect (100% inhibition).
Assay validation / QC Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/E ratio from 4.16 to 10.25. Post-HTS Hit criteria Z-score < -4.95 (z-score = $X - \mu/\sigma$) where $X =$ measured effect analysis (residual activity), $\mu =$ mean effect, $\sigma =$ standard deviation.		Dispensing system	1 μL assay buffer; Multidrop-Combi for dispensing 2 μL hMAGL-
ratio from 4.16 to 10.25. Post-HTS Hit criteria Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect analysis (residual activity), μ = mean effect, σ = standard deviation.		Detection instrument	
analysis (residual activity), μ = mean effect, σ = standard deviation.		Assay validation / QC	Over 188 plates, the Z'-factor varied from 0.61 to 0.90 and the S/B-ratio from 4.16 to 10.25.
Hit rate 0.67% (1,555 compounds with $\leq 50\%$ residual activity).		Hit criteria	Z-score < -4.95 (z-score = X - μ/σ) where X = measured effect (residual activity), μ = mean effect, σ = standard deviation.
		Hit rate	0.67% (1,555 compounds with \leq 50% residual activity).

Additional	assavi	(s)	١

The primary assay identified 1,555 active hits, which were expanded to 4,389 compounds using a nearest neighbor clustering algorithm. These compounds were then tested again in the primary assay (confirmation assay), resulting in 1,142 confirmed actives. As a deselection assay, the primary assay was repeated but with 12.5 μ M glycerol replacing 2-AG as the substrate. Deselection (< 10% inhibition in deselection assay) resulted in 334 remaining compounds. Using a more stringent cutoff (> 60% inhibition in primary assay), this number was reduced to 111 compounds. A triaging process, involved examination of intellectual property and an apparent reversible mode of action, judged by the absence of structural motifs that are commonly present in irreversible serine hydrolase inhibitors, such as lactones and activated ureas and carbamates. The remaining 50 actives were then measured in doseresponse experiments (7 equidistant concentration steps from 10 μ M to 10 nM) in the primary assay.

Confirmation of hit purity and structure

Compounds were checked for correct MW and purity (>90%) by LC-MS analysis.

Supplementary Table 2 – Qualified hit list. Hits are clustered by chemotype. Purity (> 90%) and mass were confirmed by LC-MS. Deviations from expected mass are shown as Δ MW. pIC₅₀ values were determined in end point measurement after 45 min. Percentages inhibition in orthogonal ABPP assay are relative to vehicle-treated controls. Physicochemical properties (cLogP, tPSA, HBD, HBA) were calculated using ChemDraw Professional 16.0. MW: molecular weight; tPSA: topological polar surface area; HBD: number of hydrogen bond donors; HBA: number of hydrogen bond acceptors; LipE: lipophilic efficiency (LipE = pIC₅₀ primary assay – cLogP); LE: ligand efficiency (LE = 1.4 x pIC₅₀/N where N = number of non-hydrogen atoms).

Cluster	Compound	Structure	MW (Da)	Confirmed purity	Matching mass	ΔMW (Da)	pIC ₅₀ primary assay	Inhibition ABPP assay (%)	cLog P	tPSA (Ų)	HBD	НВА	LipE	LE
Singleton	1	N N S S S S S S S S S S S S S S S S S S	474	Yes	Yes	-	6.2	86	3.09	135.8	0	7	3.1	0.30
Benzoxazine derivative	4	HN O	346	Yes	Yes	-	5.5	-3	3.16	58.6	1	3	2.3	0.29
Benzoxazine derivative	5	HN	350	No	Yes	-	6.8	-2	2.92	58.6	1	3	3.8	0.36
Benzoxazine derivative	6	F F N N HN	419	Yes	Yes	-	6.5	17	3.13	61.9	2	5	3.3	0.27
Benzoxazine derivative	7	HN HN S	449	Yes	Yes	-	6.1	13	3.86	67.9	2	6	2.2	0.31
Benzoxazine derivative	8	F P O O O O	453	Yes	Yes	-	6.0	-6	3.56	49.9	1	3	2.4	0.29
Benzoxazine derivative	9	HO N N N N N N N N N N N N N N N N N N N	314	Yes	Yes		5.6	2	1.58	78.4	2	3	4.0	0.37
Carbamate	10	S N O N	334	Yes	Yes	-	5.4	-4	2.12	106.1	1	3	3.3	0.30
Carbamate	11	F F F O O N	360	Yes	Yes	-	5.8	2	3.83	54.3	1	7	2.0	0.30
Fused imidazopyridine	12	N N N N	370	No	Yes	-	6.0	-13	5.16	71.7	1	4	0.9	0.27
Fused imidazopyridine	13	N N N N N N N N N N N N N N N N N N N	399	Yes	Yes	-	6.2	2	6.30	60.7	1	4	-0.1	0.27
Fused imidazopyridine	14	N N N N N N N N N N N N N N N N N N N	426	Yes	Yes	-	6.3	-11	5.77	63.9	1	4	0.6	0.33
Fused imidazopyridine	15	N N N N N N N N N N N N N N N N N N N	440	Yes	Yes	-	6.0	-12	6.04	63.9	2	4	0.0	0.29

Supplementary Table 2 – Qualified hit list (continued).

Cluster	Compound	Structure	MW (Da)	Confirmed purity	Confirmed mass	ΔMW (Da)	pIC ₅₀ primary assay	Inhibition ABPP assay (%)	cLog P	tPSA (Ų)	HBD	НВА	LipE	LE
lmidazopiperidine	16		370	Yes	No†	+371	5.5	10	3.56	56.7	1	3	2.0	0.23
Imidazopiperidine	17	F O O N	428	Yes	Yes	-	5.7	17	3.88	66.3	1	4	1.8	0.26
Imidazopiperidine	18	N N N N N N N N N N N N N N N N N N N	377	Yes	Yes	-	5.8	9	4.00	57.1	0	2	1.8	0.45
Imidazopiperidine	19	N N N N N N N N N N N N N N N N N N N	390	Yes	Yes	-	6.3	6	3.87	66.3	0	6	2.4	0.26
Imidazopyridines	20	N CI	243	Yes	Yes	-	5.4	-10	4.72	15.6	0	4	0.7	0.33
lmidazopyridines	21	CI N N	257	Yes	Yes	-	5.4	4	5.26	15.6	0	6	0.1	0.34
Imidazopyridines	22	CI N CI	263	Yes	Yes	-	5.6	10	4.94	15.6	0	3	0.7	0.31
Naphtyl amide	23		359	No	No	+113	5.7	-9	3.14	61.8	1	3	2.5	0.32
Naphtyl amide	24		346	Yes	No	+28	5.8	51	3.96	32.8	0	2	1.8	0.35
Naphtyl amide	25		336	No	Yes	-	6.2	16	4.97	23.6	0	2	1.3	0.26
Naphtyl amide	26		344	No	No	+45	4.9	-4	4.73	23.6	2	5	0.2	0.30
Naphtyl amide	27		308	No	Yes	-	5.5	-11	3.77	23.6	0	2	1.7	0.35
Naphtyl amide	28		334	Yes	Yes	-	5.3	-7	4.55	23.6	2	4	0.7	0.29
Naphtyl amide	29		365	Yes	Yes	-	5.4	24	4.94	23.6	0	6	0.5	0.27
Naphtyl amide	30	Br	439	Yes	Yes	-	6.2	-17	4.92	32.8	4	6	1.3	0.26
Naphtyl amide	31		356	Yes	Yes	-	5.7	69	3.42	41.9	1	4	2.3	0.33

Supplementary Table 2 – Qualified hit list (continued).

