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Abstract: For chronic applications of flexible neural implants, e.g., intracortical probes, the flexible
substrate material has to encapsulate the electrical conductors with a long-term stability against the
saline environment of the neural tissue. The biocompatible polymer polyimide is often used for this
purpose. Due to its chemical inertness, the adhesion between two polyimide layers is, however, a
challenge, which can lead to delamination and, finally, to short circuits. The state-of-the-art method to
improve the adhesion strength is activating the polyimide surface using oxygen reactive ion etching
(O2 RIE). However, the influence of the process variations (etching time, bias power) on the long-term
stability is still unclear. Therefore, we establish a test method, where the aging of a gold interdigital
structure embedded in two polyimide layers and immersed in saline solution is accelerated using
an elevated temperature, mechanical stress and an electrical field. A continuous measurement of a
leakage current is used to define the failure state. The results show that the variation of the O2 RIE
plasma process has a significant effect on the long-term stability of the test samples. Comparing the
two different plasma treatments 0.5 min at 25 W and 1 min at 50 W, the long-term stability could be
increased from 20.9 ± 19.1 days to 44.9 ± 18.9 days. This corresponds to more than a doubled lifetime.
An ideal solution for the delamination problem is still not available; however, the study shows
that the fine-tuning of the fabrication processes can improve the long-term stability of chronically
implanted neural electrodes.

Keywords: polyimide; neural interfaces; flexible implants; long-term stability; interdigital electrode
array; electrical insulation stability; chronic implants

1. Introduction

The research and development of flexible neural interfaces are of great interest not only
for basic neuroscience, but also for applications in medicine, e.g., neural protheses [1,2].
Due to the softness of the brain tissue, also soft and flexible implantable materials are
essential for reducing the foreign body response and, thus, enable chronic applications
of the electrical interfaces [3]. These flexible materials need to be biocompatible to avoid
any toxic reactions with the surrounding tissue. Currently, the most used materials for
this purpose are the polymers parylene C, polyimide and SU-8 [4]. However, the negative
photoresist SU-8 needs to be processed adequately to avoid cytotoxicity resulting from
leachables [5]. Comparing the mechanical stability of parylene C and polyimide, the
polymer polyimide has a superior stability, particularly for the application as a flexible
substrate for neural implants [6]. However, due to the chemical inertness of polyimide after
the complete curing process of the polyimide precursor, the adhesion to other polyimide
layers or other materials is a challenge, which limits the reliability and long-term stability of
polyimide-based neural implants. In a previously published work [7], we showed that after
ca. 10 months in saline solution at 37 ◦C, delamination occurred between two polyimide
layers, which increased the parasitic capacitance between adjacent conducting paths. This
can lead to an increased signal crosstalk and, in the worst case, to a signal loss. To improve
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this electrical insulation stability of a polyimide/metal/polyimide sandwich layer in a
saline environment, different methods, e.g., the chemical or oxygen plasma activation of
the first polyimide layer surface, are used [8,9]. The current state-of-the-art method is
still the use of a short oxygen reactive ion etching (RIE) treatment process to increase the
polyimide to polyimide adhesion [10]. However, our current results show that, even when
this oxygen plasma treatment is used, delamination between two polyimide layers can
occur and even create short circuits, if the electrode array [11] is also used for the electrical
neural stimulation; see Figure 1.
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Figure 1. Gold conducting paths (30 µm pitch) of a flexible ECoG array embedded in two 5 µm
thick polyimide layers. The array was used for long-term electrical stimulation tests in vitro in saline
solution to investigate the electrode coating stability of PEDOT: PSS. Due to delamination between
the polyimide layers and continuous electrical current pulses, gold dissolved and formed a thin gold
layer, which led to short circuits between the conducting paths.

Nowadays, there are only a few methods published with the focus of investigating the
long-term stability of flexible neural implants. One is the study of Takmakov et al., which
uses accelerated aging of the neural implants with hydrogen peroxide at elevated temper-
atures [12]. This harsh treatment with reactive oxygen species is, however, incompatible
with organic substrates such as polyimide. Another study by Rubehn et al. investigates the
changes in the material properties of polyimide stored in saline solution [13]. Moreover, the
water absorption performance of polyimide is well analyzed [14]. However, these studies
do not represent the polyimide to polyimide interaction performance, which is crucial
for the reliability of flexible neural interfaces. For this reason, we establish a test method,
which uses interdigital electrode arrays embedded in two thin polyimide films. These
test samples are stored in saline solution and a voltage between the electrodes is applied
to assess the electrical insulation breakdown of the polyimide insulation. An additional
ultrasonic treatment and elevated temperature accelerate the degradation process. Using
the method presented in this article, differently treated samples with oxygen plasma are
analyzed in terms of the long-term stability of the electrical insulation performance.
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2. Materials and Methods
2.1. Design and Microfabrication Process of the Test Samples

