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Abstract 

Background:  Nyssorhynchus darlingi (also known as Anopheles darlingi) is the primary malaria vector in the Amazon 
River Basin. In Brazil, analysis of single nucleotide polymorphisms (SNPs) previously detected three major population 
clusters, and a common garden experiment in a laboratory setting revealed significant population variation in life 
history traits. Increasing temperatures and local level variation can affect life history traits, i.e. adult longevity, that alter 
vectorial capacity with implications for malaria transmission in Ny. darlingi.

Methods:  We investigated the population structure of Ny. darlingi from 7 localities across Brazil utilizing SNPs and 
compared them to a comprehensive Ny. darlingi catalog. To test the effects of local level variation on life history traits, 
we reared F1 progeny from the 7 localities at three constant temperatures (20, 24 and 28 °C), measuring key life history 
traits (larval development, food-starved adult lifespan, adult size and daily survival).

Results:  Using nextRAD genotyping-by-sequencing, 93 of the field-collected Ny. darlingi were genotyped at 33,759 
loci. Results revealed three populations (K = 3), congruent with major biomes (Amazonia, Cerrado and Mata Atlântica), 
with greater FST values between biomes than within. In the life history experiments, increasing temperature reduced 
larval development time, adult lifespan, and wing length in all localities. The variation of family responses for all traits 
within four localities of the Amazonia biome was significant (ANOVA, P < 0.05). Individual families within localities 
revealed a range of responses as temperature increased, for larval development, adult lifespan, wing length and 
survival time.

Conclusions:  SNP analysis of several Brazilian localities provided results in support of a previous study wherein popu-
lations of Ny. darlingi were clustered by three major Brazilian biomes. Our laboratory results of temperature effects 
demonstrated that population variation in life history traits of Ny. darlingi exists at the local level, supporting previ-
ous research demonstrating the high plasticity of this species. Understanding this plasticity and inherent variation 
between families of Ny. darlingi at the local level should be considered when deploying intervention strategies and 
may improve the likelihood of successful malaria elimination in South America.
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Background
Malaria has made a comeback in Latin America in the 
last few years despite a recent period of decline from 2000 
to 2014 [1, 2]. The Americas is the only region to have an 
increase in malaria mortality in 2017 compared to 2010, 
with a greater number of malaria cases reported in Ven-
ezuela, Brazil, and Nicaragua during this period [2]. The 
main vector and driver of this disease in South America 
is Nysorrhynchus darlingi (also known as Anopheles dar-
lingi [3]), that exhibits significant geographical varia-
tion in behavior [4, 5] and in phenotypic plasticity [6–8]. 
This species has a natural infection rate by Plasmodium 
of up to 20% [5, 9], though a more common rate is 1–5% 
[10–12]. Adult vector traits relevant to disease transmis-
sion, such as adult life span and body size [13], can vary 
between populations [6, 7] and are influenced by larval 
development conditions such as food quantity [14] and 
temperature [15]. Globally, temperatures are projected to 
rise between 1–4 °C due to climate change [16]. Whereas 
even small changes in temperature may reduce vectorial 
capacity [17], the effects of temperature are not uniform 
across Ny. darlingi populations [7]. To be successful, 
future interventions in this region require a better under-
standing of this vector in a changing environment. Here 
we assess levels of genetic and phenotypic differentiation 
among Ny. darlingi populations from Brazil.

The geographical distribution of Nyssorhynchus dar-
lingi includes diverse South American biomes [18] and 
is associated with a range of larval habitat types, includ-
ing natural breeding sites with clean, shaded water and 
aquatic vegetation near human dwellings [19], as well as 
anthropogenic habitats, such as fish ponds [20] and dams 
[21]. Habitat modification, e.g. deforestation, was linked 
to Ny. darlingi presence in Peruvian breeding habitats 
[22] and has been positively correlated with malaria cases 
in Brazil [23]. A mathematical model using field-collected 
data found that the high biting rate and susceptibility to 
Plasmodium of Ny. darlingi in the Brazilian Amazon led 
to a high basic reproductive rate (R0) of malaria (mainly 
caused by Plasmodium vivax) [24]. The heterogeneity 
in distribution, vector competence and vectorial capac-
ity of Ny. darlingi presents a major challenge to malaria 
elimination.

Research on the effects of juvenile stages on adult 
traits has increased the understanding of developmen-
tal trade-offs. Changes in life history traits, such as body 
size and adult survival, can modify vectorial capacity 
[25] and directly impact malaria transmission. In a theo-
retical climate risk model, the inclusion of the effects of 
temperature during the full life-cycle, such as juvenile 
development rate and mortality, revealed that mosquito 
populations are more sensitive to changes in tempera-
ture than adult data alone would indicate [26]. A study of 

full-sib F1 progeny from field collected An. coluzzii (for-
merly known as An. gambiae M form [27], Burkina Faso) 
found adult longevity increased with adult body size but 
decreased with longer larval development [28]. Popula-
tion differentiation for both larval and adult life history 
traits of Ny. darlingi has been reported at the regional 
level in Brazil [6, 7], but variation at smaller scales is 
unstudied.