Cluster	Compound	Structure	MW (Da)	Confirmed purity	Confirmed mass	ΔMW (Da)	pIC ₅₀ primary assay	Inhibition ABPP assay (%)	cLog P	tPSA (Ų)	HBD	НВА	LipE	LE
Phenyl thiazole	32	о=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	308	Yes	Yes	-	5.8	1	2.96	61.7	1	6	2.9	0.25
Phenyl thiazole	33		391	Yes	No	+15	5.9	11	3.12	61.8	2	5	2.8	0.29
Piperidine amide	34	N N N N N N N N N N N N N N N N N N N	382	No	Yes	-	5.6	49	3.43	57.1	1	5	2.2	0.30
Piperidine amide	35	CI OH OH	465	Yes	Yes	-	5.6	16	3.93	52.9	0	2	1.7	0.30
Piperidine amide	36	CI—CI—S ON OH	401	Yes	Yes	-	5.8	5	2.13	62.1	2	5	3.7	0.25
Singleton	37	O N N N N O O H	326	No	Yes	-	5.6	-1	2.97	53.0	0	9	2.6	0.28
Singleton	38		325	Yes	Yes	-	5.5	-6	3.39	44.8	0	4	2.1	0.80
Singleton	39	HN NH2	450	Yes	Yes	-	5.5	18	4.29	75.2	1	2	1.2	0.47
Singleton	40	HO N N	356	Yes	Yes		5.5	12	4.08	73.1	1	5	1.5	0.30
Singleton	41	NH S O	413	Yes	Yes	-	4.7	-3	5.59	67.8	3	3	-0.9	0.36
Singleton	42	HN N-N OH	400	No	Yes	-	5.7	2	3.18	106.3	0	2	2.5	0.42
Singleton	43		449	Yes	Yes	-	6.0	6	3.29	73.9	0	2	2.7	0.46
Singleton	44	N O F F F F F F F F F F F F F F F F F F	428	No	Yes	-	5.5	7	2.94	49.9	1	3	2.6	0.42
Singleton	45	CI N N	155	Yes	No	+205	5.7	0	-1.12	51.2	1	3	6.8	0.34

45 Supplementary Table 2 – Qualified hit list (continued).

Cluster	Compound	Structure	MW (Da)	Confirmed purity	Confirmed mass	ΔMW (Da)	pIC ₅₀ primary assay	Inhibition ABPP assay (%)	cLog P	tPSA (Ų)	HBD	НВА	LipE	LE
Singleton	46	NH N	238	Yes	Yes	-	6.0	62	3.16	24.4	0	2	2.9	0.29
Singleton	47	O HN — Br	389	Yes	Yes	-	5.9	46	4.32	58.6	0	3	1.6	0.31
Sulfonamide	48	N O H N N	406	Yes	Yes	-	5.5	18	3.20	87.7	2	4	2.3	0.31
Sulfonamide	49		407	No	Yes	-	6.1	-7	1.94	114.0	1	6	4.2	0.28
Sulfonamide	50	$O_2N - \bigvee_{F} N - \bigvee_{F} N - \bigvee_{G} O$	450	No	No	+22	6.3	13	5.08	92.4	1	6	1.2	0.26
Sulfonamide	51		338	Yes	Yes	-	6.9	32	1.54	66.5	0	3	5.3	0.30
Sulfonamide	52	S S S N	379	No	No	+328	5.5	0	4.20	87.6	2	7	1.3	0.26

Supplementary Table 3 – Data collection and refinement statistics for human MAGL LEI-515 complex.

Data collection Space group C2221 a, b, c (Å) 91.62, 127.57, 60.36 α, β, γ (°) 90, 90, 90 Resolution (Å) 1.55 (1.65-1.55) R_{sym} or R_{merge} 0.063 (0.78) I / σI 11.69 (1.13) Completeness (%) 99.6 (99.4) CC1/2 0.99/0.59 Redundancy 6.62 (6.16) Refinement 48898 Resolution (Å) 48.3 – 1.55 No. reflections 48898 $R_{\text{work}} / R_{\text{free}}$ 15.43/18.03 No. atoms Protein Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein Water 47.53
a, b, c (Å) $91.62, 127.57, 60.36$ α , β , γ (°) $90, 90, 90$ Resolution (Å) $1.55 (1.65-1.55)$ R_{sym} or R_{merge} $0.063 (0.78)$ I/σ I $11.69 (1.13)$ Completeness (%) $99.6 (99.4)$ $CC_{1/2}$ $0.99/0.59$ Redundancy $6.62 (6.16)$ RefinementResolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work}/R_{free} $15.43/18.03$ No. atomsProtein 2299 Water 325 Ligand 34 B-factors (Ų)Protein 25.56
α, $β$, $γ$ (°) 90, 90, 90 Resolution (Å) 1.55 (1.65-1.55) R_{sym} or R_{merge} 0.063 (0.78) $I/σ$ 11.69 (1.13) Completeness (%) 99.6 (99.4) $CC_{1/2}$ 0.99/0.59 Redundancy 6.62 (6.16) $Refinement$ Resolution (Å) 48.3 – 1.55 No. reflections 48898 R_{work}/R_{free} 15.43/18.03 $Refinement$ 15.43/18.03 $Refinement$ 16.43 $Refinement$ 17.43/18.03 $Refinement$ 18.43 $Refinement$ 18.43 $Refinement$ 18.43/18.03
Resolution (Å) 1.55 (1.65-1.55) R_{sym} or R_{merge} 0.063 (0.78) $I/\sigma I$ 11.69 (1.13) Completeness (%) 99.6 (99.4) CC _{1/2} 0.99/0.59 Redundancy 6.62 (6.16) Refinement Resolution (Å) 48.3 – 1.55 No. reflections 48898 $R_{\text{work}}/R_{\text{free}}$ 15.43/18.03 No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
R_{sym} or R_{merge} 0.063 (0.78) $I/\sigma I$ 11.69 (1.13) Completeness (%) 99.6 (99.4) $CC_{1/2}$ 0.99/0.59 Redundancy 6.62 (6.16) Refinement Resolution (Å) 48.3 – 1.55 No. reflections 48898 $R_{\text{work}}/R_{\text{free}}$ 15.43/18.03 No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
$I/\sigma I$ $11.69 (1.13)$ Completeness (%) $99.6 (99.4)$ $CC_{1/2}$ $0.99/0.59$ Redundancy $6.62 (6.16)$ Refinement Resolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work}/R_{free} $15.43/18.03$ No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Completeness (%) 99.6 (99.4) CC _{1/2} 0.99/0.59 Redundancy 6.62 (6.16) Refinement Resolution (Å) 48.3 – 1.55 No. reflections 48898 R_{work} / R_{free} 15.43/18.03 No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
$CC_{1/2}$ 0.99/0.59 Redundancy 6.62 (6.16) Refinement Resolution (Å) 48.3 – 1.55 No. reflections 48898 R_{work}/R_{free} 15.43/18.03 No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Redundancy $6.62 (6.16)$ Refinement Resolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work}/R_{free} $15.43/18.03$ No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Refinement Resolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work}/R_{free} $15.43/18.03$ No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Resolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work} / R_{free} $15.43/18.03$ No. atoms Protein Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Resolution (Å) $48.3 - 1.55$ No. reflections 48898 R_{work} / R_{free} $15.43/18.03$ No. atoms Protein Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
No. reflections 48898 R_{work}/R_{free} $15.43/18.03$ No. atoms Value Protein 2299 Water 325 Ligand 34 B-factors (\mathring{A}^2) Protein 25.56
R_{work}/R_{free} 15.43/18.03 No. atoms 2299 Water 325 Ligand 34 B-factors (Ų) 25.56
No. atoms Protein 2299 Water 325 Ligand 34 B-factors (Ų) 25.56
Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Protein 2299 Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Water 325 Ligand 34 B-factors (Ų) Protein 25.56
Ligand 34 B-factors (Ų) Protein 25.56
B-factors (Ų) Protein 25.56
Protein 25.56
Water 47.53
Ligand 33.07
R.m.s. deviations
Bond lengths (Å) 0.016
Bond angles (°) 1.999
PDB code 8AQF

^{*}Values in parentheses are for highest resolution shell

Targets	LEI-515 (μM)	% Inhibition of Control Specific Binding					
		1 st	2 nd	Mean			
A2A(h) (agonist radioligand)`	10	8.1	15.2	11.7			
α 1A(h) (antagonist radioligand)	10	7.3	-0.3	3.5			
α 2A(h) (antagonist radioligand)	10	8.3	28.3	18.3			
β1(h) (agonist radioligand)	10	0.9	12.3	6.6			
β2(h) (antagonist radioligand)	10	25.6	28.0	26.8			
BZD (central) (agonist radioligand)	10	-32.5	-13.0	-22.7			
CB1(h) (agonist radioligand)	10	18.7	25.8	22.3			
CB2(h) (agonist radioligand)	10	-8.9	-14.9	-11.9			
CCK1 (CCKA) (h) (agonist radioligand)	10	13.3	25.8	19.5			
D1(h) (antagonist radioligand)	10	2.1	10.2	6.2			
D2S(h) (agonist radioligand)	10	-3.4	7.7	2.2			
ETA(h) (agonist radioligand)	10	-5.9	-10.1	-8.0			
NMDA (antagonist radioligand)	10	11.1	1.6	6.3			
H1(h) (antagonist radioligand)	10	12.5	3.7	8.1			
H2(h) (antagonist radioligand)	10	-26.7	-25.3	-26.0			
MAO-A (antagonist radioligand)	10	4.9	7.4	6.1			
M1(h) (antagonist radioligand)	10	-25.4	-33.6	-29.5			
M2 (h) (antagonist radioligand)	10	-6.8	-1.7	-4.2			
M3(h) (antagonist radioligand)	10	-24.6	-15.2	-19.9			
N neuronal α4β2 (h) (agonist radioligand)	10	-7.8	-13.2	-10.5			
δ (DOP) (h) (agonist radioligand)	10	53.0	43.7	48.3			
kappa (h) (KOP) (agonist radioligand)	10	62.3	56.8	59.5			
kappa (h) (KOP) (agonist radioligand)	1	12.8	30.6	21.7			
μ (MOP) (h) (agonist radioligand)	10	25.6	15.2	20.4			
5-HT1A(h) (agonist radioligand)	10	8.8	12.4	10.6			
5-HT1B (h) (antagonist radioligand)	10	22.7	25.6	24.2			
5-HT2A(h) (agonist radioligand)	10	-5.5	-5.5	-5.5			
5-HT2B(h) (agonist radioligand)	10	30.7	24.4	27.6			
5-HT3(h) (antagonist radioligand)	10	-8.5	-7.8	-8.1			
GR (h) (agonist radioligand)	10	29.5	30.8	30.2			
AR(h) (agonist radioligand)	10	-1.1	-13.0	-7.0			
V1a(h) (agonist radioligand)	10	13.1	6.8	9.9			
Ca2+ channel (L, dihydropyridine site) (antagonist radioligand)	10	58.2	50.6	54.4			
Ca2+ channel (L, dihydropyridine site) (antagonist radioligand)	1	18.1	19.6	18.9			
Potassium Channel hERG (human)- [³ H] Dofetilide	10	8.5	3.0	5.8			
KV channel (antagonist radioligand)	10	-1.2	-8.1	-4.7			