To investigate the long-term stability performance, test samples were designed and
fabricated using microtechnology processes, which are also used for the fabrication of
flexible neural implants [15]. The design of the test sample is shown in Figure 2. For
the stability test of the polyimide electrical insulation, gold electrodes were arranged as
interdigital structures embedded in two ca. 5 µm thin polyimide layers. Additionally, a
3 mm diameter membrane was opened to enable diffusion of saline solution from both
sides and to allow mechanical stress to the polyimide/gold/polyimide sandwich structure.
The used mask design, including three layers, can be downloaded from the Supplementary
Materials. In total, 26 test samples were arranged on one wafer.
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Figure 2. Design of the polyimide-based test sample. The enlarged cutout shows the interdigital gold
electrode array with 5 µm wide electrodes and 5 µm spacing with a total area of 16 mm2. A 3 mm
diameter polyimide membrane is located in the middle of the electrode array.

The microfabrication started with thermal oxidation of a 100 mm double-sided pol-
ished silicon wafer (380 µm thickness) to generate a 500 nm thick silicon oxide layer for
electrical insulation to the substrate and an etch-stop layer during membrane opening,
see Figure 3. For a strong adhesion between silicon oxide and polyimide, the adhesion
promoter 3-Aminopropyltriethoxysilane (0.1 vol.%, Sigma-Aldrich Chemie GmbH, 82024
Taufkirchen, Germany) was applied. Directly afterwards, polyimide U-Varnish-S (UBE
Europe GmbH, Germany) was spin-coated at 3000 rpm and cured using a stepped temper-
ature profile up to 450 ◦C (5 ◦C/min temperature ramp) according to the product manual
and a vacuum-hotplate (UniTemp GmbH, 85276 Pfaffenhofen/Ilm, Germany), resulting
in a layer thickness of ca. 5 µm. A 300 nm thick gold layer was sputtered (100 W, DC
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magnetron) on polyimide and structured using the 1.8 µm thick positive photoresist AZ
1518 (MicroChemicals GmbH, 89079 Ulm, Germany) and the gold etching solution Au Etch
200 (NB Technologies GmbH, 28359 Bremen, Germany). The photoresist was afterwards
stripped using AZ 100 Remover (MicroChemicals GmbH, 89079 Ulm, Germany). This
structured gold layer was used for the interdigital electrode array, the conducting paths to
the electrodes and the contact pads. Directly before coating of the second polyimide layer,
the first polyimide layer was exposed to a pure O2 gas reactive ion etching process (up to
5 min) using an inductively coupled plasma tool (STS Multiplex ICP (Surface Technology
Systems GmbH, 89073 Ulm, Germany), 13.56 MHz coil (800 W) and platen (25 and 50 W)
generators). Only this polyimide treatment process was varied in this study to investigate
the influence on the polyimide to polyimide long-term adhesion stability. Afterwards, the
second polyimide layer was coated and cured the same way as the first layer. For opening
the contact pads and removing polyimide in the wafer dicing area, a 20 µm thick AZ 9260
photoresist (MicroChemicals GmbH, 89079 Ulm, Germany) and an O2/CF4-reactive ion
etching process were used. The photoresist was, afterwards, stripped again using AZ 100
Remover (MicroChemicals GmbH, 89079 Ulm, Germany).
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Figure 3. Microfabrication process flow: (a) thermal oxidation, polyimide coating and curing, gold
deposition and structuring; (b) coating second polyimide layer after treatment of the first polyimide
layer, structuring polyimide; (c) opening membrane using DRIE and oxide etching.

For opening the polyimide membrane, a 10 µm thick AZ 9260 photoresist (Micro-
Chemicals GmbH, 89079 Ulm, Germany) was applied on the wafer backside. The 500 nm
thick oxide layer was etched in a CF4 RIE plasma. Afterwards, the 380 µm thick silicon
layer was structured using a deep reactive ion etching process (DRIE) and a short O2
plasma was applied at the end to remove the passivation layer during DRIE. The pho-
toresist was stripped in AZ 100 Remover. The silicon oxide etch-stop layer was removed
in Buffered Oxide Etch BOE 7:1 solution (MicroChemicals GmbH, 89079 Ulm, Germany).
After microfabrication, the test samples were separated using a wafer dicing tool without
any additional protection of the polyimide layers during dicing.