Average global temperatures are projected to increase 
1–4 °C over the next 100 years because of climate change 
[16] and tropical insect populations are anticipated to be 
more negatively affected compared to those in temperate 
regions [29]. Exotherm development is very sensitive to 
temperature, which can affect traits relevant to disease 
transmission, such as body size and adult fitness [15, 25]. 
Laboratory rearing of An. gambiae suggested an upper 
thermal limit of 31  °C and complete larvae mortality at 
35 °C, with increasing temperatures reducing adult body 
size and egg production [30, 31]. A malaria model pre-
dicted optimal transmission at 25  °C and was validated 
by an independent malaria transmission data set for An. 
gambiae (s.l.) and P. falciparum [32]. Modeled parasite 
and mosquito development rate reached a peak at 30 °C, 
in contrast, vector competence and vector survivorship 
peaked at 25 °C.

The analysis of single nucleotide polymorphisms 
(SNPs) in Anopheles has shed light on population struc-
ture [33, 34] and phenotypes [35, 36]. However, results of 
tests using SNP data to identify population structure of 
Ny. darlingi in South America have been mixed. Analy-
sis of Ny. darlingi collected from 12 states across Brazil 
detected three genetic clusters [37] associated with major 
biogeographical regions. In contrast, analysis of speci-
mens from three sites within a single biome (Amazonia), 
between 60–700 km apart, detected significant popula-
tion divergence at a regional scale [38], although a sub-
sequent analysis of two of these sites (60 km apart, new 
vs old settlement) to test for local differentiation in bit-
ing behavior found no significant genetic variation [4]. 
Despite similar methods used in these studies, compari-
sons between datasets are difficult given the variation in 
identified loci.

The aim of this study was to investigate local level vari-
ation in population structure and in life history traits 
of Ny. darlingi using a common garden experiment 
approach to address the following questions: (i) What is 
the scale of genetic differentiation among populations 
of Ny darlingi? and (ii) Is there evidence of small-scale 
variation in life history traits and in plastic responses to 
temperature variation? Our research combined broad-
scale population genetic assays with empirical data from 
a common garden experiment. We investigated the 
effects of variation in rearing temperature on a major 
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Neotropical vector, allowing us to assess the extent to 
which population differences in life history traits were 
due to environment (temperature), genetics, or both.

Here, we identified molecular genetic variation across 
biomes, significant phenotypic and genetic variation in 
life history traits, as well as within-population genetic 
variation for plasticity of Ny. darlingi. This variation 
could help tailor current intervention efforts, such as 
long-lasting insecticide nets (LLINs), indoor residual 
spraying (IRS) and larval source management (LSM), 
to regional and local scales for maximum efficiency and 
malaria elimination.

Methods
In this study, we first analyzed the population struc-
ture of Brazilian Ny. darlingi with mosquitoes collected 
within the same year, over a range of seven locality sites. 
In order to increase our chances of identifying fine-scale 
population genetic structure, we created a catalog incor-
porating sequences of Ny. darlingi from Peru and Brazil 
and used this to reexamine the population structure of 
Brazilian Ny. darlingi and to investigate the possibility of 
fine-scale differentiation within three Brazilian biomes. 
We then investigated the among- and within-locality 
variation in life history traits such as larval development 
time, adult lifespan and body size, among these seven 
localities across Brazil. A common garden experiment of 
the mosquito populations from the seven localities was 
conducted in three constant temperature environmental 
chambers. Mosquitoes were observed from egg hatch to 
adult death and life history traits recorded.

Study area and field collections
Adult female Ny. darlingi mosquitoes were collected 
from 7 localities across Brazil (Table 1, Fig. 1), spanning 
four states and 3 biomes. Details of the collection site cri-
teria for paired sites are found in [7]. Mosquitoes were 

collected in the evening for 5 hours (17:00–22:00 h) using 
barrier screens as described in Moreno et al. [12] for 1–5 
days, depending on locality and successful collection of 
the target species, Ny. darlingi. Blood-fed female mosqui-
toes from barrier screens were morphologically identi-
fied as Ny. darlingi [39] and maintained individually in a 
humid box and provided ad libitum sucrose solution dur-
ing transport to the laboratory in São Paulo, Brazil (Labo-
ratório de Entomologia de Saúde Pública – Culicidae, 
Faculdade de Saúde Pública, Universidade de São Paulo).