Supplementary Table 5 – PK parameters of LEI-515 in mice after p.o. and i.v. administration. CL = clearance. V_{ss} = volume of distribution at steady state. $t_{1/2}$ = half-life. C_{max} = maximum plasma drug concentration. t_{max} = time to reach C_{max} . AUC = area under plasma concentration time curve. F_{po} = bioavailability.

	p.o.	i.v.
Dose (mg/kg)	10	10
CL (ml/min/kg)	-	35
V _{ss} (L/kg)	-	2.1
t _{1/2} (h)	-	4.5
C _{max} (nM)	2433	-
t _{max} (h)	0.5	
AUC (h*nmol/L)	7330	-
F _{po} (%)	81	
C_{brain}/C_{plamsa}	0.01	

5758

59

60

Supplementary Table 6 – LC-MS Standards and deuterium labeled internal standards for lipidomics analysis. Q1 and Q3 are optimized precursor ion and product ion respectively and expressed as m/z. DP and CE are declustering potential (volt) and collision energy (Volt) respectively.

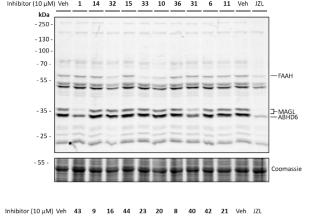
Abbreviation	Name	Q1	Q3	DP, CE	Polarity
1 & 2-AG (20:4)	1-Arachidonoyl Glycerol	379.21	287.2	45, 10	+
1-LG (18:2)	1-Linoleoyl Glycerol	355.34	246	48, 10	
2-LG (18:2)	2-Linoleoyl Glycerol	357.34	247.5	48, 10	
2-OG (18:1)	2-Oleoyl Glycerol	357.34	247.5	40, 12	
1-OG (18:1)	1-Oleoyl Glycerol	357.34	247.5	40, 12	
AEA (20:4)	Arachidonoyl Ethanolamide	348.40	62.02	35, 16	
DEA (22:4)	Docosatetraenoyl Ethanolamide	376.38	61.92	55, 18	
DGLEA (18:3)	Dihomo-γ-Linolenoyl Ethanolamide	350.38	61.98	40, 14	
DHEA (22:6)	Docosahexaenoyl Ethanolamide	372.38	62.01	50, 14	

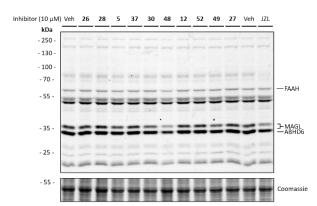
EPEA (20:5)	Eicosapentaenoyl Ethanolamide	346.34	61.98	36, 16
LEA (18:2)	Linoleoyl Ethanolamide	324.34	61.98	35, 14
OEA (18:1)	Oleoyl Ethanolamide	326.4	62.01	45, 16
PDEA (15:0)	Pentadecanoyl Ethanolamide	286.34	62.01	45, 12
PEA (16:0)	Palmitoyl Ethanolamide	300.34	61.98	42, 14
POEA (16:1)	Palmitoleoyl Ethanolamide	298.34	62.01	45, 14
SEA (18:0)	Stearoyl Ethanolamide	328.38	61.98	45, 16
AA (20:4)	Arachidonic Acid	302.28	259.3	-40, -12
PA (FA 16:0)	Palmitic Acid	255.33	237.24	-50, -20
SA (FA 18:0)	Stearic Acid	283.34	265.31	-60, -22
OA (FA 18:1)	Oleic Acid	281.34	263.31	-50, -20
LA (FA 18:2)	Linoleic Acid	279.34	261.25	-64, -16
GLA (FA 18:3)	y-Linolenic Acid	277.3	58	-60, -20
ETA (FA 20:3. (ω-3)	11(Z).14(Z).17(Z)-Eicosatrienoic Acid	305.28	306.09	-60, -18
DGLA (FA 20:3. (ω-6)	Dihomo-γ-Linolenic Acid (20:3)	305.28	306.03	-66, -18
EPA (FA 20:5.(ω-3)	Eicosapentaenoic Acid	301.34	257.3	-60, -10
DHA (FA 22:6. (ω-3)	Docosahexaenoic Acid	327.28	283.31	-60, -10
2-AG-d8 (20:4)	2-Arachidonoyl Glycerol-d8	387.38	294.2	45, 10
AEA-d8 (20:4)	Arachidonoyl Ethanolamide-d8	356.38	62.79	35, 16
DHEA-d4 (22:6)	Docosahexaenoyl Ethanolamide-d4	376.38	66.01	50, 14
LEA-d4 (18:2)	Linoleoyl Ethanolamide-d4	328.34	66.01	35, 16
OEA-d4 (18:1)	Oleoyl Ethanolamide-d4	330.38	66.01	45, 16
PEA-d5 (16:0)	Palmitoyl Ethanolamide-d5	305.34	61.98	42, 16
SEA-d3 (18:0)	Stearoyl Ethanolamide-d3	331.38	61.91	45, 16
EPEA-d4 (20:5)	Eicosapentaenoyl Ethanolamide-d4	350.34	66.08	36, 18
AA-d8 (20:4)	Arachidonic Acid-d8	311.34	267.30	-40, -12
PA (16:0)-d31	Palmitic Acid-d31	286.5	266.37	-40, -22

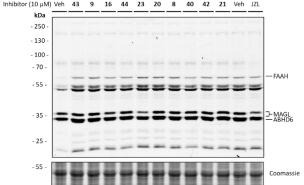
68 69

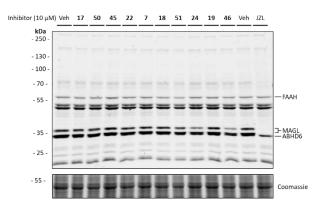
Supplementary Table 7 - LC-MS Standards and deuterium labeled internal standards for in vivo lipidomics analysis.

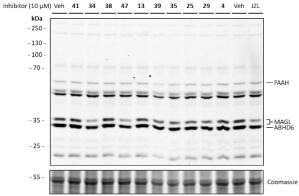
Analyte	MS- Mode	Mass transition	Cone voltage (V)	Collision energy (eV)
Arachidonic acid (AA) C20:4	ES-	303.14 > 259.16	20	16
Arachidonic acid (AA) C20:4-d8	ES-	311.19 > 267.10	10	15
2-Arachidonylglycerol (2-AG)	ES+	379.24 > 287.21	40	14
2-Arachidonylglycerol (2-AG-d5)	ES+	384.24 > 287.21	40	14

