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Cardiovascular disease (CVD) is a common disease with high mortality rate, and

carotid atherosclerosis (CAS) is one of the leading causes of cardiovascular disease.

Multisequence carotid MRI can not only identify carotid atherosclerotic plaque

constituents with high sensitivity and specificity, but also obtain different morphological

features, which can effectively help doctors improve the accuracy of diagnosis. However,

it is difficult to evaluate the accurate evolution of local changes in carotid atherosclerosis in

multi-sequenceMRI due to the inconsistent parameters of different sequence images and

the geometric space mismatch caused by the motion deviation of tissues and organs. To

solve these problems, we propose a cross-scale multi-modal image registration method

based on the Siamese U-Net. The network uses sub-networks with image inputs of

different sizes to extract various features, and a special padding module is designed to

make the network available for training on cross-scale features. In addition, to improve

the registration performance, a multi-scale loss function under Gaussian smoothing is

applied for optimization. For the experiments, we have collected a multi-sequence MRI

image dataset from 11 patients with carotid atherosclerosis for a retrospective study.

We evaluate our overall architectures by cross-validation on our carotid dataset. The

experimental results show that our method can generate precise and reliable results with

cross-scale multi-sequence inputs and the registration accuracy can be greatly improved

by using the Gaussian smoothing loss function. The DSC of our Siamese structure can

reach 84.1% on the carotid data set with cross-size input. With the use of GDSC loss,

the average DSC can be improved by 5.23%, while the average distance between fixed

landmarks andmoving landmarks can be decreased by 6.46%.Our code is made publicly

available at: https://github.com/MingHan98/Cross-scale-Siamese-Unet.
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INTRODUCTION

Cardiovascular disease (CVD) is a common disease that causes
death worldwide (1). According to the 2019 Global Burden
of Diseases and Risk Factors Report released by the World
Health Organization, between 1990 and 2019, the prevalence of
cardiovascular diseases has steadily increased, almost doubling.
In 2019, one third of the global deaths were due to cardiovascular
diseases (2). Among them, China has the largest number of
deaths from cardiovascular diseases. Atherosclerosis, as the
pathological basis of cardiovascular disease, is one of the main
causes of CVD, and it is of great significance in the diagnosis and
treatment of ischemic vascular diseases (3). The carotid artery is
the most common location for atherosclerosis (4). Patients with
carotid atherosclerosis (CAS) need to be checked regularly to
control the development of the disease.

As the manifestation of atherosclerosis in the carotid artery,
CAS is based on the neck atherosclerotic deposits appear on
the walls of arteries. Due to the thickening of the walls and
lumen, a type of disease characterized by stenosis and decreased
blood vessel elasticity occurs (5), the deposits form plaque
on the carotid artery. Because the carotid artery is superficial
and has less movement, the plaque here is easier to detect.
Pathological studies have shown that the occurrence of clinical
symptoms of patients is mainly related to the pathological
morphology and pathological classification of arterial plaques,
among which vulnerable plaques and unstable plaques are the
main reasons for the occurrence of clinical symptoms (6, 7).
The main pathological features of the reasons include thin
fibrous caps, larger lipid cores, and a large number of new
blood vessels in the plaques (8). The morphology of vulnerable
plaques is mainly a large lipid core under the thin fiber cap, while
the morphology of unstable plaques includes plaque rupture,
plaque ulcers and calcified nodular plaques (9, 10). Unstable
plaque is considered to be the main cause for the occurrence of
ischemic stroke (11). Vulnerable plaques and unstable plaques
are prone to rupture and hemorrhage under the action of various
hemodynamics (12), which leads to internal lipid-rich necrotic
core, intraplaque hemorrhage, and surface disruption and in turn
leads to the occurrence of clinical symptoms of ischemic stroke
(13). Therefore, early analysis and inspection of the number,
composition and vulnerability of carotid plaques are essential for
the prevention and treatment of ischemic stroke.

Magnetic resonance imaging (MRI) is a leading non-
invasive imaging diagnosis and treatment method for carotid
atherosclerosis (14). High-resolution MRI can clearly show the
external morphological features, internal structural components
and location distribution information of plaques. In other words,
MRI can identify the carotid plaque constituents in vivo with
high sensitivity and specificity (15). MRI uses magnetic fields
and computer-generated radio waves to create detailed images of
internal organs and tissues (16). Cardiovascular-focusedMRI can
assess structural problems in the aorta (17), such as aneurysms,
dissections, vascular inflammation and blockage. Comparing
the changes of lesion characteristics at the same location,
multi-sequence carotid MRI can obtain different morphological
features (18). However, due to the geometric spatial mismatch

caused by inconsistency of different sequence parameters and
movement deviation of tissues and organs, it is difficult to
evaluate the accurate evolution of local changes in carotid
atherosclerosis in multi-sequence MRI (19). In addition, during
the image acquisition, the position of patient’s blood vessel may
be different, resulting in the relative bending and distortion of the
anatomical structure in the multi-sequence images. Therefore,
it is necessary to use medical image registration methods for
correction to improve the accuracy of diagnosis.

