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Abstract: The present study aimed to determine the effectiveness of propolis in reducing 

the microbial load in ready-to-eat (RTE) and fresh whole head (FWH) lettuces  

(Lactuca sativa L.) type Batavia. Two sanitizing solutions were employed: sodium 

hypochlorite (SH) and propolis (PS), during 15 and 30 min. Tap water (TW) was used as a 

control. Regarding the mean reduction on aerobic mesophiles, psychrotrophic and fecal 

coliforms, the SH and PS treatments showed the same pattern of variation. In all cases,  

PS was slightly more effective in the microbiological reduction in comparison with 

commercial SH. Reductions between two and three log cycles were obtained with PS on 

aerobic mesophiles and psychrotrophic counts. The information obtained in the present 

study can be used to evaluate the potential use of propolis as product for sanitizing  

other vegetables and for developing other food preservation technologies, with impact on 

human health. 
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1. Introduction 

Propolis is a material produced from the collected buds or resinous substances of plants by bees 

(Apis melifera L.). These substances are mixed with β-glycosidase enzyme of their saliva, partially 

digested and added to bee wax to form the final product. Propolis is used by the bees to defend the 

beehives from the invaders, causing death by asphyxia, and promotes conservation of their bodies, 

protecting the beehive from the resultant plagues of putrefaction. Another propolis function is the 

thermal isolation of the beehive, being used to fill eventual cracks or apertures. 

The chemical composition of propolis is highly variable mainly due to the variability of plant 

species growing around the hive, together with other factors such as climatic conditions, soil type and 

beekeeper activities. In spite of the possible differences in composition, more than 300 different 

compounds have been identified in this natural product [1], sharing considerable similarity in their 

overall chemical nature: 50% resin, 30% wax, 10% essential oils, 5% pollen and 5% of other  

organic compounds [2]. 

Propolis has been used since the primordial times due to its therapeutic properties. In the last years, 

this product has been the subject of diverse studies and reviews [3,4], which gave scientific support  

to their biological and pharmacological properties such as antibacterial, antiviral, antioxidant [5], 

hepatoprotective [6], cariostatic [7] and anticancer [8]. 

Humans today have a nutritional environment that differs from that for which our genetic constitution 

was selected. Indeed, nowadays, the industrialized society’s diets are characterized, by a decrease in 

fruits, vegetables, complex carbohydrates and fibers. Nutritional organizations have been promoting 

consumption of fresh vegetables and fruits as part of a healthy diet to prevent disease. At the same 

time, the retail industry has developed value added products such as ready-to-eat (RTE) and minimally 

processed vegetables, which meet consumer demands for convenience, healthiness and variety. 

However, the occurrence of outbreaks of foodborne illness associated with contaminated  

fresh vegetables is a serious public health problem with increasing prevalence, particularly in 

immunocompromised individuals [9,10]. 

There are many potential sources of products’ contamination, beginning at the pre-harvest phase 

and ending in the consumer’s kitchen. Critical control points remain important to avoid and/or reduce 

contamination. The practice of washing and sanitizing vegetables before consumption by the consumers 

has the potential to reduce the overall microflora of leafy vegetables. Different sanitization methods 

and several types of sanitizers have been used to reduce populations of pathogens on produce or 

prevent growth of pathogenic and spoilage microorganisms that may cause foodborne illnesses  

and/or loss of food quality [11,12]. Chlorinated compounds, mainly sodium hypochlorite are the most  

used. However, several reports have questioned its efficacy and given emphasis to the formation of 

trihalomethanes, which are carcinogenic compounds [13,14]. 

A promising alternative sanitization process could involve the use of propolis. Indeed, this product 

has attracted much attention in recent years as a useful or potential agent with application in the food 

industry for health foods, beverages and nutritional supplements. Moreover, it has also been tested as 

food preserver due to its bactericidal and bacteriostatic properties [15–18]. 