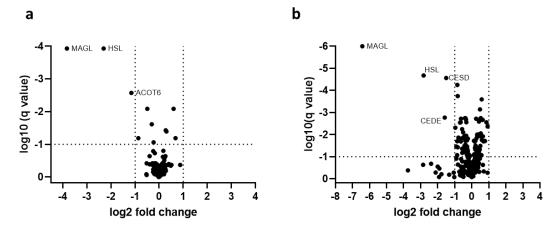

Figure	Source of Variation				
6b	Three-way ANOVA revealed significant main effects of drug treatment (p<0.0001) and time (p<0.0001) and the interaction between treatment and time was significant (p<0.0001). No main effect of say (p=0.1814) or interaction with say (Time v Say p=0.2313). Say v Treatment p=0.873				
	effect of sex (p=0.1814) or interaction with sex (Time x Sex: p=0.3212; Sex x Treatment: p=0.873; Time x Sex x Treatment: p=0.7577) was detected. See also Fig. S7a.				
6c	Three-way ANOVA revealed main effects of drug treatment (p<0.0001) and time (p=0.0357) bu main effect of sex (p=0.3512) or interaction with sex or time (Sex x Treatment: p=0.1288; Tin Sex: p=0.4493; Time x Treatment 0.0743; Time x Sex x Treatment: p=0.6927) was detected throughout the period of chronic (p.o.) dosing. Efficacy was preserved at least 4 days follow termination of oral dosing; three-way ANOVA revealed main effects of drug treatment (p<0.00 time (p=0.0037) and their interaction (p=0.0007) but no main effect of sex (Sex: p=0.4215 interaction with sex (Sex x Treatment: p=0.6342; Time x Sex: p=0.6380; Time x Sex x Treatment p=0.9346) was detected across the 10-day observation interval following termination of chrodosing. See also Fig. S7c.				
6e	Three-way ANOVA revealed significant main effects of drug treatment (p<0.0001) and time (p<0.0001) and their interaction (p<0.0001; see also Fig. S7a) but no main effect of sex (p=0.1269) or interaction with sex (Sex x Treatment: p=0.1547; Time x Sex: p=0.6117; Time x Sex x Treatment: p=0.5945) was detected. ****p<0.0001 LEI-515 vs. vehicle control groups. See also Fig. S7b.				
6f	Three-way ANOVA revealed a main effect of drug treatment (p<0.0001) and an interaction between drug treatment, time and sex (p=0.049), but no other main effects (Time: p=0.6512; Sex: p=0.206) or interactions (Time x Sex: p=0.2165; Time x Treatment: p=0.8939; Sex x Treatment: p=0.3299) were detected throughout the period of chronic (i.p.) dosing. Efficacy was preserved at least 4 days following termination of i.p. dosing; Three-way ANOVA revealed significant main effect of drug treatment (p<0.0001) and time (p<0.0001) and the interaction between drug treatment and time was significant (p<0.0001) but no main effect of sex (p=0.5045), or interaction with sex (Sex x Time: p=0.1657; Sex x Treatment p=0.4588; Time x Sex x Treatment p=0.5596) was detected. See also Fig. S7d.				

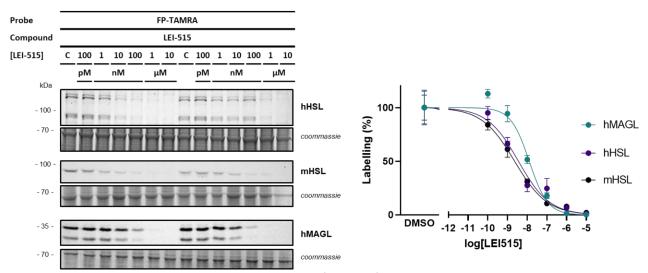

Supplementary Table 9: Summary of P values obtained from Two-way ANOVA justifying pooling of sexes in Supplementary Figure S7.


Figure	Groups	Time	Treatment	Interaction
6B				
(p.o.)	VEH (M) vs. VEH (F)	0.635	0.2021	0.1676
6B				
(p.o.)	LEI-515 (M) vs. LEI-515 (F)	p<0.0001	0.4809	0.7937
6B				_
(p.o.)	VEH (M+F) vs. LEI-515 (M+F)	p<0.0001	p<0.0001	p<0.0001
6C Day 1-10				
(p.o.)	VEH (M) vs. VEH (F)	0.5209	0.6045	0.9604


6C Day 1-10				
(p.o.)	LEI-515 (M) vs. LEI-515 (F)	0.0404	0.1516	0.4607
6C Day 1-10				
(p.o.)	VEH (M+F) vs. LEI-515 (M+F)	0.0371	P<0.0001	0.0803
6C Day 11-20				
(p.o.)	VEH (M) vs. VEH (F)	0.9385	0.2896	0.8983
6C Day 11-20				
(p.o.)	LEI-515 (M) vs. LEI-515 (F)	0.0003	0.8415	0.6916
6C Day 11-20				
(p.o.)	VEH (M+F) vs. LEI-515 (M+F)	0.0024	p<0.0001	0.0004
6E				
(i.p.)	VEH (M) vs. VEH (F)	0.6683	0.9325	0.972
6E				
(i.p.)	LEI-515 (M) vs. LEI-515 (F)	p<0.0001	0.0647	0.4224
6E				
(i.p.)	VEH (M+F) vs. LEI-515 (M+F)	p<0.0001	p<0.0001	p<0.0001
6F Day 1-10				
(i.p.)	VEH (M) vs. VEH (F)	0.8236	0.7543	0.1814
6F Day 1-10	LEI-515 (M) vs. LEI-515 (F)	0.6749	0.2036	0.0706
(i.p.)				
6F Day 1-10	VEH (M+F) vs. LEI-515 (M+F)	0.7086	p<0.0001	0.8744
(i.p.)				
6F Day 11-20				
(i.p.)	VEH (M) vs. VEH (F)	0.3435	0.9494	0.5984
6F Day 11-20	LEI-515 (M) vs. LEI-515 (F)	p<0.0001	0.3865	0.1964
(i.p.)				
6F Day 11-20	VEH (M+F) vs. LEI-515 (M+F)	p<0.0001	p<0.0001	p<0.0001
(i.p.)				
Abbreviations:	M, male; F, female; p.o., oral;	i.p., intraperitone	al	


Abbreviations: M, male; F, female; p.o., oral; i.p., intraperitoneal Source data and all statistical analyses are provided as a Source data file.





Supplementary Figure 1 – Orthogonal competitive ABPP assay for hit validation and selectivity assessment. ABPP was performed on mouse brain membrane proteome using FP-TAMRA. Proteome was pre-incubated with inhibitor (10 μ M, 30 min), followed by incubation with FP-TAMRA (100 nM, 10 min). JZL184 was included as positive control on all gels. The data shown is n=1 due to limited amount of sample of the hits of which some was used for LC-MS analysis confirming the compound identity.

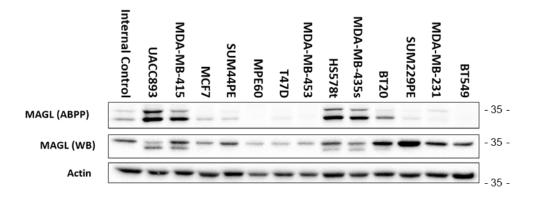

Supplementary Figure 2 – Chemical proteomics-based selectivity profiles of LEI-515. LEI-515 (1 μ M, 30 min, 37°C) was incubated with mouse brain (a) and liver (b) proteomes using broad-spectrum probes MB108 and FP-biotin (10 μ M, 60 min, 37°C) (n = 4). Data was analysed in GraphPad Prism 9.0 (multiple t-test).

Figure S3

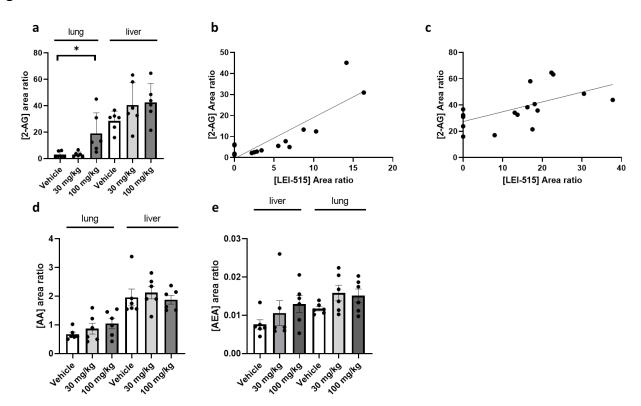
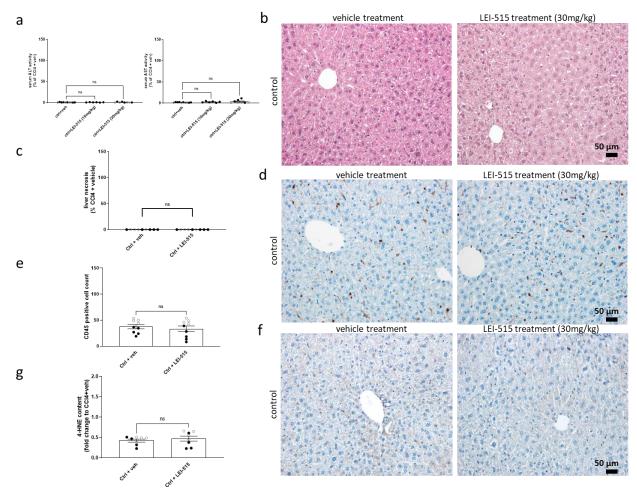

Supplementary Figure 3 – ABPP potency assessment of LEI-515 for human MAGL, human HSL and mouse HSL. Dose-response treatment of LEI-515 on hMAGL ($pIC_{50} = 7.90 \pm 0.11$), hHSL ($pIC_{50} = 8.44 \pm 0.15$), and mHSL ($pIC_{50} = 8.64 \pm 0.11$), overexpression lysate using FP-TAMRA (10 min, 100 nM), C = DMSO control. Fluorescence and Coomassie intensities were quantified using ImageLab 6.0 software (Bio-Rad) and normalized log-transformed data was fitted using the variable slope dose-response function in GraphPad Prism 9.0 (n=4 biologically independent experiments). Data are presented as mean \pm SEM.