Medical image registration establishes the correspondence
between spatial position and anatomical structure by finding
some spatial transformations (20). In recent years, deep learning
methods have been applied in medical image registration (21). de
Vos et al. proposed a ConvNet network structure (22). ConvNet
network uses the Siamese network architecture proposed by
Chopra et al. (23). Two Convolutional neural network (CNN)
branch networks are used as the input of fixed image and moving
image to generate two feature maps. The output parameters of
ConvNet network are affine parameters, so the method belongs
to affine registration. However, this method only considers
the problem of affine deformation, and does not research
on deformable registration. For medical images, deformable
registration is the main application method of image registration.
Hu et al. (24) developed a weakly supervised registration
framework for multimodal image registration, which predicts a
dense correspondence using labels of anatomical structures. It is
suggested that anatomical labels are more reliable and practical.
Wang et al. (25) introduced a novel architecture named the
constrained affine network (CAN), which combines deformable
image registration with affine transformation for multi-sequence
MR image registration. The network is also weakly supervised
trained with anatomical label to predict a displacement vector
field (DVF) between pairs of input images. Although these image
registration methods show promising registration accuracy and
efficiency, there are still inherent limitations. Due to the different
parameters of different image acquisition devices, multimodal
medical images often have different image sizes, which leads
to crop the image before image registration. It would not
only increase the workload of preprocessing, but also since the
registration model trained in the same size can only register
images of uniforms, it is difficult to apply the trained registration
model to practical applications.

The Siamese network was proposed as a deep solution
to classification problems, which used discriminative learning
methods to extract the key features of training data and
to match new samples without prior information (23, 26).
The Siamese network is a twin structure of conjoined neural
networks. It contains two ormore identical sub-networks sharing
the convolutional layers, which means that they have the
same convolution parameters and weights. So the parameter
update during training will be reflected in both of the subnets.
In this case, the training parameters of the entire network
can be reduced, and the training speed can be accelerated.
Therefore, it is appropriate to use Siamese structure for cross-
size training. The U-net (27) and its variants (28, 29) was
proposed and widely used in medical image processing, as it
combines low-resolution and high-resolution information, and
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has achieved good performance in training with small samples.
In this paper, we present a cross-scale Siamese U-net scheme
for multi-modal medical image deformable registration. The
registration frameworks adopt a weakly supervised learning
form, only the anatomical labels are needed for the loss function
calculation during the training process, which realizes the
effective registration of specific tissue. It takes full consideration
of the inconsistent size of deformation fields without introducing
additional network parameters. The network uses sub-networks
with image inputs of different sizes to extract various features,
and a special padding module is designed to make the network
available for training on cross-scale features. In addition, to
improve the registration performance, a multi-scale loss function
under Gaussian smoothing is applied for optimization.

MATERIALS AND METHODS

Datasets and Pre-processing
We use the clinical carotid artery data set collected from our
collaborative hospital to conduct experiments to evaluate the
proposed registration method. This clinical carotid artery data
set contains 11 cases of carotid atherosclerosis three-dimensional
carotid MRI images, and each patient has several different
sequences to analyze the development of atherosclerosis. Patients
attending the stroke unit and neurovascular clinics in hospital
with carotid artery disease were invited to participate in the study.
Only those patients who can give written informed consent were
recruited. Patient demographic and clinical measurements were
also recorded. The criteria for inclusion are: (1) internal carotid
artery stenosis of 30–69% on duplex imaging during screening
assessment; (2) normal sinus rhythm, confirmed by 24 h
Holter monitoring and normal transthoracic echocardiography.
Exclusion criteria include: (1) previous CEA of the index carotid
artery; (2) cardiac arrhythmias; (3) a known coagulation/clotting
disorder potentially responsible for the patient’s symptoms; (4)
patients having received thrombolysis for the ictal event; and
(5) clinical contraindications to MRI such as inner ear implants,
metallic implants and cardiac pacemakers.