In this context, the present study aimed to determine: (a) the microbiological quality (mesophilic, 

psychrotrophic, fecal coliforms, Escherichia coli, sulphite reducing clostridium spores, S. aureus and 
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Salmonella) of commercially available ready-to-eat and fresh whole head lettuces and (b) the efficacy 

of different washing solutions (tap water, sodium hypochlorite and propolis) and contact times on  

the microbial quality. The results obtained can be used to evaluate the potential use of propolis in the 

sanitization of other vegetables and in the development of new food preservation technologies. 

2. Results and Discussion 

2.1. Propolis Characterization 

According to Sforcin et al. [18] a considerable part of papers dealing with different aspects of the 

biological properties of propolis are of limited usefulness, although they report “strong”, “remarkable” 

or “significant” activity. The reason is the lack of basis for comparison and scientific evaluation of the 

results, because they do not refer to the chemical nature of the studied propolis samples. These studies 

only report that the tests have been performed with extracts of propolis. However, it is important to 

note that propolis biological properties should be linked to a detailed investigation of its chemical 

composition and to its botanical sources [19]. For this reason, propolis used in the present study  

was characterized for: pollen grains spectra, physicochemical (moisture, ash, electrical conductivity, 

pH and wax) and bioactive compounds (total phenolics and flavonoids). 

Even though the palynological analyses revealed the presence of 9 botanical families, only 5 were 

present on all samples, whose average percentages are presented on Table 1. Indeed, in some samples 

minor pollens belonging to 4 other botanical families were found, however, since the percentages were 

lower than 3.0% and the dispersion between samples was high, these are not presented. 

The different botanical families found provide evidence for the classification of the product  

as heterofloral. The most dominant family present, with a percentage of 41.4% ± 3.8% was Erica sp., 

followed by Populus sp., Echium sp., Castanea sp., Cytisus sp. and Quercus sp. These results were 

already expected, since, in line with Pires et al. [20], the most relevant botanical families of  

the Northeast of Portugal are Ericaceae, Boraginaceae, Fagaceaea and Salicaceae. Considerable 

percentages of Populus sp. have also been reported by Falcão et al. [21] and Dias et al. [22],  

who analysed Portuguese propolis. Moreira et al. [5] obtained Castanea sativa as the dominant species 

in propolis collected from the same area but from different apiaries. 

Table 1. Palynological spectrum of the propolis samples. 

Family Pollen Type Frequency * Range (%) Mean (%) SD 

Boraginaceae Echium sp. SP 11.4–18.0  16.2 4.6 
Ericaceae Erica sp. SP 36.7–43.9 41.4 3.8 
Fabaceae Cytisus sp. IMP 3.7–6.6 5.2 1.3 

Fagaceae 
Castanea sp. IMP 8.0–14.0 11.9 4.1 
Quercus sp. MP 2.2–3.8 3 0.7 

Salicaceae Populus sp. SP 22.0–25.5 22.3 2.9 

* The following terms were used for frequency classes: SP, secondary pollen (16%–45%); IMP, important 

minor pollen (3%–15%) and MP, minor pollen (1%–3%). 

Studies concerning the physicochemical characteristics of propolis have often focused on the presence 

of polyphenols and flavonoids [5,21,23,24]. More recently, however, parameters like moisture, 
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insoluble and soluble substances, pH, conductivity, ash and waxes have received attention [22].  

The values obtained in the present study for the physicochemical parameters are presented in Table 2. 

These results are corroborated by the values obtained by Dias et al. [22], who studied propolis samples 

from four different cities of Portugal. Sousa et al. [25] obtained similar values for moisture and ash, 

even though great differences were found among the Brazilian samples studied. Concerning the waxes  

and the soluble solids, the first were higher and the second were much lower than those obtained in  

the present study. These differences are due to different botanical and geographical origins. Indeed,  

the composition of propolis is highly variable due to the diversity of plants around the hive from which 

the bees collect the exudates [1]. 

Table 2. Physicochemical characteristics of the propolis samples. 