Figure S4

Supplementary Figure 4 – Profiling of MAGL activity and protein level in a panel of 13 breast cancer cell lines. ABPP was performed on cell lysates (2mg/mL) using LEI-463-Cy5 (100 nM, 15 min). Actin was used as a loading control. MAGL antibody: ab24701 (1:200 dilution). n=3.


Figure S5

Supplementary Figure 5 – *In vivo* 2-AG levels in lung and liver after LEI-515 treatment. (a) 2-AG levels in C57BL/6J mice lung and liver (100 mg/kg p = 0.0158) after oral administration (30 or 100 mg/kg) of LEI-515. (n = 4 for vehicle and n = 6 for LEI-515). High variability in 2-AG levels was observed in these tissues. Therefore, 2-AG levels in (b) lung ($R^2 = 0.73$, p < 0.001) and (c) liver ($R^2 = 0.36$, p = 0.0084) were plotted against quantified LEI-515 levels. An increase in 2-AG levels was associated with increasing LEI-515 levels. (d-e) AA and AEA levels in lung and liver tissue (n = 4 for vehicle and n = 6 for LEI-515). Statistical analysis: One-way ANOVA and Dunnett post-hoc test (a, d and e) or linear regression (b and c). *p<0.05 vs. vehicle control. Data are presented as mean \pm SEM.

 $\begin{array}{c} 114 \\ 115 \end{array}$

Figure S6

Supplementary Figure 6 – LEI-515 has no effects on liver function in control animals. (a) Effect of vehicle treatment (n=10) or LEI-515 (10 and 30 mg/kg i.p., n=6 or 8/group, respectively) on liver transaminases [alanine aminotransferase (ALT) and aspartate aminotransferase (AST) respectively], (**b-c**) histopathological liver necrosis in control groups and its quantification (n=9/group), (**d-e**) CD45+ leukocyte infiltration in control groups and its quantification (n=9/group), (**f-g**) lipid peroxidation (4-HNE) in control groups and its quantification (n = 8/group). Data are presented as mean \pm SEM. Open symbols represent female, whereas closed symbols show male subjects. Statistical analysis: One-way ANOVA and Dunnett post-hoc test (**a**) or unpaired two-tailed t-test (**c**; **e**; **g**).

 $\begin{array}{c} 140 \\ 141 \end{array}$

142

143

144

145

146

147

148

149

150

151

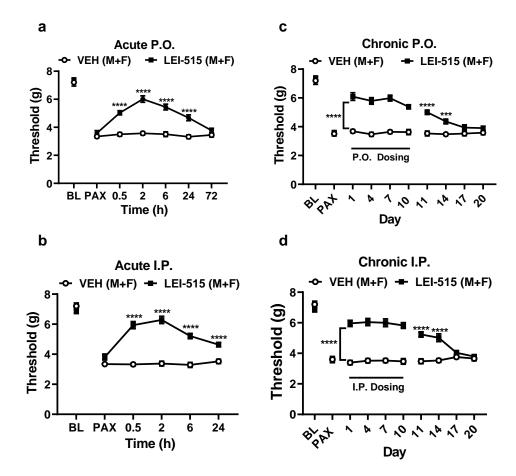
152

153

154

155

156


157

158

159

160

161

Supplementary Figure 7 - The peripherally restricted MAGL inhibitor LEI-515, administered p.o. or i.p., suppresses paclitaxel-induced mechanical hypersensitivity in mixed sex groups. Acute LEI-515 (10 mg/kg) suppressed paclitaxel-induced mechanical sensitivity following (a) oral or (b) i.p. administration. Efficacy was observed from 0.5-24 h for each route of administration. (a-b) ANOVA revealed main effects of treatment (p<0.0001) and time (p<0.0001) and the interaction (p<0.0001) was significant. ****p<0.0001 vs. vehicle (Twoway ANOVA, Sidak's multiple comparison test). (c) Once daily dosing with LEI-515 (10 mg/kg/day p.o. for 10 days) suppressed paclitaxel-induced mechanical hypersensitivity without loss of efficacy during the period of oral drug delivery; Two-way ANOVA revealed a main effect of treatment (p<0.0001) and time (p=0.0371) and the interaction (p=0.0803) was not significant. Efficacy was preserved at least 4 days following termination of p.o. dosing; Two-way ANOVA revealed a main effect of drug treatment (p<0.0001), time (p=0.0024) and the interaction (p=0.0004) was significant across the ten-day observation interval following termination of drug delivery. (d) Once daily dosing with LEI-515 (10 mg/kg/day i.p. for 10 days) suppressed paclitaxel-induced mechanical hypersensitivity without loss of efficacy during the period of drug delivery. Two-way ANOVA revealed a main effect of drug treatment (p<0.0001), but no main effect of time (p=0.7086) or interaction (p=0.8744) was detected across the period of i.p. drug delivery. Efficacy was preserved at least 4 days following termination of i.p. dosing; Two-way ANOVA revealed a main effect of treatment (p<0.0001) and time (p<0.0001) and the interaction (p<0.0001) was significant. (a-d) ****p<0.0001, ***p<0.001 vs. vehicle control. See Supplementary Table 9 for statistical results comparing sexes that were pooled for each treatment. (a, c) n=16 mixed sex vehicle (n=8 per sex), n=15 mixed sex LEI-515 (n=7-8 per sex). (b, d) n=15 mixed sex vehicle (n=7-8 per sex), n=16 mixed sex LEI-515 (n=8 per sex). (a-d) All data are presented as mean ± SEM. Statistical analysis: Two-way ANOVA with Tukey and Sidak Multiple Comparison tests. Source data are provided as Source data file.

Synthetic procedures

General remarks

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186187

All reactions were performed using oven or flame-dried glassware and dry solvents. Reagents were purchased from Sigma Aldrich, Acros and Merck and used without further purification unless noted otherwise. All moisture sensitive reactions were performed under an argon or nitrogen atmosphere. Traces of water were removed from starting compounds by co-evaporation with toluene. Reactions were followed by thin layer chromatography and was performed using TLC Silica gel 60 F₂₄₅ on aluminums sheets. Compounds were visualized using a KMnO₄ stain (K_2CO_3 (40 g), KMnO₄ (6 g), H_2O (600 mL) and 10% NaOH (5 mL)). ¹H- and ¹³C-NMR spectra were recorded on a Bruker AV-400, 500, 600 or 850 using CDCl₃ or CD₃OD as solvent, unless stated otherwise. Chemical shift values are reported in ppm with tetramethylsilane or solvent resonance as the internal standard (CDCl₃: δ 7.26 for ¹H, δ 77.16 for ¹³C, CD₃OD: δ 3.31 for ¹H, δ 49.00 for ¹³C). Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, dd = double doublet, td = triple doublet, t = triplet, q = quartet, quinted = quint, br = broad, m = multiplet), coupling constants J (Hz), and integration. LC-MS measurements were performed on a Thermo Finnigan LCQ Advantage Max ion-trap mass spectrometer (ESI+) coupled to a Surveyor HPLC system (Thermo Finnigan) equipped with a standard C18 (Gemini, 4.6 mmD × 50 mmL, 5 μm particle size, Phenomenex) analytical column and buffers A: H₂O, B: ACN, C: 0.1% ag. TFA. Preparative HPLC purification was performed on a Waters Acquity Ultra Performance LC with a C18 column (Gemini, 150 × 21.2 mm, Phenomenex). Diode detection was done between 210 and 600 nm. Gradient: ACN in (H₂O + 0.2% TFA). High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ Orbitrap XL.

Scheme 1. Synthesis route for hit **1**. Reagents and conditions: i) ethyl 2-mercaptoacetate, pyridine, **115** °C. ii) Oxone, MeOH / H₂O. iii) sodium *tert*-butoxide, BINAP, Pd(OAc)₂, **1**,4-dioxane, 85 °C. iv) TFA, DCM. v) HATU, DiPEA, DCM.