Laboratory rearing
The laboratory rearing for progeny of field-caught 
individuals was carried out as previously described 
[7]. Briefly, eggs laid by individual females from each 
locality, referred to as families, were allowed to hatch 
and larvae were equally divided (n = 15) into each of 
three constant temperature environmental chambers 
(20, 24 and 28 ± 1  °C) (Additional file  1: Table  S1) 
with a 12:12 h light:dark cycle and a relative humidity 
of 70–80%. Larvae were fed ad libitum and water was 
changed every other day; adults were provided only 
water after emergence. Larval, pupal and adult devel-
opment was assessed daily. Mosquito specimens were 
maintained in these chambers until natural adult death, 
whereupon the left wing was collected for body size 
estimation.

DNA extraction and nextRAD preparation
A subset (n = 93) of the field-collected Ny. darlingi (used 
to create the families in the life history experiment) was 
genotyped to evaluate population structure (Table  1). 
Individuals were selected from each of the 7 localities 
(n = 12–14 per locality) based on (i) successful egg lay-
ing (with priority given to the dams of the families used 
in the life history research); (ii) complete wing data; and 

Table 1  Collection site information and Ny. darlingi details

Notes: No. collected and No. sequenced for SNPs are individual female Ny. darlingi; No. analyzed for life history are the number of families from individual females. All 
localities were visited in 2016. Temperature data were obtained from online data sources (INMET [66] and SEDAM [67]]). Additional temperature data in Additional 
file 1: Table S3

Abbreviations: Avg, average; T, temperature

Biome State Locality (abbreviation) Month Latitude Avg. yearly 
T (°C)

No. collected No. sequenced for 
SNPs

No. analyzed 
for life history

Amazonia Amazonas Ramal Novo Horizonte (ARS) October − 2.864 27.61 20 12 10

Manaus-Brasilierinho (APR) October − 3.028 27.71 53 13 15

Rondônia Porto Velho (RPV) July − 8.742 25.70 95 13 15

Machadinho D’Oeste (RMO) July − 9.223 25.60 44 14 15

Cerrado Tocantins Lagoa da Confusão (TLC) March − 10.7 27.35 34 14 8

Porto Nacional (TPN) March − 10.796 27.54 19 14 4

Mata Atlântica Rio de Janeiro Lake Juturnaiba (SJU) May − 22.611 21.20 13 13 11
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(iii) a DNA concentration between 2.87 and 16.2  mg/
ml. Genomic DNA was extracted from all specimens 
using Qiagen DNeasy Blood and Tissue kit (Qiagen, 
Germantown, MD, USA) and concentrations were quan-
tified with a Qubit Fluorometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). Individuals were sequenced 
using nextRAD genotyping-by-sequencing methods 
as described in Emerson et  al. [37] (SNPSaurus, LLC, 
Eugene, OR, USA). Briefly, the genomic DNA was first 
fragmented using a Nextera reaction to ligate adapter 
sequences to the fragments. The fragments were then 
amplified with an 8 bp Nextera primer (5′-TGC AGG 
AG-3′), and the library was pooled and purified, with size 
selection between 350–500 bp. The resulting library was 
then sequenced, generating 150 bp reads on two lanes of 
an Illumina HiSeq 4000.

Data analysis
Nyssorhynchus darlingi catalog creation
All raw sequences were analyzed using STACKS v2.3b 
[40]. Sequences of 24 representative field collected female 
Ny. darlingi were used to create a catalog using STACKS 
cstacks, permitting 4 mismatches between stacks and 
enabling gapped alignments. In order to generalize the 
catalog to be useful across projects, samples used in this 
catalog were from previous publications [37, 41, 42]; 
similar sequencing methods were employed. This cata-
log consisted of 13 individuals from this study (the life 

history localities) and additional Ny. darlingi collected 
between 2006–2016 from Brazil (n = 7, additional states: 
Pará, São Paulo, Acre, Espirito Santo, Mato Grosso [37]) 
and Peru (n = 4, Lupuna and Cahuide, Loreto Depart-
ment [41]). The process radtags program was used to 
drop low quality sequence reads and ustacks aligned 
reads into stacks with the following parameters: mini-
mum depth of coverage for stack creation was set to 3, 
maximum distance allowed between stacks set to 4, and 
the maximum distance allowed to align secondary reads 
to primary reads set to 6. This generated a master catalog 
from Ny. darlingi sequences using consistent loci which 
allows for parallels to be drawn from different research 
projects.

nextRAD data analysis
For the present study, the sequences of the 93 Ny. dar-
lingi from the seven collection localities (Table  1) were 
processed with process radtags and ustacks program as 
described above, compared against the above described 
catalog, and then SNPs were called with the STACKS 
-sstacks, -tsv2bam and -gstacks programsʼ settings set to 
default. The STACKS populations program was used to 
select a single SNP from each locus found in at least 40% 
of individuals in the dataset, a threshold slightly more 
lenient than the 50% used in previous population struc-
ture research [37]; this modification resulted in a greater 
number of loci for comparison.