A fast spin echo (FSE, CUBE) was performed on a 1.5T MR
system and MR images were captured using a bilateral four-
channel phase aligned carotid surface coil (PACC, Machnet BV,
Elde, The Netherlands). This batch of images contains three main
modes: T1-weighted sequence (T1), CUBE sequence (T1GD)
using Gd contrast agent, and three dimensional TOF sequence.
The imaging parameters of T1 and T1Gd CUBE sequences were
as follows: Field of view: 14 × 14 cm2, TR/TE: 400 ms/10.8ms,
slice size: 512 × 512, slice resolution: 0.2734 × 0.2734 cm2,
slice thickness: inserted to 0.6mm, including the number of
slices in coronal position: 64–72, image space coordinate system
orientation :RSA (Right, Anterior, Superior). The parameters
of TOF are as follows: Field of view: 14 × 14 cm2, TR/TE:
29.2 ms/3.3ms, slice size: 256 × 256, slice resolution: 0.5469
× 0.5469 cm2, slice thickness: inserted to 1mm, including the
number of slices in the coronal position: 56. Orientation of
image space coordinate system: RAI (Right, Anterior, Inferior).
We select T1GD and TOF sequences for image registration

experiments. T1GD sequence is a fixed image, and TOF sequence
is a floating image.

There are differences in resolution between different
modalities of multi-modal arterial data, so it is necessary to
perform preprocessing operations on the original data. To
remove the intensity unevenness between different images, we
apply N4 bias field correction to correct the selected sequence of
images (30). After that, linear resampling is used to interpolate
all sequence images, and the voxels of all sequence images are
unified to the size of 0.2734× 0.2734× 0.2734. According to the
carotid artery position of each patient, all carotid artery images
are adjusted and cropped to a uniform size by removing the outer
boundary of the image. The cropping size of different patients
is the same. After that, we cut the three-dimensional carotid
artery MRI images of 11 patients with carotid atherosclerosis
into two halves, and deleted two abnormal right carotid artery
data. Then, linear resampling is again performed to 0.6mm voxel
spacing. Finally, we obtained a total of 20 pairs of MR images.
On this basis, in order to verify the purpose of the research,
we obtain a suitable cropping area for each patient’s data of the
carotid artery according to the position of the carotid artery, so
as to prevent the carotid artery part in the image from being
cut off and causing the distortion of the images. The original
image size of T1GD and TOF sequence is 112 × 64 × 64, we
adjust the size of TOF sequence to 96 × 56 × 64 by cropping in
cross-size experiments. An example of the carotid artery lesion
is shown in Figures 1, 2 shows an example of cropped carotid
artery MR sequences. The upper part corresponds to the original
multi-modal registration image, and the lower two images only
crop a single floating image TOF sequence.

From the patients, 20 pairs of corresponding anatomical
landmarks were labeled and registered by two doctors and
two research students using ITK-SNAP (31) on the original
image data, and all were confirmed by two second observers
including a radiologist and a research expert. The lumens
of carotid arteries on original T1GD and TOF slices were
segmented automatically first using cascaded residual U-Net (32)
and then edited and confirmed manually. Besides full lumen
segmentations for all cases, the landmarks also include the artery
bifurcations and lesions as shown in Figure 3. The landmark
annotation process took more than a month. Among all the
anatomical labels, we used the lumen labels for both training
and validation. For each patient, only one position was labeled
as the bifurcation, and several position points on different slices
were selected for the plaque according to the location and size
of lesion. The bifurcation and plaque labels were only used
for evaluation.

Additionally, to verify the generalizability of our algorithm,
we also evaluate the registration model on brain MRI scans from
the Brain tumor Segmentation (BraTS) 2020 challenge (33). The
training set contains 373 cases of brain MRIs with the patients’
tumor segmentedmanually. There are four contrasts (T1Gd, T1c,
T2, T2-FLAIR) used in the study, and the size of images is 240
× 240 × 155 with 1mm isotropic resolution in a standardized
axial orientation. We choose T1c and T2 to form 80 pairs of fixed
images and moving images for experiments, 60 pairs for training
and 20 pairs for testing. All raw scans are down-sampled to the
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FIGURE 1 | The lesion in a carotid artery.

FIGURE 2 | An example of cropped carotid artery MR sequences.

size of 96 × 96 × 64. Specially, we remove the edema portion
of the tumor segmentation to focus on the tumor structure.
As the raw scans in BraTS are well-aligned, we transform the
T2 images with random synthetic deformation fields generated

by using elastic deformations followed by Gaussian smoothing
(34). In this way we produce reasonable mis-alignments
and the synthetic deformations are used as ground truth
for evaluation.
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FIGURE 3 | Example of labeled carotid bifurcations and plaques.