Micromachines 2021, 12, 1279 5 of 10

2.2. Connector Assembly and Sample Setup

For the long-term test, the samples were stored individually in a tightly closed prepara-
tion glass with a rubber seal (15 mL volume, Th. Geyer Hamburg GmbH, 22419 Hamburg,
Germany). A small 0.8 mm × 6 mm slit was milled into the plastic screw cap, through
which the sample was passed. A 2-pin connector was glued onto the sample using the
electrically conductive adhesive Elecolit 414 (Panacol-Elosol GmbH, 61449 Steinbach, Ger-
many), which was cured at 70 ◦C for 20 min. Afterwards, the connector part of the sample
and the cap slit were hermetically sealed with the two-component epoxy adhesive UHU
PLUS ENDFEST (UHU GmbH & Co. KG, 77815 Bühl/Baden, Germany), which was also
cured at 70 ◦C for ca. 2 h and left for a minimum of 24 h at room temperature before
starting the long-term test.

2.3. Long-Term Test Method

The test samples were stored in Ringer’s electrolyte solution (B. Braun Melsungen
AG, 34212 Melsungen, Germany) at a constant temperature of 70 ◦C using a hotplate and
temperature controller, see Figure 4. This elevated temperature accelerates the diffusion
of saline into the polymer layers and speeds up the degradation process [16]. A DC
voltage of 10 V was applied to the interdigital electrode array with a 1 kΩ resistor in series.
The voltage over the resistor was monitored continuously using a National Instruments
data acquisition card at a sampling frequency of 1 Hz. A LabView program analyzed
the recorded data and automatically generated a time stamp when the voltage reached a
threshold of 10 mV, which corresponded to an insulation leakage current of 10 µA. The
current noise of the used measurement setup was measured around 1.3 µA; thus, only a
break-down of the electrical insulation could generate this leakage current. To accelerate the
aging process, a mechanical stress test was also applied to the samples using an ultrasonic
(US) bath (35 kHz, 300 W power). This US test was performed weekly for 15 min starting
one week after the insertion of the test samples into the saline solution. For this purpose,
the glasses were taken out of the polyethylene glycol (PEG) solution and disconnected
from the voltage source. The sonication was always performed at room temperature.
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Figure 4. Test method setup with electrical circuit connection. The voltage over the 1 kΩ resistor
was recorded and analyzed automatically with a National Instruments data acquisition card and a
LabView software.

3. Results
3.1. Microfabrication Results of the Test Samples

The presented microfabrication total process yield was ca. 80%. Most of the defects
occurred in the photoresist during the photolithography of the gold layer, which resulted
in a short circuit between the interdigital electrodes (10 µm pitch distance) after gold
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structuring. Only a few defects were observed in the polyimide layers. Figure 5 shows two
SEM images of the polyimide/gold/polyimide cross-section created with a focused ion
beam (FIB) cut inside the SEM vacuum chamber.
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Figure 5. SEM images of the 5 µm polyimide/300 nm gold/5 µm polyimide cross-section: (a) 1 min
oxygen RIE @ 25 W of the first polyimide layer; (b) 3 min oxygen RIE @ 25 W of the first polyimide
layer. Voids are present at the PI/PI interface (red circles).

Due to the reactive ion etching of the first polyimide layer with pure oxygen plasma,
a step in between the interdigital electrodes was created, which led to a wavelike surface
topography of the second polyimide layer after coating and curing. Furthermore, several
voids could be observed at the polyimide/polyimide interface for longer etching times over
2 min (see Figure 5b). This could lead to an aggregation of diffused water and accelerate
the delamination process.

3.2. Connector Assembly and Sample Setup

Figure 6 shows the final setup of the test sample stored hermetically sealed in a glass.
The Ringer’s electrolyte solution was always filled directly before starting the long-term test.
No evaporation of the electrolyte was observed during the total test period. The electrical
connection of the two-pin connector to the sample using the electrically conductive glue
and the encapsulation with the two-component epoxy adhesive achieved a yield of ca. 90%.
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3.3. Long-Term Test Results

In total, 188 samples were tested using the presented method. An amount of 10
different oxygen RIE plasma surface treatments of the first polyimide layer was, therefore,
investigated; see Table 1. For the bias power of 25 W and 50 W, a maximum etching time of
5 min and 3 min was defined, respectively.

Table 1. Overview of the number of test samples used for the analysis of the long-term stability.