4-((2-Ethoxy-2-oxoethyl)thio)-3-nitrobenzoic acid (54)

To a solution of 4-chloro-3-nitrobenzoic acid (1.26 mg, 6.24 mmol, 1.50 eq.) in pyridine (5 mL) was added ethyl mercaptoacetate (0.5 g, 4.16 mmol, 1.00 eq.) and the mixture was heated to 115 °C overnight in an oil bath. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was allowed to cool to rt and the pH was adjusted to 1 with 1M HCl solution. The precipitate was filtered and the solid were washed with water to provide the product (1.01 g, 3.54 mmol, 85%). 1 H NMR (400 MHz, Methanol- 4 d) 6 8.73 (d, 2 = 1.9 Hz, 1H), 8.16 (dd, 2 = 8.5, 1.9 Hz, 1H), 7.66 (d, 2 = 8.5 Hz, 1H), 4.20 (q, 2 = 7.1 Hz, 2H), 4.00 (s, 2H), 1.25 (t, 2 = 7.1 Hz, 3H). 13 C NMR (101 MHz, Methanol- 4 d) 6 170.38, 167.34, 143.24, 135.02, 129.44, 128.46, 128.08, 63.20, 35.65, 14.53.

4-((2-Ethoxy-2-oxoethyl)sulfinyl)-3-nitrobenzoic acid (55)

To a cooled solution of 4-((2-ethoxy-2-oxoethyl)thio)-3-nitrobenzoic acid (285 mg, 1.00 mmol, 1.00 eq.) in methanol (13 mL) was dropwise added a solution of Oxone (62 mg, 1.00 mmol, 1.00 eq.) in water (4 mL) and the reaction mixture was stirred at rt for 2.5 h. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with water and extracted with DCM. The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (MeOH/DCM, 1% to 2%) to afford the product (210 mg, 0.70 mmol, 70%). ¹H NMR (400 MHz, Methanol-d4) δ 8.88 (d, J = 1.6 Hz, 1H), 8.61 (dd, J = 8.2, 1.6 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 4.36 (d, J = 14.4 Hz, 1H), 4.29 – 4.13 (m, 2H), 3.82 (d, J = 14.5 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Methanol-d4) δ 166.82, 166.60, 147.30, 136.89, 136.55, 128.43, 127.26, 63.37, 61.32, 14.54.

tert-Butyl (R)-3-methyl-4-(m-tolyl)piperazine-1-carboxylate ((R)-57)

A mixture of 1-bromo-3-methylbenzene (1 g, 5.85 mmol, 1 eq.), tert-butyl (R)-3-methylpiperazine-1-carboxylate (1.17 g, 5.85 mmol, 1 eq.), Cs_2CO_3 (2.86 g, 8.77 mmol, 1.5 eq.), rac-BINAP (233 mg, 0.35 mmol, 0.06 eq.) and palladium diacetate (52.53 mg, 0.23 mmol, 0.04 eq.) in degassed 1,4-dioxane was heated to 85 °C under nitrogen atmosphere overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with DCM, washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (pentane/diethyl ether,10/1) to give the product (1.05 g, 3.62 mmol, 62%).

tert-Butyl (S)-3-methyl-4-(m-tolyl)piperazine-1-carboxylate ((S)-57)

A mixture of 1-bromo-3-methylbenzene (100 mg, 0.59 mmol, 1 eq.), tert-butyl (S)-3-methylpiperazine-1-carboxylate (176 mg, 0.88 mmol, 1.5 eq.), Cs_2CO_3 (286 mg, 0.88 mmol, 1.5 eq.), rac-BINAP (23.25 mg, 0.04 mmol, 0.06 eq.) and palladium diacetate (5.25 mg, 0.02 mmol, 0.04 eq.) in degassed 1,4-dioxane was heated to 85 °C under nitrogen atmosphere overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with DCM, washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (pentane/diethyl ether,10/1) to give the product (130 mg, 0.45 mmol, 77%). 1 H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 7.7 Hz, 1H), 6.71 – 6.67 (m, 3H), 4.04 – 3.66 (m, 3H), 3.44 – 2.99 (m, 4H), 2.30 (s, 3H), 1.48 (s, 9H), 0.98 (d, J = 6.5 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 155.13, 150.22, 138.86, 129.07, 120.93, 118.05, 114.33, 79.70, 51.65, 49.45, 48.25, 44.30, 28.50, 21.85, 12.25.

(R)-2-methyl-1-(m-tolyl)piperazine ((R)-58)

To a solution of (*R*)-57 (0.75 g, 2.58 mmol, 1.00 eq.) in DCM (8 mL) was added 2 mL TFA and the mixture was stirred for 2 h at room temperature. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the reaction mixture was diluted with DCM (20 mL), washed with saturated NaHCO₃ solution, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (DCM/MeOH,10/1) to give the product (405 mg, 2.13 mmol, 82%). 1 H NMR (400 MHz, CDCl₃) δ 7.20 – 7.08 (m, 1H), 6.80 – 6.68 (m, 3H), 3.72 (m, 1H), 3.67 – 3.50 (br, 1H), 3.19 – 2.82 (m, 6H), 2.31 (s, 3H), 1.03 (d, J = 6.5 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 150.56, 138.84, 128.98, 121.47, 119.16, 115.41, 51.38, 51.30, 46.09, 45.93, 21.78, 13.00.

(S)-2-methyl-1-(m-tolyl)piperazine ((S)-58)

To a solution of **(S)-57** (150 mg, 0.52 mmol, 1.00 eq.) in DCM (4 mL) was added 1 mL TFA and the mixture was stirred for 2 h at room temperature. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the reaction mixture was diluted with DCM (10 mL), washed with saturated NaHCO₃ solution, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (DCM/MeOH,10/1) to give the product (90 mg, 0.47 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 7.5 Hz, 1H), 6.78 – 6.62 (m, 3H), 3.73 (qq, J = 6.7, 3.7, 3.3 Hz, 1H), 3.15 – 2.78 (m, 6H), 2.31 (s, 3H), 1.03 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.78, 138.76, 128.94, 120.80, 118.44, 114.69, 51.85, 51.40, 46.46, 45.97, 21.83, 12.64.

To a mixture of **(R)-58** (57.4 mg, 0.30 mmol, 1 eq.), **55** (100 mg, 0.33 mmol, 1.1 eq.) in DCM (5 mL) was added HATU (140 mg, 0.45 mmol, 1.5 eq.) and DiPEA (117 mg, 0.91 mmol, 3 eq.). Then the mixture was stirred overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the reaction mixture was diluted with DCM (10 mL), washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (DCM/MeOH,10/1) to give the product (98 mg, 0.21 mmol, 69%). 1 H NMR (850 MHz, CDCl₃) δ 8.47 – 8.34 (m, 2H), 8.07 – 7.97 (m, 1H), 7.18 (t, J = 7.8 Hz, 1H), 6.83 – 6.68 (m, 3H), 4.47 – 4.08 (m, 4H), 3.78 (d, J = 13.8 Hz, 2H), 3.72 – 3.06 (m, 5H), 2.33 (s, 3H), 1.28 (td, J = 7.1, 1.7 Hz, 3H), 1.12 – 0.92 (m, 3H). 13 C NMR (214 MHz, CDCl₃) δ 166.88, 164.60, 149.51, 144.89, 143.86, 139.88, 139.17, 133.69, 129.20, 127.89, 124.24, 121.93, 119.36, 115.60, 62.44, 60.04, 52.25, 47.72, 45.62, 42.59, 21.79, 14.18, 12.71.

Ethyl 2-((4-((S)-3-methyl-4-(m-tolyl)piperazine-1-carbonyl)-2-nitrophenyl)sulfinyl)acetate ((S)-1)

To a mixture of **(S)-58** (57.4 mg, 0.30 mmol, 1 eq.), **55** (100 mg, 0.33 mmol, 1.1 eq.) in DCM (5 mL) was added HATU (140 mg, 0.45 mmol, 1.5 eq.) and DiPEA (117 mg, 0.91 mmol, 3 eq.). Then the mixture was stirred overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the reaction mixture was diluted with DCM (10 mL), washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (DCM/MeOH,10/1) to give the product (140 mg, 0.30 mmol, 98%).

