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Adrenal insufficiency in paediatric patients is mostly due to congenital adrenal hyperplasia
(CAH), a severe monogenic disease caused by steroid 21-hydroxylase deficiency (21-
OHD, encoded by the CYP21A2 gene) in 95% of cases. CYP21A2 genotyping requires
careful analyses that guaranty gene-specific PCR, accurate definition of pseudogene-
gene chimeras, gene duplications and allele dropout avoidance. A small panel of well-
established disease-causing alterations enables a high diagnostic yield in confirming/
discarding the disorder not only in symptomatic patients but also in those asymptomatic
with borderline/positive results of 17-hydroxyprogesterone. Unfortunately, the complexity
of this locus makes it today reluctant to high throughput techniques of massive
sequencing. The strong relationship existing between the molecular alterations and the
degree of enzymatic deficiency has allowed genetic studies to demonstrate its usefulness
in predicting/classifying the clinical form of the disease. Other aspects of interest regarding
molecular studies include its independence of physiological variations and analytical
interferences, its usefulness in the diagnosis of simple virilizing forms in males and its
inherent contribution to the genetic counseling, an aspect of great importance taking into
account the high carrier frequency of CAH in the general population. Genetic testing of
CYP21A2 constitutes an irreplaceable tool to detect severe alleles not just in family
members of classical forms but also in mild late-onset forms of the disease and couples. It
is also helpful in areas such as assisted reproduction and preimplantation diagnosis.
Molecular diagnosis of 21-OHD under expert knowledge definitely contributes to a better
management of the disease in every step of the clinical course.

Keywords: ccongenital adrenal hyperplasia (CAH), 21-hydroxylase deficiency, CYP21A2 gene, classical forms of
congenital adrenal hyperplasia, non-classical forms of congenital adrenal hyperplasia, molecular diagnosis
1 INTRODUCTION

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD)(OMIM
#201910) is an inherited autosomal recessive disorder responsible of 95% of CAH cases (1, 2). It
has its origin in a defect of steroid 21-hydroxylase (21-OH), an enzyme encoded by the CYP21A2
gene. Alterations in CYP21A2 cause an impairment of the enzymatic activity and leads to the
accumulation of 17-hydroxyprogesterone (17-OHP), which is diverted towards formation of
n.org March 2022 | Volume 13 | Article 8345491
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androgens (1, 3). As an actionable, non-infrequent and life-
threatening disease, CAH is included in the neonatal screening of
several countries (4).

Although 17-OHP is the metabolic marker of the deficiency,
CYP21A2 genotyping contributes as a diagnostic tool due to its
independence on physiology and its strong relationship with
clinical severity (4). The high carrier frequency (5, 6) and the
recurrent impaired fertility in patients (7–9) further evidence the
important contribution that genotyping does. Molecular studies
provide valuable information in prevention and contribute to a
better management of the disease (10, 11).

CAH is related to a wide range of clinical behaviors, with
phenotypes varying from severe classical forms (CLF) to
moderate late-onset non-classical forms (NCF). As a highly
penetrant monogenic disease, 21-OHD shows a strong, although
not complete, genotype-phenotype relationship in which the
clinical features correspond to the less severely impaired allele (1,
12, 13). Variants causing null orminimal enzymatic activity in both
alleles result in salt-wasting forms (SW), whereas their compound
heterozygosity with variants causing residual activity result in
simply virilizing forms (SV). NCF are due to mild alterations in
homozygosity or a compound heterozygosity of either two mild
alterations or a severe and a mild one (1, 3, 12, 14–16)
(Supplementary Tables 1, 2). Some lacks of genotype-phenotype
relationship may result from extraadrenal 21-hydroxylation
mediated by liver P450 cytochromes (17).
2 GENE LOCUS STRUCTURE AND
NATURE OF CYP21A2 ALTERATIONS