Result Moisture 
Soluble 

Substances 

Insoluble 

Substances 
pH 

Conductivity 

(mS/cm) 

Ash 

(%) 

Waxes 

(%) 

Phenolic 

Compounds 

(GAEs) a 

Flavonoid 

Compounds 

(CAEs) b 

Mean 6.2 65.3 38.4 4.8 2.1 2.5 10.7 29.5 10.3 

SD 0.5 3.7 2.5 0.1 0.3 0.1 1.9 4.2 2.5 

Range 5.8–6.6 60.2–67.3 36.4–40.0 4.7–4.9 2.0–2.5 2.4–2.5 9.9–11.6 23.3–32.0 8.9–11.9 
a Total phenols content were expressed as mg of galic acid equivalents per g of propolis (GAEs); b Total 

flavonoids content were expressed as mg of catechin equivalents per g of propolis (CAEs). 

2.2. Effectiveness of Sanitizing Treatments 

To determine the microbiological quality of the raw vegetable, a lettuce sample was analyzed  

at the beginning, unwashed, to evaluate the initial microbiological load. As expected, RTE lettuce 

showed minor contents of bacterial burden compared to that of fresh whole head (FWH) lettuce  

(Table 3). However, results show that both the RTE and FWH lettuce analyzed presented borderline 

microbiological quality according to the Portuguese guidelines for RTE-salads (CFU/g): aerobic 

mesophilic count, unsatisfactory ˃106 and satisfactory ≤104. 

Table 3. Results (log10 CFU/g) of the microbiological analysis made to the ready-to-eat 

(RTE) and fresh whole head (FWH) lettuce submitted to different sanitization processes. 

Treatment * 

Aerobic 

Mesophiles 
Psychrotrophic 

Fecal 

Coliforms 
E. coli a Salmonella b S. aureus a 

Sulphite-

Reducing 

Clostridia c 

RTE FWH RTE FWH RTE FWH RTE FWH RTE FWH RTE FWH RTE FWH

– 4.95 5.8 5.25 5.8 1.9 2.15 ND ND ND D <2 ˂2 ND ND 

TW-15' 3.85 4.7 4.6 4.7 1.4 1.95 ND ND ND D ˂2 ˂2 ND ND 

PS-15' 2.4 3.2 3.1 3.4 0.5 1.2 ND ND ND ND ˂2 ˂2 ND ND 

SH-15' 2.45 3.35 3.5 3.8 0.8 1.4 ND ND ND ND ˂2 ˂2 ND ND 

TW-30' 3.6 4.45 3.45 4.7 1.4 0.9 ND ND ND ND ˂2 ˂2 ND ND 

PS-30' 2.15 2.55 2.25 3 0.3 1.1 ND ND ND ND ˂2 ˂2 ND ND 

SH-30' 2.25 2.75 2.6 3.25 0.6 1.3 ND ND ND ND ˂2 ˂2 ND ND 

* Tap water (TW), sodium hypochlorite (SH) and propolis solution (PS) for contact time of 15 and 30 min 

(TW-15', TW-30', SH-15', SH-30', PS-15', PS-30'). a in 1 g; b in 25 g; c in 0.01 g. 
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Recent studies revealed that ready-to-eat leafy vegetable had poor microbiological quality and it 

indicates the need of adoption of hygienic practices by food processors and consumers to minimize the 

risks of transmission of foodborne pathogens through this kind of food [26–28]. 

Mesophilic aerobic and psychrotrophic counts are equal in FWH lettuce. However, the number  

of psychrophilic bacteria present in RTE sample (5.25 log10 CFU/g) was higher than the number of 

mesophilic bacteria (4.95 log10 CFU/g). The refrigeration temperature used in the storage of RTE 

vegetables extended the shelf life of these products, slowing down the microorganism growth rate, but 

it is selective for psychrotrophic microorganisms. 

E. coli and sulphite-reducing clostridia were not detected in both RTE and FWH samples. However, 

Salmonella was detected in FWH. In fact, contaminated manure and irrigation water play important 

roles in contaminating vegetables with Salmonella [29]. 

