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Abstract

Human memory is limited in the number of items held in one’s mind—a limit known as ‘‘Miller’s magic number’’. We study
the emergence of such limits as a result of the statistics of large bitvectors used to represent items in memory, given two
postulates: i) the Sparse Distributed Memory; and ii) chunking through averaging. Potential implications for theoretical
neuroscience are discussed.
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Introduction

Human short-term memory is severely limited. While the

existence of such limits is undisputed, there is ample debate

concerning their nature. Miller [1] described the ability to increase

storage capacity by grouping items, or ‘‘chunking’’. He argued

that the span of attention could comprehend somewhere around

seven information items. Chunk structure is recursive; as chunks

may contain other chunks as items: Paragraphs built out of phrases

built out of words built out of letters built out of strokes. This

mechanism is used to explain the cognitive capacity to store a

seemingly endless flux of incoming, pre-registered, information,

while remaining unable to absorb and process new (non-registered)

information in highly parallel fashion.

Miller’s ‘magic number seven’ has been subject of much debate

over the decades. Some cognitive scientists have modeled such

limits by simply using (computer-science) ‘‘pointers’’, or ‘‘slots’’

(e.g, [2,3]—see [4,5] for debate). However, such approaches do

not seem plausible given the massively parallel nature of the brain,

and we believe memory limits are an emergent property of the

neural architecture of the human brain. As Hofstadter put it a

quarter of a century ago [6] : the ‘‘problem with this [slot]

approach is that it takes something that clearly is a very complex

consequence of underlying mechanisms and simply plugs it in a

complex structure, bypassing the question of what those

underlying mechanisms might be.’’(p. 642)

Our objective in this paper is to study these memory limits as

emergent effects of underlying mechanisms. We postulate two

mechanisms previously discussed in the literature. The first is a

mathematical model of human memory brought forth by Kanerva

[7], called Sparse Distributed Memory (SDM). We also presup-

pose, following [8], an underlying mechanism of chunking through

averaging. It is not within the scope of this study to argue for the

validity of SDM as a cognitive model; for incursions on this

broader topic, we refer readers to [9–11], which discuss the

plausibility of this Vector Symbolic Architecture family of models

(in which SDM is contained).

This work, while similar in its mathematical foundations, is

different from previous capacity analyses: In [7], the memory

capacity analysis of SDM relates to its long-term memory

mechanisms, while we study its short–term memory limits. Our

work also differs from that of Plate, in that, regardless of the

number of items presented, the memory will only store (and

subsequently retrieve) a psychologically plausible number of items.

The difference becomes salient in Plate’s own description [12]:

‘‘As more items and bindings are stored in a single HRR the noise

on extracted items increases. If too many associations are stored,

the quality will be so low that the extracted items will be easily

confused with similar items or, in extreme cases, completely

unrecognizable’’(p. 139). Plate is focused on long–term memory;

and we will focus on Miller’s STM limits.

A number of theoretical observations are drawn from our

computations: i) a range of plausible numbers for the dimensions

of the memory, ii) a minimization of a current controversy

between different ‘magic number’ estimates, and iii) potential

empirical tests of the chunking through averaging assumption. We

should start with a brief description of our postulates: i) the SDM,

and ii) chunking through averaging.

Sparse Distributed Memory
The Sparse Distributed Memory (SDM), developed in [7],

defines a memory model in which data is stored in distributed

fashion in a vast, sparsely populated, binary address space. In this

model, (a number of) neurons act as address decoders. Consider the
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space f0,1gN
: SDM’s address space is defined allowing 2N possible

locations, where N defines both the word length and the number

of dimensions of the space: the memory holds binary vectors of

length N. In SDM, the data is the same as the medium in which it

is stored (i.e. the stored items are N-bit vectors in N-dimensional

binary addresses).

SDM uses Hamming distance as a metric between any two N-

bit vectors (hereafter memory items, items, elements, or bit-

strings—according to context). Neurons, or hard locations (see

below), in Kanerva’s model, hold random bitstrings with equal

probability of 0’s and 1’s—Kanerva [13,14] has been exploring a

variation of this model with a very large number of dimensions

(around 10000). (With the purpose of encoding concepts at many

levels, the Binary Spatter Code—or BSC—, shares numerous

properties with SDM.) By using the Hamming distance as a

metric, one can readily see that the average distance between any

two points in the space is given by the binomial distribution, and

approximated by a normal curve with mean at N=2 with standard

deviation
ffiffiffiffiffi
N
p

=2. Given the Hamming distance, and large N, most

of the space lies close to the mean. A low Hamming distance

between any two items means that these memory items are

associated. A distance that is close to the mean N=2 means that

the memory items are orthogonal to each other. This reflects two

facts about the organization of human memory: i) orthogonality of

random concepts, and ii) close paths between random concepts.