Registration Based on the Siamese U-Net
Image registration refers to finding a spatial one-to-one mapping
relationship from voxels in one image to voxels in another image.
The former image that needs to find the spatial transformation
mapping relationship is denoted as the moving image IM(x), and
the latter that does not need to find the transformed image is
called the fixed image IF(x). The dimensions of the fixed image
IF(x) and the moving image IM(x) are set to d, and they are
respectively defined in the spatial domain of their respective
images and set as: ΩF ⊂ Rd and ΩM ⊂ Rd. The registration
network looks for a displacement function u(x) to obtain the
spatial mapping relationship, so that it is aligned with IF(x)
and IM(x + u(x)) in the space domain. The above registration
is considered to be a process of finding a conversion mapping
T(x) = x + u(x), which is a mapping from a fixed image to a
moving image T(x): ΩF ⊂ Rd → ΩM ⊂ Rd. In order to ensure
the alignment accuracy of the registration, a penalty constraint
term needs to be added as the cost function L, Therefore,
the registration problem can be expressed as an optimization
problem. The goal is to minimize the cost function L. The
formula can be expressed as:

T̃ = argmin
T

L (IF , IM ,T) . (1)

The cost function is called the loss function. According to
different data types, different metrics are selected as the loss
function. The optimal registration effect can be obtained through
continuous iterative optimization. Therefore, the essence of
image registration is an iterative optimization problem of finding
the optimal solution.

In this paper, Siamese network is used to construct a
registration network that can realize image registration between
different sizes. Different from the general convolutional neural
network, the input of the Siamese network includes two image
channels, and the output is the similarity between the two images.
When the Siamese network is used for image registration, the
dual channel of the Siamese network is used to extract the
bottom-level feature information of the input image, and then the
bottom-level feature information is normalized. In particular, the
models used for feature extraction of two images share weights to

ensure that the deep features of the two images can be obtained
under the same metric. The U-net network has proven to show
good performance in many medical image tasks due to unique
structure (27, 35, 36), so the registration structure designed
is modified on U-net model. The down-sampling structure is
similar to Siamese network (37). However, the up-sampling
structure is added to the network that form a model similar to
the U-Net structure.

As mentioned above, the Siamese-based network framework
is transformed from the U-Net structure, and uses the same
structural parameters as the U-Net network to learn the
displacement vector field between the fixed image and the
moving image. Figure 4 shows the internal details of the
network structure of cross-scale Siamese U-Net, the network has
two down-sampling encoders and one up-sampling decoding
structure frame and skip connection. The down-sampling
encoder can obtain the multi-scale features of each different level
of the input image, and can obtain the image context information.
The information is important for the transformation of
registration, which make the network can obtain the non-linear
transformation information from the moving image to the fixed
image. In the figure, a 7 × 7 × 7 kernel used in the first
convolution layer to expand the receptive field. In addition, each
down-sampling convolution module has two concatenated 3 ×

3 × 3 convolutions and a 2 × 2 × 2 max-pooling as the down-
sampling space operation. Unlike common registration methods
based on convolutional neural networks, the input is added to
the anatomical label corresponding to the registered image as
auxiliary information to obtain the location of organs to be
registered. The sub-network uses the weight sharing structure
of the Siamese network to make the fixed image network and
the moving image network obtain the same network parameters.
At the same time, the size of the registered image is restored
by sampling up the decoding path, and the restored size is the
same as the fixed image, so that the correspondence between
each voxel can be established from the pair of registered images.
In addition, the skip connection still needs to obtain the same
feature size as the up-sampling through the filling module, which
is used to make up and restore the image information, and
the padding method of the skip connection is unified as edge
zero-value padding. Finally, a convolution operation is used
for dimensionality reduction and feature fusion, and the three-
dimensional displacement vector field between the registered
image pairs is obtained.

Cross-Size Registration
In the previous section, the registration framework of the
Siamese U-Net structure was introduced. In this section, we will
introduce the basic principles of using this framework to achieve
registration of cross-size inputs.

During the convolution operation of the convolutional
neural network, the output shape of the convolutional layer is
determined by the shape of the input and the convolution kernel.
In a certain convolutional layer, suppose the input feature shape
size is nh × nw. The size of the convolution kernel is kh × kw,
then we will get the output feature shape size is (nh - kh + 1) ×
(nw - kw + 1). So, if we apply many consecutive convolutions, we
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FIGURE 4 | The framework of cross-scale Siamese U-Net. (A) The inputs of Siamese U-Net containing an image pair and a label pair. (B) The feature extraction

sub-network of down sampling. (C) The padding module. (D) The up-sampling structure to restore the feature size of deformable displacement field.

will get an output much smaller than the input, and eliminate
any interesting information on the original image boundary.
Using padding to deal with this problem is the most effective
way. Padding is a term related to convolutional neural networks,
which refers to the number of pixels added to the image when
the CNN convolution kernel processes the input. For example,
if the padding in the CNN is set to zero, then the value of each
pixel added will be zero, However, if the zero padding is set to 1, a
pixel boundary will be added to the image, where the pixel value
is 1, and the convolution operation of the convolutional neural
network usually needs to be filled by default. Since the branch
network of Siamese U-Net has the same structural parameters,
so the input images are different, the two outputs will inevitably
get different feature sizes. Using the padding method of the
convolutional neural network to fill the two features make the
feature size consistent.