The effects of sodium hypochlorite (SH) and propolis solution (PS), as well as the control treatment 

(immersion in tap water, TW) on microbiological counts present on both RTE and FWH lettuce are 

also shown in Tables 3 and 4. 

Table 4. Results of the mean reduction (log10 CFU/g) on the microbiological analysis  

made to the ready-to-eat (RTE) and fresh whole head (FWH) lettuce submitted to different 

sanitization processes. 

Treatment * 
Aerobic Mesophiles Psychrotrophic Fecal Coliforms 

RTE FWH RTE FWH RTE FWH 

TW-15' 1.1 1.1 0.65 1.1 0.5 0.2 
PS-15' 2.55 2.6 2.15 2.4 1.4 0.95 
SH-15' 2.5 2.45 2.15 2 1.1 0.75 
TW-30' 1.35 1.35 1.8 1.1 0.5 1.25 
PS-30' 2.8 3.25 3 2.8 1.6 1.05 
SH-30' 2.7 3.05 2.65 2.55 1.3 0.85 

* Tap water (TW), sodium hypochlorite (SH) and propolis solution (PS) for contact time of 15 and 30 min 

(TW-15', TW-30', SH-15', SH-30', PS-15', PS-30'). 

The control treatment with TW applied to FWH lettuce for contact time of 15 and 30 min. was  

not sufficient to reduce the microorganism population to acceptable levels (≤4 log10 CFU/g) [30]. 

However, in relation to RTE lettuce, TW immersion was sufficient to reduce aerobic mesophiles under 

values minor than 4 log10 CFU/g. 

In relation to mean reduction on aerobic mesophiles, psychrotrophic and fecal coliforms, involving 

RTE and FWH lettuce, the SH and PS treatments showed the same pattern of variation (Table 4).  

In all cases, PS was slightly more effective in microbiological reduction in comparison with 

commercial SH. Reductions between two and three log cycles were obtained with PS on aerobic 

mesophiles and psychrotrophic counts at contact times of 15 and 30 min. As described previously, the 

variability of the results was assessed with the Kruskal-Wallis test (Table 5), followed by the  

Mann-Whitney post hoc test, with a significance level of 5%. It was verified that the three types of 

treatment significantly influenced the microbiological parameters, both for unprocessed and minimally 

processed lettuce. Regarding the time of treatment, significant differences were not found, with the 

exception of the results obtained for the psychrotrophic microorganisms of ready-to-eat lettuce. 
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Table 5. Results of the Kruskal–Wallis test regarding the different times and types of 

treatment applied to the fresh whole head (FWH) and ready-to-eat (RTE) lettuce. p = 0.05. 

Microorganism 
FWH p-Value RTE p-Value 

Treatment Time Treatment Time 

Aerobic mesophiles <0.001 0.047 <0.001 0.046 
Psychrotrophic <0.001 0.094 0.008 0.004 
Fecal coliforms <0.001 0.533 <0.001 0.710 

It is worth mentioning that SH is one of the most important types of chlorine-releasing agent 

(CRAs) compounds used for both antiseptic and disinfectant purposes. Excellent reviews that deal with 

the chemical, physical and microbiological properties of CRAs are available [31]. In H2O, SH ionizes 

to produce Na+ and the hypochlorite ion, OCl−, which establishes an equilibrium with hypochlorous 

acid, HOCl. Between pH 4 and 7, chlorine exists predominantly as HClO, the active moiety, whereas 

above pH 9, OCl− predominates. Surprisingly, despite being widely studied, the actual mechanism of 

action of CRAs is not fully known. 

Importantly, certain microorganisms, have innate chlorine resistance and may also develop acquired 

resistance following exposure to chlorine [12]. Some studies suggest a relationship between microbial 

resistance to sanitizers and microbial resistance to antibiotics used therapeutically [12]. Moreover, it is 

now well-recognized that chlorine may incompletely oxidize organic materials to produce undesirable 

byproducts, such as chloroform or other trihalomethanes, that have that have been linked to cancers, 

miscarriages and birth defects [32]. 