CYP21A2 is arranged in tandem with its inactive pseudogene
(CYP21A2P) within a genetic unit designated as RCCX module,
where also the genes TNXA/B, C4A/B and RP are harbored (18).
Most chromosomes have two RCCX modules, although mono-,
tri- or even quadrimodular arrangements have been described
(19, 20). The high homology existing between gene and
pseudogene (98% in coding and 96% in non-coding regions)
together with that existing between RCCX modules favor
unequal cross-overs during meiosis making that most
pathological alleles in CAH arise from mechanisms of
asymmetric recombination (25-30%) and gene conversion
events (70%). Consequently, CYP21A2 genotyping requires
careful analyses that guaranty gene-specific PCR with allele
dropout avoidance, and accurate definition of pseudogene-gene
chimeras and gene duplications. Of course, an expert
interpretation of the results is needed.

2.1 Alterations Due to Intrinsic
Locus-Derived Mechanisms
2.1.1 Point Pathological Variants: Microconversions
Around 70% of the disease causing alterations in CAH are
pseudogene-deleterious-variants that have been transferred to
the gene by small gene conversion events. As a result, a limited
group of pathogenic variants with well-known phenotypic effects
is present in all populations (3) (Figure 1).
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2.1.2 Gene Chimeras
Asymmetric recombination between CYP21A2 and CYP21A2P is
responsible of about 25-30% of all deficient alleles (3, 22, 23).
This mechanism results in the appearance of pseudogene-gene
chimeras (traditionally named “gene deletions”) usually
extending from somewhere between exons 3 and 8 of
CYP21A2P to the corresponding point in CYP21A2, yielding a
non-functional gene in which the 5’-end corresponds to
CYP21A2P and the 3’-end corresponds to CYP21A2. It is
important to mention a subset of patients in which the
deletion is extended into the TNXB gene resulting in a
contiguous gene syndrome named CAH-X consisting in CAH
and Ehlers-Danlos Syndrome (24) that should also be
investigated (25).

Chimeras are usually categorized into classic and attenuated
depending on the location of the junction site, having been
reported nine different types (26). Classic types contain the
c.293-13C>G region and produce non-functional alleles
whereas attenuated ones have the junction upstream of that
region and associate a less severe phenotype (26) (see Avoidable
Pitfalls Upon Complementary Characterization of Alleles).
2.1.3 De Novo Alterations
De novo alterations (1-2% of all 21OH-deficient alleles) are
usually derived from gene recombination processes (27–30),
being therefore detectable in the basic screening of
recurrent variants.
2.2 Alterations Due to
Conventional Mechanisms
Alterations other than those derived from recombinant events
are less frequent and usually involve functional residues, generate
frameshifts or stop codons (16, 21, 30, 31). The number of
splicing pathological variants described so far is small (30), with a
new candidate recently reported (32). Alterations in regulatory
regions are controversial and difficult to demonstrate but tend to
be mild changes. To date, more than 200 different pathogenic
variants in CYP21A2 have been described (16, 30, 31).
3 DISEASE FREQUENCY AND ORIGIN OF
CYP21A2 ALTERATIONS

CAH constitutes a non-infrequent disease, even in its severe
neonatal forms. This seems to be the result of the prolific
molecular mechanisms previously mentioned, although a
founder effect has also been proposed (33–37). Regarding this
latter, some studies have documented a lower mortality in
CYP21A2 carriers mainly due to a decreased number of
infections in these individuals (38).