Fig. 1  Map (with topography) of collection sites. Inset maps by state via GoogleEarth [72]
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STRU​CTU​RE analysis was run using StrAuto v1.0 [43], 
allowing for parallel computation. To test the hypothesis 
of distinctive sub-populations within the major Brazil-
ian biomes, a Bayesian clustering analysis was performed 
using the STRU​CTU​RE admixture model assuming 
correlated allele frequencies for 10 replicates each of 
K = 1 through 7, with a ‘burn-in’ of 50,000 generations 
and a Markov chain Monte Carlo (MCMC) chain of 
500,000 generations. CLUMPAK [44] was used to aver-
age runs and visualize STRU​CTU​RE results. Principal 
components analysis (PCA) was conducted to test the 
hypothesis that the reduction of variables to principal 
components would lead to population separation based 
on SNP variation congruent with the populations from 
the Bayesian analysis. We performed PCA with the STRU​
CTU​RE file comparing different levels of population 
(biome, state, locality) in R (v. 3.6.0) using the ade4 pack-
age v.1.7.13 [45] via the dudi.pca() function and visual-
ized with factoextra package v.1.0.5 [46] fviz_pca_ind() 
function. To partition the genetic variation into clusters, 
and confirm the optimal cluster number, we employed 
discriminant analysis of principal components (DAPC) 
[47] with the R package adegenet v.2.1.1 [48]. A hierarchi-
cal analysis of molecular variance (AMOVA), with indi-
viduals grouped by locality within states, was calculated 
using the poppr.amova function in the R package poppr 
v.2.8.3 [49].

Life history trait analysis
All statistical analyses were conducted in R (v. 3.6.0) 
(Additional file 3: Dataset S2). A generalized linear model 
(GLM) was used to compare the effects of population 
(localities within state and families within localities) 
and temperature on life history traits. Genetic variation 
(populations or families), phenotypic plasticity (tempera-
ture levels) and genetic variation for plasticity (popula-
tion/family-by-temperature interactions) were assessed 
for larval development, adult lifespan, and wing length 
with ANOVA (Type II). Comparison of localities within 
state was conducted on all states except for Rio de Janeiro 
because there was only one locality in that state (Fig. 1, 
Table  1). The Kaplan-Meier estimate of survival (time 
between larvae hatch and adult death) of individual fami-
lies within each locality by temperature was visualized 
with the survival v.2.44.1.1 [50] and survminer v.0.4.3 
[51] R packages.

Estimators of population differentiation: FST and PST
Trait-based data can be used to estimate the amount of 
genetic variance among populations (PST), which we 
expect to be comparable to calculated FST. In order to 
compare population genetic structure results from the 
sequenced P generation (field-collected females) and 

their laboratory-reared F1 progeny, FST and PST values 
were calculated, respectively. Pairwise FST values by local-
ity (for the 7 localities tested in the present study) were 
calculated with the populations program from STACKS 
[40] using the sequenced 93 field Ny. darlingi. Life his-
tory data of the reared progeny were used to estimate 
PST, a phenotype-based analog for FST that measures the 
amount of genetic variation among populations relative 
to the total genetic variation [52], assuming that the pro-
portion of phenotypic variance due to genetic effects is 
equivalent between and within populations. Pairwise PST 
values by locality for each life history trait were calcu-
lated with the Pstat R package v.1.2 [53]. The ratio of PST 
to FST values is a useful proxy for estimating the strength 
of selection [54] on phenotypic traits. As FST is typically 
estimated from neutral loci, deviations of PST from FST 
can lead to inferences of selection: if PST > FST, directional 
selection can be inferred, conversely, if PST < FST, stabiliz-
ing selection is indicated.