In the other hand, propolis is one of the most potent natural antibiotics, safe for human health  

and does not induce germ resistance. It seems that rather the sum of the propolis antimicrobial 

components than individual substances are responsible for the antimicrobial action [33]. Even though 

the action mechanisms are not fully understood, the antimicrobial activity is potentially due to phenolic 

and flavonoids. These compounds increase the permeability of the inner bacterial membrane, 

nullifying its potential, decreasing ATP production, membrane transport and its mobility [34].  

In addition, they inhibit DNA gyrase, involved in the mechanism of DNA and RNA synthesis  

of bacteria [35]. 

3. Experimental Section 

3.1. Chemicals and Reagents 

3,4,5-Trihydroxybenzoic acid (gallic acid; GA), (2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-

chromene-3,5,7-triol [(+)-catechin; CA] and ethanol were obtained from Sigma Chemical Co.  

(St. Louis, MO, USA). The Folin–Ciocalteu reagent (FCR) and sodium carbonate (Na2CO3) were 

obtained from Merck (Darmstadt, Germany). H2SO4, KOH, aluminium chloride (AlCl3), NaNO2 and 

NaOH were purchased from Acros Organic (Geel, Belgium). Methanol (MeOH) was obtained from 

Pronolab (Lisboa, Portugal). Amukina® was purchased in supermarket. High purity water (18 MΩ cm), 

which was used in all experiments, was obtained from a Milli-Q purification system (Millipore, 

Bedford, MA, USA). All growth media were purchased from Oxoid Ltd. (Himedia, Telangana, India). 
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3.2. Apparatus 

Spectrophotometric measurements were made using a Unicam Helios Alpha UV-visible spectrometer 

(Thermo Spectronic, Cambridge, UK). Evaporation of organic solvents was performed with a rotavapor 

system, consisting of a rotary vacuum evaporator (Heidolph VV. 2000, Leuven, Belgium) with a water 

bath and a B169 vacuum pump (Buchi, Flawil, Switzerland). The examination of the pollen slides  

was carried out with a Leitz Diaplan microscope (Leitz Messtechnik GmbH, Wetzlar, Germany). 

Stomacher Lab-Blender (Seward type 400, London, UK) and stainless steel metal sieves with a pan 

collector were supplied by Filtra (Filtra Vibracion S.L., Badalona, Catalunya). An electric laboratory 

furnace SNOL 8.2/1100-1 (AB ‘‘Umega’’, Utena, Lithuania) was used to determine ash content. 

3.3. Propolis 

3.3.1. Sampling 

Propolis samples (n = 37) were collected by beekeepers in the fall of 2012 from Apis mellifera hives 

located in Bragança, Portugal (41°48'N; 06°45'W). Samples were obtained after honey extraction by 

scratching the hive walls and frames. Upon receipt, each sample was inspected in order to find rests of 

bees, wood, plant, pupa of moth, among others. The major visible impurities were removed from the 

samples. Samples were weighed (980 g) and frozen at −20 °C until analysis. 

After the palynological identification, 10 propolis samples with the most identical botanical  

origin were selected from the initial 37 samples, in order to have a composite sample, consisting of  

a mixture of several individual samples. This method creates a more representative sample of the 

characteristics of propolis of the region under study, which was used for the sanitization of lettuce. 