Considering that de novo variants in CYP21A2 are infrequent
(27, 29, 30) and that alterations are maintained through
generations once originated (33, 39), it is not uncommon that
the presence of new/rare pathological variants be the result of the
dissemination of single original alleles.
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II region. Tandem duplication affects CYP21 and C4 genes. In
variants that can be transferred to the active gene by small gene
shows the recurrent variants grouped according to how they affect
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FIGURE 1 | [Adapted from Santomé et al., (21)]. Scheme of the RCCX module located on the short arm of chromosome 6 within the HLA class I
humans only CYP21A2 gives rise to the functional protein, whereas CYP21P is a homologous pseudogene that includes several inactivating point
conversion events. Both C4A and C4B are functional. Tenascin, also duplicated, is encoded in the complementary chain. The bottom of the image
the enzimatic functionality: severely (red), moderately severe (green) or mildly (blue). Recurrent variants in all populations are circled. The complete
(NM_000500.9) would be: c.92C>T [p.Pro31Leu], c.292+5C>A, c.293-13C>G, c.332-339del, c.518T>A [p.Ile173Asn], c.(710T>A; 713T>A; 719T
c.923dupT, c.955C>T [p.Gln319*], c.1069C>T [p.Arg357Trp], c.1280G>A [p.Arg427His] and c.1360C>T [p.Pro454Ser]). The arrows “Fragment A
CYP21A2 amplification.
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4 GENETIC DIAGNOSIS OF CAH

Since CAH due to 21-OHD accounts for 95% of all CAH cases,
CYP21A2 should be the first gene to investigate in males and
virilized girls with adrenal insufficiency. The remaining genes
causing CAH (1, 2, 12, 40) as well as other involved in adrenal
insufficiency (41) should be investigated using high-throughput
approaches (massive sequencing gene panels) (40–42). On regard
CYP11B1, it is important to highlight its high homology with
CYP11B2 and the consequent existence of hybrid genes (43–45).
5 CYP21A2 GENOTYPING

Traditional approaches for CYP21A2 genotyping usually
include methods such as capillary sequencing, allele-specific
oligonucleotide hybridization, SNaPshot minisequencing and
MLPA, which are labor intensive and have limited multiplexing
capability, but which keep being used given their proven clinical
usefulness and the difficulty of optimizing the current massive
sequencing technologies to this complex locus. Conventional
massive platforms are poorly equipped to characterize gene-
pseudogene pairs and have the limitation of being based on PCR-
amplifications and uniquely aligning short reads (that may not
include CYP21A2 gene-specific regions). As a consequence, they
are not still the first-choice option forCYP21A2 genotyping although
some promising results have been obtained (31, 46–49). Third-
generation platforms based on direct sequencing of long DNA
strands without previous amplification seem promising tools
(50–52).

5.1 Detection of Point Pathological
Variants: Gene-Specific PCR
Current strategies for the specific amplification of CYP21A2 rely
on regions that are known to be different from those of the
pseudogene, either as targets for restriction sites prior to PCR or
PCR-specific primers. Since one of these latter regions is located
on exon3 (where the variant c.332-339del is located inCYP21A2P),
an extensively used scheme for the specific amplification of
CYP21A2 is obtaining two fragments (one from 5’UTR to exon 3
and another from exon 3 to 3'UTR). However, alleles carrying the
variant c.332-339del as a single microconversion would not be
detected in this way (neither chimeras, conversions or gene
duplications including it), so a third fragment in which the 3’-end
is located on the specific site on exon 6 (where the cluster of three
variants is harbored inCYP21A2P) can be incorporated (34, 39, 53–
56) (Figure 1). This last overlapping fragment allows the PCR-
detection of pseudogene-gene chimeras with the breaking point
before exon 6.

Recurrent variants (Figure 1) may be investigated in a
first screening performed by allele-specific oligonucleotide
hybridization or SNaPshot minisequencing, although they and
other point variants are detected with Sanger sequencing on these
gene-specific fragments. Whole gene sequencing must guarantee an
accurate interpretation based on well-documented alterations due to
the lack of complete knowledge regarding the impact of every variant
Frontiers in Endocrinology | www.frontiersin.org 4
in this small but polymorphic gene. In vitro analyses (57–59) and/or
models investigation (60–62) should support the involvement of
new variants, but only clinical validation in different populations
and genotypes will confirm their causality.

Segregation of alterations in parental samples is an important
issue since gene chimeras and large or double micro-conversions
include several alterations within the same allele (carrier status),
a very different situation from that in which alterations are
located in different alleles (affected patient). Approximately 5-
7% of affected alleles carrying two or more point alterations (63).
Patients carrying gene chimeras/conversions that include the
specific regions used in PCR protocols result in hemizygosity and
directly stablish the segregation, although not the carrier status of
progenitors (see Family Studies).