There are many existing padding methods, including zero
padding, boundary copying, mirroring and block copying.
The registration method of the weakly supervised learning
registration is mainly aimed at a certain tissue of the image for
effective registration, and the anatomical parts that need to be
registered rarely have image boundaries (24). So, the corners
and borders of these images rarely play a role in the registration
process. At the same time, considering the need to maintain the
original feature information as much as possible to reduce the
impact of feature errors caused by padding, only the padding

method of zero padding is used to supplement the boundary. The
specific details of this method in the Siamese U-Net structure.
The structure use two padding methods, namely symmetrical
padding and single-edge padding, the feature padding method is
selected according to the size and position corresponding to the
input registration images. If the image size is uniformly different
on the edge, then the symmetrical method is used. If the image
size differs on a single edge, use single edge padding.

It is worth noting that the proposed padding module is placed
between the down-sampling and up-sampling structure and is
not placed before the up-sampling network input for padding.
Regarding the conditions of the stitching operation, placing the
padding module before the up-sampling can also achieve image
registration of different sizes. However, it will have an adverse
effect on the accuracy and timeliness of the networkmodel. Then,
the reasons are as follows. First, the registration network chooses
a twin network based on the 3D U-Net (38). This structure is still
a typical encoding-decoding structure. The encoder obtains the
underlying semantic features through multiple down-sampling.
These underlying semantic features are connected through skip
connection (36), so that the feature maps recovered from the up-
sampling merge with more underlying features. However, if the
original input image is pad, it will affect the underlying features
of the original image, and reduce the accuracy of the registration
model. Second, the registration model is based on an end-to-
end image registration framework, if the network training is
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carried out in this way, the predicted displacement vector field
has to be pad with each registered image pair in order to meet
the model parameters of the sampling structure on the training
network, generate the corresponding displacement vector field.
The method is almost a disguised preprocessing operation on
the original image, which violates the principle of ensuring the
registration on the basis of the original image, and affects the
timeliness of the registration.

Gaussian Smoothing Optimization
The registration structure based on Siamese network needs to
use dice as the loss function to calculate the similarity between
fixed image and moving image labels. The loss function of Dice
coefficients is as follows:

LDSC(p, g) = 1−
2pg

p+ g
, (2)

where p represents the binary label corresponding to the
predicted segmentation pixel, g represents the binary label
corresponding to the ground truth pixel. This formula is
equivalent to the ratio of the intersection and union of the
segmented area node predicted by the network and the ground
truth. It uses the pixels of the same category in the foreground
area as a set relationship to calculate the loss function. This
calculation method ignores a large number of background pixels
and solves the problem of unbalanced training data, so the
convergence speed is faster, and achieve an ideal performance in
the segmentation task. However, there may be some problems for
the registration task. The gradient form obtained by deriving L is
as follows:

∂LDSC(p, g)

∂p
=

2g2

(p+ g)2
. (3)

It can be seen from the gradient formula that there is a
square term in the denominator. However, in medical image
registration, there are often mismatches or incomplete matches
between the anatomical labels of the registered images. At the
same time, there are few anatomical labels of the structure to be
registered, which will cause these values to be small. In this case,
the obtained gradient will be very large, resulting in the unstable
training, so the registration network will be difficult to obtain
adaptive parameters. In order to overcome this problem and
obtain an ideal registration model, the Gaussian smoothing (39)
method is used to make the anatomical labels of the registered
image have a reasonable smooth blur, and the multi-scale dice
method is used to optimize the loss function. The Gaussian fuzzy
kernels in the convolutional neural network is used to perform
Gaussian smoothing on the anatomical labels, which is defined
as follows:

k(x) =
1

2πσ 2
e

−x2

2σ2

, x ∈ [−3σ , 3σ + 1) , (4)

where σ refers to the standard deviation. According to the
Gaussian function, given different variances σ, different fuzzy
kernels will be generated. Using the range of the variance value σ,

we can obtain 6σ positive and negative symmetrical values, and
then divide each obtained value by the sum of all values to obtain
the final required fuzzy kernel, Which is used as the convolution
kernel parameter of convolution, so that the generated blur
kernel can perform convolution operation on the anatomical
label. Figure 5 shows the Gaussian blur display under different
variance values σ. It can be seen in the figure that when σ is 0,
no blur kernel is generated, and the fuzzy convolution operation
cannot be performed. As the variance value σ gradually increases,
the degree of blurring becomes higher. The loss function of
multi-scale dice under Gaussian smoothing is as follows:

LGDSC
(

p, g
)

= 1−
2pzgz

Z
(

pz + gz
) , z ∈ σ , (5)

where Z is the number of scales, and pz and gz respectively
represent the moving and fixed binary segmentation labels of the
registered image after Gaussian smoothing. We use an isotropic
Gaussian filter to effectively extract the spatial information of
the binary segmentation label, the σ = {0,1,2,4,8} set size used
in the experiments. For different variance values σ, a larger
Gaussian kernel will promote the global convergence of the entire
deformation field training network, while a smaller Gaussian
kernel will reflect the details of the deformation field.