Polyimide Surface Treatment Total Test Samples

No treatment 19
0.5 min at 25 W bias power 22
1 min at 25 W bias power 18
2 min at 25 W bias power 15
3 min at 25 W bias power 17
5 min at 25 W bias power 19

0.5 min at 50 W bias power 20
1 min at 50 W bias power 17
2 min at 50 W bias power 22
3 min at 50 W bias power 19

The long-term stability was up to a maximum of 125 days. The defect types of the
samples, which generated the measurable insulation leakage current, were comparable to
the expected defect presented in the introduction. Some of these defect examples are shown
in Figure 7. Due to delamination between the two polyimide layers, the electrical current
could flow between the electrodes, which led to anodic corrosion and the dissolution of
gold [17]. This simplified the optical localization of the defect origin after the long-term test.
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layer on the PI membrane; (c) delamination and gold corrosion outside the membrane; (d) narrow
delamination and gold corrosion.
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For a direct comparison of the 10 different treatments, the long-term test results were
plotted using the average values and the first standard deviation; see Figure 8. The results
showed that the variation of the oxygen RIE plasma process (polyimide etching time
and bias power) had a significant effect on the long-term stability of the samples. The
samples which were not treated before the second polyimide coating (0 min) achieved only
a marginal stability of 4.0 ± 3.8 days. This corresponded to the low adhesion strength
between the two pristine polyimide layers [9]. Using the oxygen RIE plasma, the stability
could be clearly increased; however, the deviation within the same plasma process was
relatively large with up to 33.5 days (5 min at 25 W). Comparing the two different plasma
treatments of 0.5 min at 25 W and 1 min at 50 W, the long-term stability could be increased
from 20.9 ± 19.1 days to 44.9 ± 18.9 days, respectively. This corresponded to more than a
doubled lifetime. By increasing the polyimide etching time, the average stability could be
further increased; however, the deviation also increased.
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4. Discussion

The polymer polyimide is often used as a flexible substrate for a variety of sensor
applications due to its superior mechanical stability, electrical insulation and chemical inert-
ness [18]. For neural implants, the electrical conducting paths composed of biocompatible
and noble metals such as gold or platinum are embedded between two thin polyimide lay-
ers, which encapsulate the implant against the saline environment of the neural tissue [4].
For a long-term stable electrical insulation of the conducting paths, the adhesion between
the two polyimide layers must be strong enough to prevent delamination, which is a
challenge due to the chemical inertness of polyimide after it is completely polymerized [9].
This long-term stability is especially important for active neural implants, where electrical
current is also applied for electrical stimulation of neural activity. Here, delamination could
lead not only to an increased signal crosstalk during the recording of neural activity, but
also to short circuits between conducting paths.

In a previously published paper, we assessed different surface treatments of polyimide
to evaluate the adhesion strength between two polyimide layers [9]. As a result, the samples
treated with oxygen reactive ion etching plasma were not peelable at all thus indicating the
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best approach to promote a strong adhesion between the PI layers. However, it was still
unclear how the variation of the oxygen RIE plasma process affected the long-term stability
in a saline environment. The presented long-term test method now gave the opportunity
to evaluate this oxygen RIE plasma treatment.

The results of the long-term test showed that the variation of the oxygen RIE plasma
process had a significant influence on the electrical insulation stability in saline solution.
Without any treatment, it was also clear now that a chronic application was not possible
(4.0 ± 3.8 days). The previously used process (0.5 min at 25 W bias) for the fabrication of
neural implants at IMSAS cleanroom, which was, e.g., applied for chronically implanted
flexible ECoG arrays [11] or intracortical probes [15], achieved a stability of 20.9 ± 19.1 days.
The relatively high standard deviation showed that this short oxygen plasma process was
not reliable and, thus, many of the fabricated implants could fail at early stages. By just
doubling the plasma treatment time and bias power (1 min at 50 W bias), the long-term
stability could be further improved to a value of 44.9 ± 18.9 days. Although the standard
deviation remained almost the same, the average value could be more than doubled. Longer
etching times could further increase the average values; however, the standard deviation
clearly increased. This could be explained due to the presence of voids at the corners of
the polyimide interfaces (shown in Figure 5b), which could accelerate the delamination
process. For this reason, longer etching times (>2 min) were not preferable.

Although a step towards long-term stable neural implants was conducted in this study,
the search for an ideal solution for the delamination problem between two polyimide layers
is still ongoing. Another well-known approach is using additional intermediate layers,
e.g., atomic-layer-deposited (ALD) Al2O3 as a diffusion barrier [19]; however, the adhesion
between the different materials still remains a challenge.

5. Conclusions

In this study, a new method was presented for the evaluation of the long-term stability
of the polyimide-based, flexible electrical insulation for chronic applications of neural
implants, e.g., neural prostheses. Using this test method, we assessed different oxygen
plasma treatments of the polyimide surface for increasing the adhesion strength between
two polyimide layers. The results showed that the fine-tuning of this microfabrication
process can significantly increase the lifetime of chronically implanted neural electrodes.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
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