5.2 Analysis of Gene Chimeras: MLPA
MLPA allows to identify gene deletions/conversions avoiding the
inconvenients linked to Southern blotting. Nevertheless, since it
also has unavoidable limitations [reduction of signal when
alterations/polymorphisms exist in a probe-binding region (64),
inability to detect the cis/trans disposition of the alterations,
or lack of probes addressed to some frequent variants], must be
always complemented with other analyses. Unfortunately, a
comprehensive revision defining every MLPA pattern and its
deduced genotype is still lacking, although some studies are
contributing to a better definition of this issue (65). MLPA should
also be applied in the complementary characterization of some
complex alleles (see Avoidable Pitfalls Upon Complementary
Characterization of Alleles).

5.3 Avoidable Pitfalls Upon
Complementary Characterization of Alleles
Some of the seemingly lacks of genotype-phenotype relationship
in several frequent point variants are not further sustained when
alleles are better characterized. An efficient multistep approach
(64) allows a comprehensive mutation analysis. Apparently mild
alleles which are not really such are those carrying the variant
c.92C>T [p.Pro31Leu] with a cis pseudogene-conversion in 5’
(26, 56, 66, 67), and those carrying the variant c.844G>T
[p.Val282Leu] in cis with the intronic change c.292+5G>A, an
alteration observed in SW from Mediterranean populations (15,
68) (Figure 1 and Supplementary Table 1).

Examples of “severe” alleles that are not really such are those
with the variant c.955C>T [p.Gln319*] and two copies of the
gene, present in several populations (6, 30, 69) (Supplementary
Table 1). Fortunately, since the whole gene is involved in these
alleles, MLPA allows its detection in spite of the salsa MLPA
Probemix P050-C1 CAH (MRC Holland) no longer includes
exon 8 probes. It is important to mention that some of these
alleles carry additional alterations [e.g. c.518T>A (p.Ile173Asn)
or the combination of c.293-13 C>G and c.332_339del (6, 70)]
and are severe. Some gene conversions involving exons 4 to 8 are
not such deficient-alleles. Pseudogenes including the gene-
specific region in exon 3, although infrequent (71), result in an
identical pattern upon PCR amplification, so these conversions
should be investigated with a complementary MLPA analysis.
March 2022 | Volume 13 | Article 834549
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Discrimination of homo/hemizygosity of mild variants is
crucial in NCF (72) as hemizygosity requires genetic
counseling. Also essential is to guarantee the efficient
amplification of both alleles in order to avoid incorrect
interpretations such as false homozygotes due to allele dropout
of the normal allele (73). A complementary indirect analysis also
provides useful information preventing serious mistakes in
prenatal samples (see Usefulness of an Indirect Analysis).
6 USEFULNESS OF AN
INDIRECT ANALYSIS

Indirect analyses performed by either microsatellite typing or
SNPs (6, 74–76) are a useful tool (see Contribution of CYP21A2
Genotyping) since informative polymorphic markers on both
sides of the gene in each family configure distinct haplotypes in
normal and affected chromosomes. They are helpful with
prenatal samples, in preimplantation studies and in allele
segregation, being able to reveal/discard consanguinity in
patients carrying rare variants in homozygosity [useful as a
complement of a basic/first study in patients with borderline/
false positive results in the neonatal screening (see Neonatal
Screening)]. Also in epidemiology, since the same haplotype for a
new variant in unrelated patients suggests the variant
dissemination and the potential interest of its inclusion in the
basic screening of that population. Some informative
microsatellite loci flanking the CYP21A2 gene are D6S2792-
D6S273 and D6S1014- D6S439 together with two intronic ones
in genes TNF and TAP1 (34, 63, 74, 77, 78).
7 CONTRIBUTION OF
CYP21A2 GENOTYPING