In general, using various Gaussian filters to perform Gaussian
smoothing to calculate the loss function of the anatomical label is
very important for the accuracy of the medical image registration
model. The smoothed anatomical label balances the gradient
between the foreground and the background and provides a
non-saturated gradient to prevent the gradient instability in the
training process.

EXPERIMENTS AND RESULTS

Data Augmentation
CNNhas shown high-performance inmedical image registration.
However, these networks rely heavily on a large amount of data to
train the network model parameters in order to correctly weigh
the functions of each layer, because medical images cannot be
artificially produced compared to natural images, they can only
be derived from clinical patients. At the same time, the image
labels require a very high level of medical expertise, so it is
difficult to obtain accurately labeled medical image data. In this
case, data augmentation technology to expand the training data
set has more important practical significance for medical images.

In this paper, there are two main reasons for the need
of data enhancement in carotid image registration. First, it is
difficult to obtain a registered image with strictly consistent image
information in clinical practice, and different scanner types may
cause the obtained data to have small directional differences.
Second, the data collected clinically are mainly individual cases,
so the data obtained has a high degree of freedom, and
insufficient data representation will lead to insufficient fitting in
the experiment. In order to solve the problem that the number
of data sets affects the generalization ability of the model, and to
improve the accuracy and robustness of the model, we mainly
adopt two data enhancement methods. One is to use the left and
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FIGURE 5 | Schematic diagram of Gaussian blur under different variances.

right flip method to increase the number of training data before
network training, and the other is to use affine enhancement
technology during network training.

Loss Function
The displacement vector field output by the registration
framework based on the Siamese network not only needs to
ensure the accuracy of the registration part, but also ensure the
smoothness of the entire displacement field, so as to ensure
the medical rationality of the overall registered image. So the
designed loss function consists of two parts, one of them is dice y
multi-scale Gaussian smoothing as a measure of label similarity,
and the other is a penalty constraint term for smoothness. The
formula is as follows:

L = LGDSC + αLsmooth, (6)

where Lsmooth is the smoothness regular term of the displacement
vector field, which is used to constrain the displacement vector
field in training so that the network can obtain a reasonable
output. Lsmooth is defined as follows:

Lsmooth =
∑

P∈�

∥

∥∇ϕ(p)
∥

∥ , (7)

where Ω represents the space domain of the displacement
vector field, ϕ is the displacement vector corresponding to each
voxel P in Ω . So, the regular term is essentially a gradient
operation at each point of the vector field.Lsmooth use the
bending energy as the constraint item, and α is the regularization
super-parameter. In the experiment, the parameter α is set
to 0.5.

Experiments and Results
Experimental Settings and Evaluation
In our experiments, considering the limitation of insufficient
image data, we performed 4-fold cross-validation to evaluate
the performance of the model. After the preprocessing and data
augmentation, we obtained 20 pairs of carotid MR sequences
from 11 patients with carotid atherosclerosis, including 11 pairs
of left carotid arteries and nine pairs of right carotid arteries. If
both the right and left carotid artery data from a given patient are
used, we must ensure that both sides were in the same training
or test sets to prevent data leakage between the training set and
test set. We performed 4-fold cross validation both in ablation
experiments and contrast experiments. Our method is trained
using TensorFlow (40) with a single Nvidia Geforce GTX 1070Ti.
The Adam Optimizeris (41) applied for training with an initial
learning rate of 1e-4. Typically, we set the number of iterations
to 10,000 and save the model every 15 iterations, where the batch
size is set to 2.

In order to evaluate the effectiveness of the proposed
Siamese registration framework, various evaluation indexes are
set. For the quantitative analysis of experimental results, it is
impossible to clearly evaluate the transformation parameters
of the obtained displacement vector field. Therefore, there is
no unified evaluation for image registration. We use the Dice
similarity coefficient (DSC) (42, 43) to quantify the accuracy of
the registration algorithm, and the registration time to quantify
the timeliness of the registration algorithm. In addition, for
the multi-modal carotid artery data, landmarks are used as the
evaluation criteria for key points of tissue locations. Landmarks
include carotid artery bifurcations and plaque locations. We
calculated the average distance between the fixed landmark
and the moving landmark (Lm.Dist). At the same time, the
registration time is tested on the GPU as one of the metrics
to measure the registration performance. For the evaluation of
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TABLE 1 | Registration performance of cross-size carotid artery input.