3.3.2. Palynological Identification 

Palynological processing of the samples followed the standard methodology, described in detail 

previously [5]. In brief, 0.5 g of scraped propolis was extracted overnight with ethanol. Next, the 

sediment was treated with KOH (10%), sonicated for 15 min and sieved through a 20 mesh stainless 

steel screen to eliminate large fragments. In this stage, three propolis microscope slides were mounted 

with sediment obtained after centrifugation (10,000× g for 1 min) for observation of plant trichomes  

and other organic residues that may be destroyed in sequence. Then acetolysis was applied, and  

two additional microscope slides were prepared using glycerin jelly, one stained with basic fuchsine 

and the other without stain. Pollen grain identification was performed by optical microscope with  

total magnification (400× and 1000×). A reference collection of CIMO—Mountain Research Centre 

(Agricultural College of Bragança) and different pollen morphology guides were used for the recognition 

of the pollen types [36]. The following terms were used for frequency classes: predominant pollen (PP, 

more than 45% of pollen grains counted), secondary pollen (SP, 16%–45%), important minor pollen 

(IMP, 3%–15%) and minor pollen (MP, 1%–3%). 
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3.3.3. Physicochemical Analysis 

Analyses of the physicochemical properties of propolis samples were reported previously in detail [22]. 

The evaluated parameters were: moisture (%), ash (%), electrical conductivity (mS/cm), pH, soluble 

substances, insoluble substances and wax (%). 

Moisture 

Five grams of propolis were dried in a mechanical convection oven at 105 °C for 1 h. After this 

time, it was removed and allowed to cool to room temperature and weighted again. The procedure was 

repeated to stabilize the weight. The water content was determined using the Equation (1), in which  

A1 = weight of sample; A2 = weight of dried sample: 

Moisture (%) = 100 × (A1 − A2)/A1 (1)

Ash Content 

The method used in the experiments to determine the mineral content and other inorganic matter  

in propolis consisted of the desiccation of an amount of 5 g, for each propolis sample, in a platinum 

dish. To do so, they were kept in the thermostat at 80 °C for 4 h, after which the samples underwent 

calcination at 550 °C to constant mass. Total ash contents, expressed as the percentage of residue left 

after dry oxidation by weight (%), was calculated from the Equation (2), where m1 is the mass of dish 

and ash, m2 the mass of platinum dish prior to calcination and m0 is the mass of the propolis taken: 

Ash (%) = (m1 − m2/m0) × 100 (2)

Electrical Conductivity 

Electrical conductivity of a propolis solution at 20% (w/v) (dry matter basis) in methanol was 

measured at 20 °C in a conductimeter. 

pH 

Propolis pH was measured in a solution prepared with 10 g of propolis in 75 mL of methanol. 

Soluble and Insoluble Substances 

To one gram of each propolis sample, 250 mL of ethanol was added. The mixture was shacked in 

an automatic mixing machine and after 30 min the solution was filtered and the insoluble solids 

weighed. The soluble solids (SS) were determined by the difference between sample weight (SW)  

and insoluble weight (IW). The result was expressed in percentage, by applying the Equation (3) for 

soluble solids: 

SS (%) = (SW − IW/SW) × 100 (3)
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Equation (4) is for insoluble substances: 

IS (%) = (IW/SW) × 100 (4)

Wax 

Wax was weighed, and 250 g of each sample was added to 750 mL of methanol. The mixture  

was placed in a freezer (−20 °C) overnight. Afterwards, the solution was filtered to obtain the wax.  

The wax was expressed in percentage W (%) using the sample weight (SW) and the wax weight 

(WW). The Equation (5) used was: 

W (%) = (WW/SW) × 100 (5)

3.3.4. Extract Preparation 

For the preparation of propolis extracts (PE), ultrasound-assisted solvent extraction (USE) was 

employed. In brief, powdered propolis and MeOH were mixed (1:2) (w/v) in a 100-mL flask, sonicated 

for 60 min. and then centrifuged at 5000 rpm for 5 min. Next, the supernatant was taken out and  

the solid residue was extracted again and supernatants combined. MeOH of the extraction solution was 

evaporated in a vacuum evaporator. Finally, the dried PE was frozen at −20 °C until analysis. 