7.1 Neonatal Clinical Suspicion
Although clinical manifestations such as adrenal insufficiency or
virilization in girls perform the suspicion in the neonatal period,
there are unspecific signs (e.g. hypoglycemia, clitoromegaly or
genital hyperpigmentation) frequent in combination with 17-
OHP elevations (4, 79). Genotyping of CYP21A2 allows to
confirm/discard the disease in both scenarios (80) especially
when analytical interferences in the direct immunoassay exist
(81, 82). Comprehensive CYP21A2 genotyping should be
guaranteed paying special attention to variants with a
significance still poorly established. Failure to detect well-
stablished pathogenic variants in CYP21A2 must prompt
further studies.

7.2 Neonatal Screening
Clinical guidelines recommend a second-tier analysis by liquid
chromatography–tandem mass spectrometry to improve the
positive predictive value of CAH screening (4). Neonates with
borderline/high levels of 17-OHP in these programs can take
benefit from CYP21A2 analyses (80, 83–86). Not only CLF, but
also neonatal cryptic forms (NCF and SV in males) are detected
Frontiers in Endocrinology | www.frontiersin.org 5
at this stage, being molecular studies able to correctly classify
them (11, 80, 86, 87) by a firstly analysis focused on the
identification of recurrent variants (in order to eliminate
uncertainty) followed by Sanger sequencing when just one
deficient-allele or microsatellite-homozygosity is detected (80).

7.3 Non-Classical Forms
The high recurrence of c.844G>T [p.Val282Leu] in some
populations (88, 89) helps to “unmask” severe alleles through
the clinical expressiveness of NCF [70% carrying severe alleles
(4); 41% in paediatric patients, Supplementary Table 1].
CYP21A2 should be always considered in NCF to allow a
proper genetic counseling.

Levels of 17-OHP, either basal or post-ACTH, constitute the
most sensitive parameter to define a NCF since CYP21A2 mild
alterations are not fully characterized. A proper threshold for 17-
OHP values is difficult to define since some carriers are prone to
present a hyperandrogenism similar to that shown in NCF (56,
85, 90–92). Genotyped carriers inside fully characterized
segregated families are useful to achieve this goal (56, 91).
Compound heterozygosity with severe alleles in NCF may be
suspected based on 17-OHP levels (Figure 2A and Supplementary
Table 3) (56, 63) conversely to what happen with carriers of severe
vs.mild variants.

Monogenic and polygenic models in paediatr ic
hyperandrogenism due to 21-OHD have been detected (91)
(Figure 2B), being carriers (monoallelic) with hyperandrogenism
the counterpart of cryptic forms (biallelic alterations) without
clinical expression. Considering the important contribution of the
“back door” pathway to circulating levels of the potent androgen 11-
ketotestosterone in CAH (93, 94), investigation of gene variants
coding for the enzymes involved seems interesting.

7.4 Carrier Detection
The biochemical marker 21-deoxicortisol detects carriers (10, 40,
95), although only molecular analyses are able to discriminate
carriers of severe alleles. Individuals with hyperandrogenism and
moderately elevated post-ACTH 17-OHP levels (not reaching
the NCF threshold) may take benefit from CYP21A2 analyses
since alterations are more frequent in these patients (91)
(Supplementary Table 2).

7.5 Genetic Counseling
The high carrier frequency of severe variants in general
population (about 1:60) (15, 96, 97) (Supplementary Table 1,
false severe alleles) makes reasonable to refine the risk of having
an affected child by genotyping CYP21A2 in couples where one
member is affected/carrier. Individuals with CLF present a risk of
1:120 of having a newborn affected with a CLF. The theoretical
risk is lower in NCF [1:250 (4)] although some studies have
documented to be higher (1.5-2.5%) (98).