Network Siam U-Net Siam Attention U-Net Siam MultiRes U-Net

Original Cropped Original Cropped Original Cropped

DSC (%) 0.825 0.816 0.841 0.833 0.741 0.756

Lm.Dist (mm) 1.127 1.349 1.305 1.273 1.339 1.435

Time (s) 0.239 0.275 0.297 0.311 0.405 0.384

All the best results are in bold.

TABLE 2 | Registration performance of different networks on carotid artery and BraTS datasets.

Network Carotid artery BraTS

DSC (%) Lm.Dist (mm) Time (s) DSC (%) TRE (mm) Time (s)

Unet 0.767 0.954 0.267 0.848 2.045 0.627

MultiResUnet 0.762 1.418 0.284 0.794 4.856 0.581

AttentionUnet 0.823 1.262 0.232 0.858 1.966 0.632

Unet + CAN 0.833 0.757 0.241 0.869 1.812 0.612

MultiResUnet + CAN 0.811 1.421 0.217 0.821 1.070 0.679

AttentionUnet + CAN 0.839 0.692 0.184 0.862 1.886 0.570

Siam Unet 0.825 1.127 0.239 0.827 2.243 0.781

Siam MultiResUnet 0.741 1.339 0.405 0.829 2.906 0.773

Siam AttentionUnet 0.841 1.305 0.297 0.867 2.095 0.703

All the best results are in bold.

BraTS data, in addition to DSC, we also evaluate the accuracy
of registration by calculating the Target Registration Error (TRE)
(44), that is the difference between the registration displacement
vector field obtained by the network output and the ground truth.

RESULTS

In order to accurately evaluate the designed registration network
performance. In the experiment, we applied U-Net, Attention U-
Net (28) andMultiRes U-Net (29) networks as basic structure for
training. The network is designed as a branch structure, called
SiamU-Net, SiamAttentionU-Net and SiamMultiRes U-net, the
networks have the same convolutional structure parameters, and
the padding module integrate into the networks. We compare
these novel structures with their original formal, and we also
compare against these networks together with the constrained
affine network (CAN) (25), which combines deformable image
registration with affine transformation for multi-sequence MR
image registration.

Table 1 shows the evaluation values of different Siam U-Net
network models after registration on the carotid dataset in the
case of both equal-size input and cross-size input. The results
show that the Siamese structures with our padding module can
achieve roughly the same registration effect whether the data is
trimmed or not. For Siam U-Net and Siam Attention U-Net,
the DSC drops a little when the TOF images are cropped into
different size. But for Siam MultiRes U-net, the DSC goes a little
up after the cropping. There is also no significant change in the
computation time with cropped input. The average variations are
about 0.08, 7.58 and 3.08% in DSC, Lm.dist and computation
time respectively. Among these networks, Siam AttentionUnet

achieves the best result in the accuracy of registration with cross-
size input, with an average DSC of 0.841, while Siam U-net
achieves the best result in Lm.dist and time, which are 1.127 and
0.239 respectively.

To verify the performance and generalizability of the
algorithm, we evaluate the Siamese based U-Net models with
CAN based U-Net models on both the carotid artery dataset
and the BraTS dataset. The experimental results are shown in
Table 2. It shows that our proposed Siamese based U-Net models
can achieve equal results with CAN based U-Net models in
both registration tasks. Specially, Siam Attention U-net can also
obtains the best DSC on the BraTS dataset.

Figure 6 displays a 3D visualization of atherosclerotic
carotid artery before and after registration. This data uses
the bifurcation position with a DSC value of 0.889 after
registration. The label used in the figure is the carotid artery
vessel label of the fixed image T1GD sequence. Figure 7 shows
the visualization of deformation vector fields (DVF) of some
examples after registration.

In the experiment of verifying Gaussian smoothing
optimization (GDSC), we compare the registration performance
in U-Net, Attention U-Net, and MultiRes U-Net networks
and compare them with dice loss function during the training
of each registration network to analyze the optimized loss
function performance. We also compare it with the dt loss
proposed in Wang et al. (25), which describes the center point
distance of the anatomical labels. The experimental results of
the registration are shown in Table 3. As shown in the table, the
performance of GDSC on the three U-Net based networks is
relatively better, especially there is an obvious improvement on
the MultiRes U-net network. Compared with original DSC and
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dt loss, by using GDSC, the DSC is increased by 5.4 and 1.0%,
respectively, while the Lm.dist is decreased by 14.3 and 23.0%,
respectively. The results show that compared with the DSC loss
function, the GDSC loss function can provide more effective

FIGURE 6 | 3D visualization of atherosclerotic carotid artery before and

after registration.

model optimization capabilities in the three networks, and the
registration performance has been improved.