3.3.5. Total Phenolics and Flavonoids 

Total phenolic contents in the extracts were recorded using the Folin–Ciocalteu method  

as described previously [5]. Briefly, a dilute solution of each PE in MeOH (MeOH–propolis; 500 µL 

of 1:10 g/mL) was mixed with 500 µL of Folin-Ciocalteu reagent (FCR) and 500 µL of Na2CO3  

(10% w/v). After incubation in the dark at room temperature for 1 h, the absorbance of the reaction 

mixture at 700 nm was determined against the blank (the same mixture without the MeOH–propolis). 

GA standard solutions were used for constructing the calibration curve (y = 0.3882x + 0.048;  

R2 = 0.9992). Total phenol contents were expressed as mg of GA equivalents per g of propolis (GAEs). 

For flavonoid contents, the aluminium chloride method was used [5]. In brief, MeOH–propolis  

(250 µL) was mixed with 1.25 mL of distilled H2O and 75 µL of a 5% NaNO2 solution. After 5 min, 

150 µL of a 10% AlCl3–H2O solution was added. After 6 min, 500 µL of 1 M NaOH and 275 µL of 

distilled H2O were added to the mixture and vortexed. The solution was well mixed and the intensity 

of pink color was measured at 510 nm. CA standard solutions were used for constructing the 

calibration curve (y = 20.47x − 0.024; R2 = 0.9996). Total flavonoid contents were expressed as mg of 

CA equivalents per g of propolis (CAEs). 

3.4. Lettuce 

3.4.1. Sampling 

Commercially available ready-to-eat (RTE, n = 6) and fresh whole head (FWH, n = 6) lettuces were 

obtained in different supermarkets in Bragança (Portugal). The samples were collected in the state in 

which they were available for consumer purchase, placed inside sterile sample bags with ice packs,  
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and delivered to the laboratory for analyses within 1 h after collection. Samples were kept stored for  

a maximum of 3 h before use in experiments. 

3.4.2. Preparation of Sanitizing Solutions 

Two sanitizing solutions were employed: sodium hypochlorite (SH) and propolis solution (PS).  

Tap water (TW) was used as a control. SH used in a commercial available presentation called Amukina® 

(11.5 mg/mL), was prepared according to the manufacture’s specifications by adding 50 mL of 

Amukina® for every 2.5 L of H2O. PS was prepared at 2% by dissolving 40 mg of the PE in 100 mL of 

H2O. SH and PS solutions were used immediately after preparation. 

3.4.3. Sanitizing Treatments 

In FWH lettuces the outer leaves were removed depending on the visual quality before processing. 

RTE and FWH were cut into small pieces (5 × 10 cm) using a sharp knife. These freshcut samples 

were washed carefully with gentle agitation in separate buckets each containing TW, SH and PS for 

contact time of 15 and 30 min (TW-15', TW-30', SH-15', SH-30', PS-15', PS-30') individually and 

separately. After the treatment, the samples were washed with water and dewatered for 1 min with a 

manual centrifugal dryer. 

3.5. Microbiological Analysis 

The following microorganisms were investigated: mesophilic, psychrotrophic, fecal coliforms, 

Escherichia coli, sulphite reducing clostridium spores, S. aureus and Salmonella. 

3.5.1. Sample Preparation 

Prior to the sanitizing treatments, 10 g of each RTE and FWH samples were aseptically taken and 

homogenized using a pre-sterilized stomacher for 3 min with 90 mL of pre-chilled (4 ± 0.5 °C) sterile 

peptone-physiological saline solution (0.1% neutral peptone +0.85% NaCl in sterile deionized H2O, 

pH = 7.0 ± 0.05). Decimal serial dilutions were prepared from this homogenate in the same chilled 

sterile diluents (1:10 (w/w)). 

3.5.2. Enumeration of the Mesophilic and Psychrotrophic Microorganisms 

The aerobic mesophilic and psychrotrophic microorganisms were counted by incorporation of  

1 mL of each dilution into standard Plate Count Agar, and incubated aerobically at 30 °C for 72 h  

and 7 °C for 10 days for the enumeration of mesophilic and psychrotrophic bacteria, respectively as 

recommended [37]. Microbial counts were expressed in log colony-forming units per gram (log CFU/g). 