Results
Evidence of population genetic structure by major biome
There was an average of 3,891,842 (range: 359,767–
6,636,895) sequences, or reads, per individual (n = 93) 
after quality filtering. The average number of reads 
per stack (or unique groups of matched reads) was 
3,002,165 (range: 228,591–5,437,712) with an average 
number of 100,369 (range: 23,754–232,583) stacks per 
individual. The final SNP dataset included one bial-
lelic SNP from each locus genotyped in at least 40% of 
the 93 individuals, for a total of 33,759 loci. The aver-
age coverage depth was 49X at each locus. Multiple 
values for K (K = 1–7) clusters were examined from 
STRU​CTU​RE and STRU​CTU​RE Harvester analyses 
(Additional file  4: Figure S1, Additional file  5: Figure 
S2). There was a dramatic dip in ΔK at K = 3 and the 
highest probability of K was at K = 3 (Additional file 4: 
Figure S1). The Bayesian information criterion (BIC) 
of the K-means clustering algorithm implemented in 
adegenet [47] in preparation for DAPC indicated K = 3 
was the optimal number of clusters (Additional file  4: 
Figure S1b). Small amounts of admixture within the 
southern Amazonia biome (Rondônia state) samples 
were detected (Fig. 2a). Both the STRU​CTU​RE (Fig. 2a, 
Additional file  5: Figure S2) and PCA (Fig.  2b) analy-
ses identified three major clusters corresponding to the 
biome classifications.

Variation of life history traits between localities 
within states
Increasing temperature reduced larval development 
time, adult lifespan, and wing length within all states 
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(Additional file  1: Table  S2, Additional files 6–8: Fig-
ures  S3-S5). There were significant genetic differences 
between localities within Amazonas (F(1, 968) = 52.0, 
P < 0.0001), Rondônia (F(1, 1049) = 15.3, P < 0.0001) and 
Tocantins (F(1, 332) = 6.7, P = 0.01) states for larval devel-
opment time (Additional file  6: Figure S3), and only 
within Tocantins for adult lifespan (F(1, 332) = 4.57, 
P = 0.03) (Additional file  7: Figure S4) and wing length 
(F(1, 320) = 32.9, P < 0.0001) (Additional file 8: Figure S5).

The two localities within Amazonas State had sig-
nificantly different larval development time at 20  °C 
(t(968) = 3.77, P < 0.0001), whereas the two localities in 
Rondônia had significantly different larval develop-
ment time at 20  °C (t(1049) = 5.23, P < 0.0001) and 28  °C 
(t(1049) = − 3.41, P < 0.0001). Only the localities in Amazo-
nas State had significantly different adult lifespan (t(968) = 
−  2.05, P = 0.04) and wing length (t(940) = 2.44, P < 0.0001) 
at 24  °C. In contrast, localities in Tocantins had sig-
nificantly different wing lengths at 20  °C (t(320) = 2.44, 
P = 0.02) (Additional file 1: Table S2).

Within‑population genetic variation for traits and their 
plastic responses
There was significant genetic variation among families 
within populations for larval development time (ARS: 
F(9, 369) = 6.71, P < 0.0001; APR: F(14, 530) = 5.48, P < 0.0001; 
RPV: F(14, 461) = 4.61, P < 0.0001; RMO: F(14, 504) = 1.77, 
P = 0.04), adult lifespan (ARS: F(9, 369) = 3.74, P < 0.0001; 
APR: F(14, 530) = 4.88, P < 0.0001; RPV: F(14, 461) = 3.94, 
P < 0.0001; RMO: F(14, 504) = 3.96, P < 0.0001) and wing 
length (ARS: F(9, 362) = 2.07, P = 0.03; APR: F(14, 509) = 2.66, 
P < 0.0001; RPV: F(14, 449) = 9.03, P < 0.0001; RMO: F(14, 

490) = 6.72, P < 0.0001) for both localities of Amazonas 
and Rondônia states (Figs. 3, 4, 5), and for adult lifespan 
(SJU: F(10, 254) = 2.30, P = 0.01) and wing length (SJU: F(10, 

247) = 3.75, P < 0.0001) in the southern high latitude popu-
lation. Populations from Tocantins showed little genetic 
variation among families, with the exception of wing 
length for TLC (F(7, 214) = 6.82, P < 0.0001).

Fig. 2  a STRU​CTU​RE plot of 93 field-collected Ny. darlingi reveals clustering by major biome (K = 3). b Principal components analysis (PCA) by 
biome
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All traits from all populations showed significant 
responses to temperature - increasing temperature 
reduced larval development time, adult lifespan, and 
wing length in all localities (Figs.  3, 4, 5, Additional 
file  1: Table  S2). The genotype-by-environment term 
was significant (or nearly so) for all three traits in mul-
tiple populations, indicating significant genetic variation 

among families for the response to temperature (differ-
ent slopes among families; Figs. 3, 4, 5). Median survival 
times (larval hatch to adult death) of families within each 
locality were highest at 20 °C and decreased with increas-
ing temperature. Family survival was significantly differ-
ent within each locality at each temperature (Additional 
file 9: Figure S6).