Scheme 2. Synthesis route for compound 2. Reagents and conditions: i) Boc₂O, DMAP, t-BuOH, 65 °C. ii) Ethyl 2-

mercaptoacetate, K₂CO₃, ACN. iii) Oxone, MeOH / H₂O. iv) TFA, DCM. v) Diacetyl, Et₂O. vi) Na, EtOH, 80 °C. vii) 1-Bromo-3-chlorobenzene, KHMDS, 1,4-dioxane. viii) HATU, DiPEA, DCM.

tert-Butyl 3-chloro-4-fluorobenzoate (60)

To a solution of 4-fluoro-3-chlorobenzoic acid (1 g, 5.73 mmol, 1 eq.) in *tert*-butanol (50 mL) was added Boc₂O (3.13 g, 14.3 mmol, 2.5 eq.) and DMAP (210 mg, 1.72 mmol, 0.30 eq.). Then the reaction mixture was stirred 65 °C overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (Pentane/EA,100/1) to give the product (1.16 g, 5.04 mmol, 88%). 1 H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.2, 2.2 Hz, 1H), 7.88 (ddd, J = 8.6, 4.7, 2.2 Hz, 1H), 7.17 (t, J = 8.6 Hz, 1H), 1.59 (s, 9H). 13 C NMR (126 MHz, CDCl₃) δ 163.9, 160.9 (d, J = 255.2 Hz), 132.3, 129.9 (d, J = 8.4 Hz), 129.3 (d, J = 3.6 Hz), 121.3 (d, J = 18.2 Hz), 116.5 (d, J = 21.6 Hz), 82.1, 28.3.

tert-Butyl 3-chloro-4-((2-ethoxy-2-oxoethyl)thio)benzoate (61)

To a solution of **60** (1.16 g, 5.04 mmol, 1eq.) in ACN (10 mL) was added ethyl 2-mercaptoacetate (1.21 g, 10.1 mmol, 2 eq.) and K_2CO_3 (2.08g, 15.1 mmol, 3 eq.). Then the mixture was stirred overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the reaction mixture was diluted with DCM (50 mL), washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Pentane/Diethyl ether,10/1) to give the product (1.62 g, 4.60 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 1.8 Hz, 1H), 7.83 (dd, J = 8.3, 1.8 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.74 (s, 2H), 1.58 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 164.4, 140.6, 132.2, 130.6, 130.5, 128.2, 126.6, 81.8, 62.2, 34.5, 28.3, 14.2.

tert-Butyl 3-chloro-4-((2-ethoxy-2-oxoethyl)sulfinyl)benzoate (62)

To a cooled solution of **61** (140 mg, 0.42 mmol, 1.00 eq.) in methanol (10mL) was dropwise added a solution of Oxone (26 mg, 0.42 mmol, 1.00 eq.) in water (2 mL) and the reaction mixture was stirred at rt for 2.5 h. The

reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with water and extracted with DCM. The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Pentane/Diethyl ether, 5/1) to afford the product (147 mg, 0.42 mmol, quant.). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 1H), 8.06 – 7.92 (m, 2H), 4.29 – 4.18 (m, 2H), 4.03 (d, J = 13.1 Hz, 1H), 3.69 (d, J = 13.8 Hz, 1H), 1.61 (s, 9H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 164.5, 163.6, 145.2, 136.5, 130.8, 130.1, 128.8, 126.5, 82.7, 62.4, 58.1, 28.2, 14.2.

3-Chloro-4-((2-ethoxy-2-oxoethyl)sulfinyl)benzoic acid (63)

To a solution of **62** (1.39 g, 4.00 mmol, 1 eq.) in DCM (16 mL) was added 4 mL TFA and the reaction mixture was stirred for 6 h. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (DCM/MeOH, 10/1) to afford the product (1.04 g, 3.59 mmol, 90%). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 8.1, 1.5 Hz, 1H), 8.07 (d, J = 1.5, 1H), 7.99 (d, J = 8.1, 1H), 4.26 – 4.14 (m, 2H), 4.04 (d, J = 14.0 Hz, 1H), 3.72 (d, J = 14.0 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 164.5, 145.4, 135.0, 131.2, 130.2, 129.3, 126.7, 62.5, 58.0, 14.1.

5,6-Dimethyl-2,3-dihydropyrazine (65)

N

To a cooled (0°C) solution of ethylenediamine (6.6 mL, 100 mmol) in Et₂O (250 mL) was dropwise added a solution of 2,3-butanedione (8.8 mL, 100 mmol) in Et₂O (250 mL) and the suspension was allowed to stir for 16 h. The resulting clear liquid was dried using potassium hydroxide for 30 min. After filtration, the mixture was concentrated and the residue was purified by short-neck distillation which yielded the product (9.36 g, 85 mmol, 85%). 1 H NMR (400 MHz, CDCl₃) δ 3.36 (s, 4H), 2.15 (s, 6H). 13 C NMR (101 MHz, CDCl₃) δ 159.5, 44.9, 23.4.

(±) trans-2,3-Dimethylpiperazine (± 66)

To a solution of **65** (9.36 g, 85 mmol, 1 eq.) in absolute ethanol (300 mL) was portion wise added sodium metal (23 g, 1 mol, 11.8 eq.) over six hours, after which the solution was refluxed for an additional 16 h. The slurry was neutralized by addition of acetic acid (50 mL) at 0 °C. The suspension was diluted with DCM, after stirring for 30 min the precipitated sodium acetate was filtered off. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (Et₂O: MeOH: NH₄OH, 10:4:1) to afford the product (3.71 g, 32.5 mmol, 38%). 1 H NMR (500 MHz, CDCl₃) δ 3.90 (s, 1H), 2.98 (m, 4H), 2.53 (m, 2H), 1.12-1.09 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 57.2, 45.8, 18.5.

(±) trans-1-(3-Chlorophenyl)-2,3-dimethylpiperazine (± 67)

To a solution of \pm **66** (0.70 g, 6.1 mmol, 1 eq.) in anhydrous dioxane (17 ml) were added 1-bromo-2-chlorobenzene (0.60 ml, 6.1 mmol, 1 eq.) and KHMDS solution (1M in THF, 6.1 ml, 6.1 mmol, 1 eq.). The reaction mixture was stirred at RT for 2 h. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with DCM, washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The crude product was purified using column chromatography (1% -> 10% MeOH in DCM with 1% TEA) to yield the product (0.51 mg, 2.0 mmol, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 8.1 Hz, 1H), 6.97 (t, J = 2.2 Hz, 1H), 6.89 (dddd, J = 18.0, 8.3, 2.1, 0.9 Hz, 2H), 3.24 – 2.82 (m, 6H), 1.31 (d, J = 6.6 Hz, 3H), 1.05 (d, J = 6.4 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 153.01, 134.81, 130.07, 121.22, 120.23, 118.30, 57.84, 54.59, 48.88, 42.59, 19.04, 14.91

(\pm) Ethyl 2-((2-chloro-4-(4-(3-chlorophenyl)-*trans*-2,3-dimethylpiperazine-1-carbonyl)phenyl)sulfinyl)acetate (\pm 2)

To a suspension of **63** (30 mg, 0.10 mmol, 1 eq.) in DCM (3 mL) was added HATU (39.2 mg, 0.10 mmol, 1.00 eq.) and DiPEA (31 mg, 0.30 mmol, 3 eq.). The mixture was stirred for 1 h. Then \pm **66** (23.2 mg, 0.10 μ mol, 1 eq.) was added and reaction mixture was stirred overnight. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with DCM, washed with water, dried (MgSO₄), filtered and concentrated under reduced pressure. The crude product was purified using prep-HPLC to yield the product (38.3 mg, 77.3 μ mol, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 1H), 7.54 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 – 7.42 (m, 1H), 7.16 (t, J = 8.0 Hz, 1H), 6.83 – 6.78 (m, 2H), 6.70 (d, J = 8.4 Hz, 1H), 4.80 (t, J = 6.7 Hz, 1H), 4.62 (s, 1H), 4.29 – 4.17 (m, 2H), 4.04 (dd, J = 14.1, 1.7 Hz, 1H), 3.87 (d, J = 7.0 Hz, 1H), 3.69 (dd, J = 14.0, 1.2 Hz, 1H), 3.67 – 3.60 (m, 1H), 3.57 – 3.49 (m, 1H), 3.37 – 3.06 (m, 3H), 1.52 – 1.44 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.16 – 097 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 168.3, 164.5, 151.3, 142.4, 140.5, 135.3, 130.8, 130.4, 128.4, 127.7, 127.1, 126.3, 125.8, 119.5, 116.3, 114.3, 62.5, 58.4, 56.2, 55.6, 49.8, 42.4, 41.3, 40.5, 36.6, 17.8, 16.8, 14.2, 12.8, 12.6. HRMS: Calculated for [C₂₃H₂₇Cl₂N₂O₄S + H]⁺ = 497.1063, found = 497.1065.