3.5.3. Enumeration of Total Coliforms and Escherichia coli (E.coli) 

Enumeration of coliforms and E. coli was done using the SimPlate CEc-CI method [38] with 

multiple test medium (BioControl System, Bellevue, WA, USA), according to the manufacturer’s 

instructions and previously procedures of [39]. One milliliter from the basic dilution was placed in the 
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center of the SimPlate plating device, and 9 mL of a mixed nutrient agar with blue color was added at 

the same spot. The SimPlate was rotated in order to disperse the sample and remove air-bubbles. The 

SimPlates were stacked and stored at 37 ± 1 °C for 24–28 h. Wells were counted positive for total 

coliforms on the basis of the color change and counted positive for E. coli on the basis of color change 

and fluorescence under UV light. The coliform and E. coli populations were determined on the basis of 

the number of positive wells correlated with the SimPlate conversion table, which generated a most 

probable number (MPN) per gram of sample. 

3.5.4. Enumeration of Sulphite Reducing Clostridium Spores 

For Sulphite-reducing clostridia counting, aliquots of 10, 5, 1 and 0.1 mL of the initial suspension 

were added to an empty tube, thermally treated at 80 °C for 15 min and covered with Differential 

Reinforced Clostridial Broth, and incubated at 37 °C for 5 days. At the end, the black colonies were 

counted. The results are expressed as presence of Sulphite-reducing clostridia in 0.01 g [40]. 

3.5.5. Enumeration of S. aureus 

The detection was performed according to [41]. Following the existent legislation, serial dilutions 

of the sample were inoculated in Baird–Parker Broth with Egg Yolk Tellurite and Sulfadimidine 

Solution for 24 h at 37 °C. Afterwards, 3–5 characteristic colonies were selected in order to verify the 

presence of coagulase and catalase. Microbial counts were expressed in log colony-forming units per 

gram (log CFU/g). 

3.5.6. Detection of Salmonella sp. 

The detection of Salmonella sp. in the samples was carried out using the immunodifusion 1–2 test [38]. 

Results are obtained 16–20 h after pre-enrichment in buffered peptone water and interpreted by 

observing the development of an immunoband, a characteristic immobilization pattern of cells. 

3.6. Statistical Analysis 

Each sample was analysed in triplicate. Regarding the statistical analysis, two well-known tests of 

normality were used: the Kolmogorov–Smirnov Test and the Shapiro–Wilk Test. The Levene’s test 

was also used in order to assess variance homogeneity. Indeed, the assessment of normality and variance 

homogeneity of data are prerequisites for many statistical tests, since these are underlying assumptions 

in parametric testing. Even though the results obtained for some parameters had normal distribution, 

the variance homogeneity was not verified in any of the cases. In this context, for each parameter, the 

differences between the samples were analysed using the Kruskal–Wallis test, the non-parametric 

analogue of a one-way ANOVA, with a level of significance of 5%. Mann–Whitney test was used as  

a post-hoc test. This treatment was carried out using SPSS version 21 (IBM Software, Toronto,  

ON, Canada). 
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4. Conclusions 

This study is the first attempt to evaluate the effect of propolis as an alternative to sodium 

hypocholorite in the sanitization of lettuce. Both treatments showed similar effectiveness in reducing 

the microbial load. Overall, these findings support that propolis is a promising sanitizer agent.  

In relation to mean reduction on aerobic mesophiles, psychrotrophic and fecal coliforms, in all cases, 

PS was slightly more effective in microbiological reduction in comparison with commercial SH. 

Reductions between two and three log cycles were obtained with PS on aerobic mesophiles and 

psychrotrophic counts at contact times of 15 and 30 min. In future studies, tests will be performed 

using different vegetables, controlled bacterial load and organic matter in order to determine the 

effectiveness of propolis, and take advantage of this natural product, which is apparently free of any 

non-desirable secondary effects. 
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