Fig. 3  Average larval development time (days) of each family (uniquely colored line) by locality and temperature treatment (20, 24 and 28 °C) (a–g). 
ANOVA results in each panel: G, genetic variation (family); E, phenotypic variation (temperature); GEI, genotype-by-environment interaction (family 
× temperature); *P < 0.05, **P < 0.01, ***P < 0.001; n, number of families. Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, 
Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; SJU, Lake Juturnaiba
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Estimators of population differentiation: AMOVA, FST 
and PST
The hierarchical AMOVA (Table  2) revealed highly sig-
nificant levels of variation at each level (P < 0.001), and the 
genetic variation was mainly accounted for within indi-
viduals (71.8%), followed by among individuals (19.1%) 
and between states (9.1%). Pairwise FST between localities 

of the field collected females (P generation) ranged from 
0.045 to 0.183, with the lowest FST values between paired 
sites within the same state, as expected (Table 3). The cal-
culated pairwise PST values across all lab-reared progeny 
(F1 generation) by locality were generally greater than FST 
for larval development (range: 0.660–0.995) (Table  4), 
adult lifespan (range: 0.0004–0.972) and wing length 

Fig. 4  Average adult lifespan (days) of each family (uniquely colored line) by locality and temperature treatment (20, 24 and 28 °C) (a–g). ANOVA 
results in each panel: G, genetic variation (family); E, phenotypic variation (temperature); GEI, genotype-by-environment interaction (family × 
temperature); * P < 0.05, ** P < 0.01, *** P < 0.001; n, number of families. Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, 
Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; SJU, Lake Juturnaiba
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(range: 0.211–0.994) (Table 5), with few exceptions. The 
lowest pairwise PST values for these three traits were 
between localities within the same state (Tables  4, 5). 
Comparison of PST values for progeny life history traits 
with parental FST values reveals that PST values are nearly 
all substantially greater, an indication that directional 
selection is responsible for some of the genetic differen-
tiation of life history traits among regions.

Discussion
Using a representative sample of fine-scale SNP data, 
and an extensive common-garden experiment, we found 
strong evidence of among-population genetic differen-
tiation as well as within-population variation in plasticity 
in major life history traits. In particular, our SNP analy-
sis found population differentiation according to major 
biome designation rather than at a local scale, similar to 

Fig. 5  Average wing length (mm) of each family (uniquely colored line) by locality and temperature treatment (20, 24 and 28 °C) (a–g). ANOVA 
results in each panel: G, genetic variation (family); E, phenotypic variation (temperature); GEI, genotype-by-environment interaction (family × 
temperature); * P < 0.05, ** P < 0.01, *** P < 0.001; n, number of families. Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, 
Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; SJU, Lake Juturnaiba
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Table 2  Analysis of molecular variance (AMOVA), with individual Ny. darlingi (n = 93) nested within localities within states

a  Based on 999 Monte-Carlo permutation tests

Abbreviation: df, degrees of freedom

Source of variation df Sum of squares Variance components Percentage of variation P-valuea

Among states 3 227031.9 1292.19 9.063368 0.001

Among individuals within state 3 139581.8 2724.092 19.106667 0.001

Within individuals 86 880726.2 10241.002 71.829965 0.001

Total 92 1247339.8 14257.284 100

Table 3  Pairwise FST between localities for field collected (P) generation

Note: Within-state comparisons are indicated in bold

Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; 
SJU, Lake Juturnaiba

APR RPV RMO TLC TPN SJU

ARS 0.046 0.067 0.070 0.106 0.100 0.183

APR 0.062 0.066 0.103 0.096 0.172

RPV 0.045 0.089 0.081 0.149

RMO 0.092 0.081 0.149

TLC 0.061 0.132

TPN 0.120

Table 4  Pairwise PST between localities of F1 generation for larval development time

Note: Pairwise FST values calculated between populations of field-collected Ny. darlingi by locality. Within-state comparisons are indicated in bold

Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; 
SJU, Lake Juturnaiba

ARS APR RPV RMO TLC TPN SJU

ARS 0.935 0.986 0.988 0.993 0.991 0.996

APR 0.970 0.980 0.990 0.988 0.995

RPV 0.757 0.964 0.966 0.989

RMO 0.911 0.928 0.982

TLC 0.704 0.933

TPN 0.660

SJU

Table5  Pairwise PST for adult lifespan and wing length of laboratory reared F1 generation

Notes: Pairwise PST values calculated between populations for larvae development time (days), adult lifespan (days) and wing length (mm)

Within-state comparisons are indicated in bold

Abbreviations: ARS, Ramal Novo Horizonte; APR, Manaus-Brasilierinho; RPV, Porto Velho; RMO, Machadainho D’Oeste; TLC, Lagoa da Confusão; TPN, Porto Nacional; 
SJU, Lake Juturnaiba