Scheme 3. Synthesis route for LEI-515. Reagents and conditions: i) NaSMe, K₂CO₃, ACN. ii) Oxone, MeOH / H₂O. iii) TFA, DCM. iv) EDCI, HOB, DiPEA, DCM. v) Ethyl 2,2-difluorobutanoate, LDA, THF, -78 °C.

tert-Butyl 3-chloro-4-(methylthio)benzoate (68)

To a solution of tert-butyl 3-chloro-4-fluorobenzoate (0.51 g, 2.22 mmol, 1 eq.) in degassed DMF was added sodium methanethiolate (0.23 g, 3.32 mmol, 1.5 eq.) at -10 °C and the mixture was stirred at RT overnight. The reaction progress was monitored by TLC. Once completed, the mixture was diluted with Et_2O , washed with water, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified using column chromatography (Et_2O / pentane, 10%) to yield the product (0.24 g, 0.91 mmol, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 1.8 Hz, 1H), 7.85 (dd, J = 8.3, 1.8 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 2.49 (s, 3H), 1.59 (s, 9H). ¹³C NMR (400 MHz, CDCl₃) δ 164.54, 143.80, 130.83, 129.94, 129.04, 128.05, 123.94, 81.49, 28.22, 14.92.

tert-Butyl 3-chloro-4-(methylsulfinyl)benzoate (69)

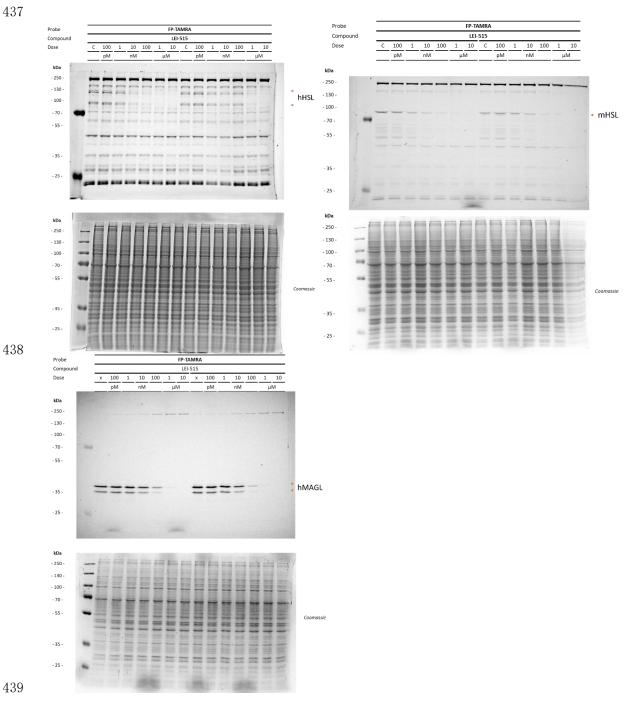
To a cooled (0 °C) solution of 68 (0.24 g, 0.91 mmol, 1 eq.) in MeOH was dropwise added an Oxone (0.50 g, 0.82

 mmol, 0.9 eq.) in water and the mixture was stirred at RT for 2h. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the mixture was diluted with EtOAc and washed with water. The organic layer was dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by silica column chromatography (pentane/EtOAc, 5/1) to yield the product (0.29 g, 1.17 mmol, quant.). 1 H NMR (500 MHz, CDCl₃) δ 8.13 (dd, J = 8.0, 1.6 Hz, 1H), 8.03 – 7.98 (m, 2H), 2.86 (s, 3H), 1.62 (s, 9H). 13 C NMR (500 MHz, CDCl₃) δ 163.34, 147.97, 135.70, 130.48, 129.52, 128.73, 125.20, 82.24, 41.37, 27.94.

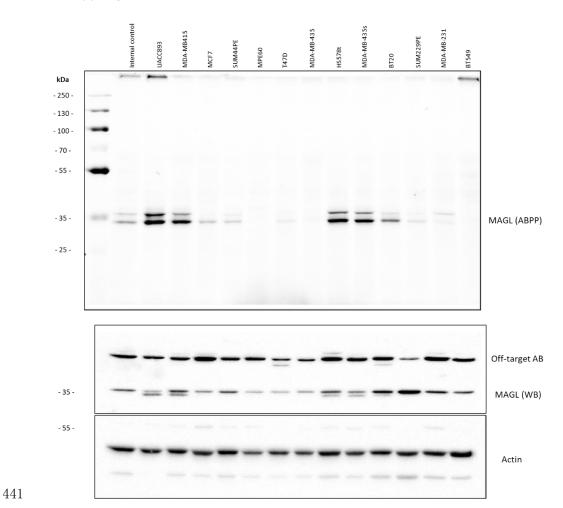
3-Chloro-4-(methylsulfinyl)benzoic acid (70)

To a solution of 69 (0.26 g, 0.94 mmol) in DCM (8 mL) was added TFA (2 mL) and the reaction mixture was stirred

for 6.5 h. The reaction progress was monitored by TLC analysis. Upon full conversion of the starting materials, the solvent was removed and the residue was purified by sillica column chromatography (DCM/MeOH, 10/1) to yield the product (0.19 g, 0.87 mmol, 92%). 1 H NMR (400 MHz, MeOD) δ 8.22 (dd, J = 8.2, 1.6 Hz, 1H), 8.08 (d, J = 1.6 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 2.90 (s, 3H). 13 C NMR (400 MHz, MeOD) δ 167.19, 148.93, 136.49, 132.03, 131.20, 130.45, 126.47, 41.68.


(±) (3-Chloro-4-(methylsulfinyl)phenyl)(4-(3-chlorophenyl)-trans-2,3-dimethylpiperazin-1-yl)methanone (± 70)

To a stirred suspension of 3-chloro-4-((2-ethoxy-2-oxoethyl)sulfinyl)benzoic acid (0.19 g, 0.87 mmol, 1 eq.) in DCM (10 mL) were added \pm **67** (0.23 g, 1.04 mmol, 1.2 eq.), DIPEA (0.34 mg, 2.59 mmol, 3 eq.), HOBt (0.18 mg, 1.30 mmol, 1.5 eq.) and EDCI (0.25 mg, 1.30 mmol, 1.5 eq.). The mixture was stirred overnight. The reaction progress was monitored by TLC analysis. Once completed, the mixture was washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified using column chromatography (EtOAc / pentane, 60 %) to yield the product (0.27 g, 0.64 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.56 – 7.38 (m, 2H), 7.14 (t, J = 8.2 Hz, 1H).6.60 (d, J = 2.4 Hz, 1H), 6.56 – 6.47 (m, 1H), 4.85 – 4.49 (m, 1H), 3.98 – 3.07 (m, 5H), 2.82 (s, 3H), 1.42 – 1.33 (m, 3H), 1.28 – 1.06 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.83, 151.33, 145.25, 140.18, 135.19, 130.47, 130.33, 128.43, 127.77, 125.85, 119.34, 116.13, 114.19, 56.08, 49.57, 42.29, 41.64, 36.46, 17.76, 12.52.


(±) 1-((2-Chloro-4-(4-(3-chlorophenyl)-*trans*-2,3-dimethylpiperazine-1- carbonyl)phenyl)sulfinyl)-3,3-difluoropentan-2-one (LEI-515)

To a solution of \pm **70** (20 mg, 0.05 mmol, 1 eq.) in THF (5 mL) was added LDA (0.025 mL, 2 M in THF, 0.05 mmol, 1 eq.) at -78 °C and the mixture was stirred for 10 min. Then ethyl 2,2-difluorobutanoate (72 mg, 0.47 mmol, 10 eq.) was added and the reaction mixture was stirred for 2 h at RT. The mixture was diluted with DCM (20 mL) and washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified using prep-HPLC to yield the product (2.5 mg, 0.05 mmol, 10%). ¹H NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 8.1, 4.5 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.22 (t, J = 8.3 Hz, 1H), 6.89 (d, J = 7.2 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 4.41 (dd, J = 15.1, 4.3 Hz, 1H), 4.05 (dd, J = 15.2, 3.4 Hz, 1H), 3.85 – 3.13 (m, 8H), 2.17 – 2.02 (m, 3H), 1.54 (d, J = 6.8 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.65, 168.17, 151.36, 142. 26, 140.93,

- 431 135.33, 130.65, 130.40, 128.67, 127.08, 126.51, 119.55, 118.14 (t, J = 253 Hz), 116.30, 114.28, 60.15, 56.22,
- 432 49.70, 40.52, 36.57, 25.52 (t, J = 23 Hz), 17.86, 12.60, 5.47 (t, J = 5 Hz). HRMS: Calculated for $[C_{24}H_{26}Cl_2F_2N_2O_3S]$
- 433 + H₂O + H] + = 549.1188, found = 549.1183.

$440 \qquad \text{Uncropped gel and blots S4}$