7.6 Family Studies
Family studies are necessary to ascertain parental genotype and
segregation of the pathological alleles among the offspring. They
are initially addressed to detect/discard alterations documented
in the index case, but the high carrier frequency justifies the
March 2022 | Volume 13 | Article 834549
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FIGURE 2 | (2A) [Taken from Ezquieta et al., (56)]: Receiver operating characteristic (ROC) curves an
adrenocorticotropic hormone (ACTH)-stimulated 17-OHP, (B) basal 17-OHP, or (C, D) the combinatio
(0.057); basal 17-OHP, 0.790 (0.081); sum 0.866 (0.068); product 0.884 (0.064). Cut-off values, nmo
in the Figures. (2B) [From Ezquieta et al., (91)] Diagram of a hypothetical interaction between protectiv
UCSNP44C and TNFR2-R196 are proposed in this study to be sensitizing and protective factors, res
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subsequent screening of frequent pathological variants to discard
its coexistence in the family. Progenitors must not be considered
obligate carriers since de novo variants are detected in 1-2% of
deficient alleles (27, 29, 30).

7.7 Assisted Reproductive Techniques and
Genetic Counseling
CAH due to 21-OHD should be considered in reproductive
assistance and genetic counseling (7, 99, 100) due to the
associated infertility (7–9, 40) and the high frequency of
carriers in general population. The strong genotype-phenotype
relationship (13, 101) facilitates counseling in couples even in
absence of an index case, but it should not be forgotten that
expressivity vary particularly in moderately-severe forms (13).

7.8 Prenatal Diagnosis
Prenatal studies are normally performed inside CLF-families. It
is still accomplished on samples from corionic villus through
direct analysis addressed to investigate those alterations detected
in the index case. An additional indirect analysis (6, 15, 74)
provides the possibility of detecting maternal contamination and
avoids eventual allele dropout artefacts.

Prenatal treatment prevents virilization in girls affected with
CAH but is still considered experimental (4). Prenatal diagnosis
establishes treatment withdraw in non-affected foetus (carriers
and non-carriers). Protocols must include screening for Y-
chromosomal DNA in maternal blood (4) to minimize (40)
treatment in males. Since prenatal treatment is only effective if
established at 6th-7th weeks (4, 102), it is unfeasible totally avoid
treatment in males since cfDNA analyses must be performed in
samples with a foetal fraction about 3.5-4% (9th-10th week).

CYP21A2 genotyping from cfDNA in maternal blood is a
promising approach not suitable in clinical settings yet (4, 102).
For its application, massive sequencing based on an indirect
analyses conducted by SNP-haplotypes previously defined in
parents and index case is necessary due to the coexistence of
foetal and maternal DNA in the same sample (76).

7.9 Preimplantation Genetic Diagnosis
This particular approach enables to study the embryo before the
transference to the uterus. These tests are mentioned in the last
Clinical Practice Guidelines from the Endocrine Society although
subjected to their own risk and ethical controversies (4).
Frontiers in Endocrinology | www.frontiersin.org 7
Microsatellite typing is the most appropriate approach, since
the paucity of sample hampers a direct gene analysis and
haplotypes detected in the directly genotyped index case
provide the information.

7.10 Other Prenatal Scenarios
Suspicion of CAH due to anomalies detected by fetal ultrasound
or genetic counseling for a couple at risk (not previously
genotyped) with an ongoing pregnancy are prenatal situations
in which CYP21A2 genotyping are requested. When the index
case is unknown, the only suitable approach is the direct analysis.
Only well-documented pathogenic alterations should
be considered.
8 CONCLUSIONS

CYP21A2 genotyping favorably contributes to confirm/discard
CLF after neonatal or prenatal suspicion. The high frequency of
carriers in general population and the infertility associated to the
disease turn molecular diagnosis into an irreplaceable tool to
detect/discriminate severe alleles in family members and in
genetic counseling, as well as in specific areas as assisted
reproduction and preimplantational diagnosis. The high
complexity of the locus makes essential the performance of
CYP21A2 genotyping under supervision of expert personnel in
the field. There is no doubt that molecular diagnosis of 21-OHD
definitely contributes to a better management of the disease in
every step of the clinical course.
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