ARS APR RPV RMO TLC TPN SJU

ARS – 0.0004 0.832 0.771 0.959 0.861 0.762

APR 0.394 – 0.843 0.787 0.956 0.840 0.764

RPV 0.517 0.788 – 0.184 0.901 0.589 0.936

RMO 0.722 0.871 0.211 – 0.923 0.687 0.926

TLC 0.870 0.919 0.693 0.565 – 0.472 0.972

TPN 0.965 0.971 0.942 0.941 0.919 – 0.917

SJU 0.993 0.994 0.991 0.991 0.986 0.887 –
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previous findings [37]. We also found evidence of varia-
tion in plasticity in life history traits at local scales. The 
genetic structure of Ny. darlingi populations as well as 
the local-level variation for plasticity of this vector has 
major implications for the future of malaria elimina-
tion in South America. A recent report from the World 
Health Organization highlighted the importance of novel 
and local approaches as vital for malaria elimination [55] 
and our findings indicate that the variation at the local 
level could enable some populations to potentially toler-
ate changing temperature (i.e. Amazonia biome) and for 
potential increased local transmission in southern popu-
lations (i.e. Rio de Janeiro).

In partial support of previous findings of differentia-
tion according to biome and physical barriers [37], popu-
lations analyzed in the present study clustered by major 
biome. A new finding was the detection of low admixture 
between the two states at the same latitude (Rondônia, 
Tocantins) (Fig. 2). Our study revealed geographical divi-
sions, with pairwise FST between localities (34–120 km 
apart) lowest within (range: 0.046–0.070) compared to 
between biomes (range: 0.081–0.183) (Table  3) indicat-
ing weaker genetic differentiation at smaller geographical 
scales. These findings suggest that biome boundaries may 
represent strong barriers to gene flow in Ny. darlingi. 
There is limited evidence from SNP analysis of significant 
microgeographical genetic differentiation of Ny. darlingi 
from western Amazonian Brazil related to varying levels 
of deforestation among municipalities (that ranged from 
60–1600 km apart); one study detected significant dif-
ferentiation when comparing an older, highly deforested 
agricultural settlement 60 km from a newly settled one 
that retained high forest cover levels [38], and another 
detected low and non-significant variation when compar-
ing multiple deforestation levels among several Brazilian 
Amazon settlements [42].

A study of the closely related species An. gambiae (s.s.) 
and An. coluzzii, collected from 15 sites across Africa and 
tested with over 50 million SNPs, revealed clustering by 
geographical region rather than species, and as predicted, 
lower FST values within rather than between biomes [56]. 
Population structure of Anopheles species that have been 
analyzed is strongly affected by geographical division; 
such demarcations may break down in the future as the 
integrity of biomes is eroded by deforestation and climate 
change. Specifically, in South America, under a high CO2 
emission model, there could be substantial reduction 
(3%) in tropical forest area in South America in the next 
10 years and up to 18% by 2100 [57]. As Ny. darlingi is 
primarily associated with forested areas, its range [58] 
and population structure will likely be altered. Variation 
at the individual level was high in this study (72%) and 
suggests potential for adaptation.

Our study extends previous findings of regional varia-
tion in life history traits of Ny. darlingi [7] to the detec-
tion of significant genetic variation within localities. 
Significant genetic variation between families was found 
consistently within populations within the Amazonia 
biome (larval development time, adult lifespan and adult 
body size) and families from the Mata Atlântica exhibited 
significant genetic variation for adult lifespan and body 
size. These populations (Amazonas and Mata Atlântica) 
may have greater adaptive potential to increase their 
resistance to changing temperature given their responses 
in the laboratory experiment. PST values [52] of localities 
within each state were the lowest for all three life history 
traits (larval development time, adult lifespan and wing 
length), as expected. Because PST values are nearly uni-
formly substantially greater than the parental FST values, 
we infer that there is directional selection driving genetic 
differentiation of life history traits among regions. Com-
bined with our evidence that there is standing genetic 
variation for performance at different temperatures 
within populations, future selection could favor pheno-
types that tolerate increased temperatures.

The environment substantially influences mos-
quito vector traits. In our study, increased temperature 
reduced larval development time in all populations with 
the magnitude of reduction in adult lifespan and body 
size dependent on population. The dramatic differences 
in larval development time however, were not a clear pre-
dictor of adult longevity due to differences between pop-
ulations. Our data show that the relationship between 
larval conditions and adult traits is not linear but rather 
complex. Temperature of larval and adult environments 
had significant effects on An. gambiae (s.s.) development: 
increased larval rearing temperature (23–31 °C) resulted 
in smaller larvae and adults whereas increased adult tem-
peratures reduced the proportion of egg hatch [30]. The 
effects of temperature can reduce mosquito population 
size over time, with smaller individuals laying fewer eggs. 
On the other hand, smaller increases in temperature can 
increase mosquito population size, with a field study of 
An. gambiae (s.s.) in Kenya revealing greater fecundity 
and vectorial capacity of mosquitoes placed in homes 
that were 0.7–1.2  °C warmer compared with control 
homes [59].