Additionally, we also conduct an ablation study using different
Gaussian fuzzy kernels by adjusting the variance set. As shown in
Table 4, the variance set {0,1,2,4,8} we selected achieves relatively
good results on the three networks. Taking the AttentionUnet as
an example, compared with using the other three variance sets,
the DSC is increased by 1.9, 2.3 and 0.6%, while the LM. Dist is
decreased by 10.3, 11.18 and 1.8%, respectively.

DISCUSSION

MRmedical images have the advantages of high anatomical tissue
resolution and repeatability. Carotid MRI is an important image
morphology for identifying carotid artery vascular morphology
and quantifying carotid plaque components. For multi-modal
MRI images, different modalities can show the degree of
lumen stenosis and the plaque shape and its component
structure. In the identification and analysis of the biological
characteristics of carotid atherosclerosis, medical histopathology
and MR imaging technology have a high consistency, which
is an effective detection method for the diagnosis and
evaluation of carotid plaque. Multimodal MRI have some
problems, such as inconsistencies in the image size, scanning
orientation, and imaging morphology of the carotid artery. It
is necessary to perform unified image registration for images
of different modalities based on the spatial organization and
anatomical information.

This paper studies the registration problem of multi-
modal medical images, designs a network framework for
image registration with cross-scale inputs. Our algorithm
combines multi-scale features without increasing the number
of parameters. Gaussian smoothing loss function is applied
to achieve good registration performance. A large number

FIGURE 7 | The DVF visualization of carotid artery slices before and after registration. (A) The input T1GD image (B) the input TOF image (C) DVF visualization

after registration.
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TABLE 3 | Registration performance of carotid artery under different loss functions.

Network DSC (%) Lm.Dist (mm) Times (s)

+ DSC + dt + GDSC + DSC + dt + GDSC + DSC + dt + GDSC

Unet 0.767 0.837 0.825 0.954 0.900 1.103 0.267 0.213 0.184

MultiResUnet 0.762 0.795 0.803 1.418 1.578 1.215 0.284 0.297 0.307

AttentionUnet 0.823 0.843 0.847 1.262 0.704 1.081 0.232 0.187 0.249

All the best results are in bold.

TABLE 4 | Registration performance of carotid artery using different variance set.

Network Unet MultiResUnet AttentionUnet

σ = 0,1 DSC (%) 0.785 0.766 0.831

Lm.Dist (mm) 1.180 1.437 1.205

Time (s) 0.241 0.291 0.257

σ = 0,1,2 DSC (%) 0.803 0.783 0.828

TRE (mm) 1.206 1.393 1.217

Time (s) 0.236 0.315 0.251

σ = 0,1,2,4 DSC (%) 0.831 0.807 0.842

Lm.Dist (mm) 1.026 1.223 1.101

Time (s) 0.217 0.302 0.244

σ = 0,1,2,4,8 DSC (%) 0.825 0.803 0.847

Lm.Dist (mm) 1.103 1.215 1.081

Time (s) 0.184 0.307 0.249

All the best results are in bold.

of experiments have proved the effectiveness of the designed
algorithm; however, the research work in this article still has
limitations. Firstly, for learning methods, the weakly supervised
registration framework highly relies on the segmentation
accuracy of fixed and moving images to achieve effective
performance, so this method may encounter difficulties when
encountering imperfect or limited data labels. Secondly, although
Siamese network registration structure realizes the registration
of different sizes between fixed images and moving images, the
network framework is not adaptable to various sizes. If the
internal size of the floating image or the fixed image is different,
it still not to achieve registration, this method can only be limited
to cross-scale registration under the uniform size of the image.

Due to the lack of reliable image similarity measures or
automatic landmark extraction methods, automatic multi-modal
medical image registration has traditionally been challenging.
In this work, we use training image pairs with only sparse
annotations and perform registration with cross-scale inputs.
This allows the proposed method to be widely used in clinical
applications. The experimental results on brain MRI registration
prove its generalization. Our future work will study how to make

use of sparse training and validation labels to predict dense
correspondences in more medical imaging modalities.

CONCLUSION

In this work, we have proposed a cross-scale multi-modal image
registrationmethod based on Siamese network. The network uses
different sizes of registration image input sub-networks to extract
various image features, and a simple padding module is designed
to make the network can be trained on features of different sizes.
In addition, in order to improve the registration performance, a
multi-scale loss function under Gaussian smoothing is applied
for training optimization. The experimental results show that
our method can still guarantee the registration performance
in the case of different-size registration after applying the
padding module, and the proposed loss function can greatly
improve the registration accuracy. We believe that the proposed
technique will contribute the diagnosis and quantification of
carotid atherosclerosis since it is easy to find calcium, lipid,
fibrous cap if multi-modal carotid artery images are well-aligned.
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