Vector control interventions need to consider varia-
tion in life history traits [7], behaviors [5], and habitats 
[21]. At a high nutrition diet, low temperature treatment 
Anopheles were found to be larger and more likely to sur-
vive exposure to a LC50 dose of permethrin [60]. Data 
from our study suggest that larger doses of permethrin 
would be required in southern compared to northern 
populations of Ny. darlingi. Interventions such as long-
lasting insecticidal nets (LLINs) are highly effective and 
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target adult mosquitoes that are mainly endophagic and 
endophilic. The biting behavior of Ny. darlingi is variable 
[41, 61], compromising the efficacy of IRS or LLINs. Field 
studies of Ny. darlingi reveal endophagy and exophagy 
at different times throughout the night [5], and there is 
no evidence for a genetic basis of these behaviors [41]. 
Ivermectin treatment of cattle was shown to reduce An. 
arabiensis fecundity by nearly 60% after deployment of 
LLINs compared to LLINs alone, supporting the use of 
combination interventions to help achieve population 
elimination [62].

The plasticity of Ny. darlingi, including biting behav-
ior [5, 41], host [12, 63] and breeding site [19–21] pref-
erences, coupled with the potential of families within 
certain populations to withstand changing environ-
ments, help explain its status as the major malaria vec-
tor in South America. The present study contributes to 
the growing body of evidence of high levels of plasticity 
in Ny. darlingi, and significantly, presents evidence for 
genetic variation in plasticity within populations.

A potential study limitation was that we were unable 
to collect Ny. darlingi from a second locality in Rio de 
Janeiro although we had previous evidence of its pres-
ence [37]. This limited the comparison of life history trait 
responses from paired localities within Rio de Janeiro 
State and reduced our ability to adequately test popula-
tion structure within this biome. While the FST values 
were calculated from field collected mosquitoes and 
PST values from laboratory-reared progeny, it is unlikely 
that there would accrue significant genetic variation 
between parent and offspring in one generation. To date, 
Ny. darlingi has not been tested for polyandry, although 
An. gambiae exhibits low polyandry (12%) [64] whereas 
nearly 25% of An. arabiensis females had been multiply 
inseminated [65]. We treated individuals within families 
as full-siblings assuming that polyandry did not con-
tribute significantly to the observed variation between 
families.

The study design of our laboratory experiment to 
observe life history traits at a constant temperature 
throughout the mosquito life cycle was somewhat lim-
ited by space and resources. The temperatures in this 
experiment were chosen to avoid extremes that can lead 
to excessive mortality that would limit comparisons [30], 
and reflect averages at specific latitudes; they may not 
reflect specific microclimates for each locality. The tem-
perature range (8 °C) we used may not reflect actual tem-
peratures projected for Brazil under climate change [16, 
66, 67]. Research with established laboratory colonies has 
also shown that fluctuating temperatures may more accu-
rately reflect the natural environment, and affect life his-
tory traits differently compared to constant temperatures 
[68].

Our treatment of adult mosquitoes (providing only 
water, no food) deviates from the natural adult environ-
ment which involves sugar feeding and potential blood 
meals for females as well as sugar-feeding for males. On 
the other hand, the average adult longevity in our study 
was 3.09  days compared to field data of daily survival 
rates that detected between 3.73 and 23.9 days for adult 
females from two Peruvian sites [12]. Our research did 
not investigate variation in biting behavior, fecundity 
and susceptibility to Plasmodium that can be affected by 
temperature and Ny. darlingi population specificity. The 
establishment and maintenance of a laboratory colony 
in Peru [69] and Brazil [70] as well as successful Plasmo-
dium infection of colony mosquitoes [71] would facili-
tate investigations of this variation over generations and 
between populations.

Conclusions
This study identified the population structure and degree 
of genetic variation and phenotypic plasticity of Ny. 
darlingi in Brazil. The genomic signatures indicate that 
genetic divergence occurs at the level of biomes, with 
phenotypic traits varying more than molecular markers 
indicating a role for natural selection via climate or veg-
etation structure in driving differentiation. A key result 
is our finding that there is genetic variation for both life 
history traits and their plastic responses within popula-
tions to temperature, indicating future adaptive capacity 
to changes in temperature. Future research that further 
quantifies the effects of environment and population on 
life history traits relevant to transmission will be vital 
for predicting variation in transmission potential and 
informing modeling efforts.
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