Orthogonality of random concepts: the vast majority of concepts is

orthogonal to all others. Consider a non-scientific survey during a

cognitive science seminar, where students asked to mention ideas

unrelated to the course brought up terms like birthdays, boots,

dinosaurs, fever, executive order, x-rays, and so on. Not only are the

items unrelated to cognitive science, the topic of the seminar, but

they are also unrelated to each other.

Close paths between concepts: The organization of concepts seems to

present a ‘small world’ topology–for an empirical approach on

words, for instance, see [15]. For any two memory items, one can

readily find a stream of thought relating two such items (‘‘Darwin

gave dinosaurs the boot’’; ‘‘she ran a fever on her birthday’’; ‘‘isn’t it

time for the Supreme Court to x-ray that executive order?’’ …and so

forth). Robert French presents an intriguing example in which one

suddenly creates a representation linking the otherwise unrelated

concepts of ‘‘coffee cups’’ and ‘‘old elephants’’ [16]. In sparse

distributed memory, any two bitstrings with Hamming distance

around N=4 would be extremely close, given the aforementioned

distribution. And N=4 is the expected distance of an average point

between two random bitstrings.

Of course, for large N (such as N§100), it is impossible to store

all (or even most) of the space—the universe is estimated to carry a

storage capacity of 1090 bits (10120 bits if one considers quantum

gravity) [17]. It is here that Kanerva’s insights concerning

sparseness and distributed storage and retrieval come into play:

220—or a number around one million—physical memory

locations, called hard locations, could enable the representation

of a large number of different bitstrings. Items of a large space

with, say, 21000 locations would be stored in a mere 220 hard

locations—the memory is indeed sparse.

In this model, every single item is stored in several hard

locations, and can, likewise, be retrieved in distributed fashion.

Storage occurs by distributing the item in every hard location

within a certain threshold ‘radius’ given by the Hamming distance

between the item’s address and the associated hard locations.

Different threshold values for different numbers of dimensions are

used (in his examples, Kanerva used 100, 1000 and 10000

dimensions). For N~1000, the distance from a random point of

the space to its nearest (out of the one million) hard locations will

be approximately 424 bits [7] (p.56). In this scenario, a threshold

radius of 451 bits will define an access sphere containing around

1000 hard locations. In other words, from any point of the space,

approximately 1000 hard locations lie within a 451-bit distance.

All of these accessible hard locations will be used in storing

and retrieving items from memory. We therefore define the

function A : f0,1gN
|f1,2, . . . ,Ng.2f0,1gN

and a hard location

yx [A(x,R) iff yx [ f0,1gN ^H(x,yx)ƒR, where A defines an

access radius around x of size R (451 if N~1000; H is the

Hamming distance).

A brief example of a storage and retrieval procedure in SDM is

in order: to store an item x at a given (virtual) location f (in sparse

memory) one must activate every hard location within the access

sphere of f (see below) and store the datum in each one. Hard

locations carry N adders, one for each dimension. To store a

bitstring x at a hard location y, one must iterate through the

adders of y: If the i-th bit of x is 1, increment the i-th adder of y, if

it is 0, decrement it. Repeating this for all hard locations in f ’s

access sphere will distribute the information in x throughout these

hard locations.

Retrieval of data in SDM is also massively collective and

distributed: to peek the contents of each hard location, one

computes its related bit vector from its adders, assigning the i-th bit

of y as a 1 or 0 if the i-th adder is positive or negative, respectively

(a coin is flipped if it is 0). Notice, however, that this information in

itself is meaningless and may not correspond to any one specific

datum previously registered. To read from a location x in the

f0,1gN
address space, one must activate the hard locations in the

access sphere of x and gather each related bit vector. The stored

datum will be the majority rule decision of all activated hard

locations’ related bit vectors. If, for the i-th bit, the majority of all

bit vectors is 1, the final read datum’s i-th bit is set to 1, otherwise

to 0. Thus, ‘‘SDM is distributed in that many hard locations

participate in storing and retrieving each datum, and one hard

location can be involved in the storage and retrieval of many data’’

[18] (p. 342).

All hard locations within an access radius collectively point to

an address. Note also that this process is iterative. The address

obtained may not have information stored on it, but it provides

a new access radius to (possibly) converge to the desired original

address. One particularly impressive characteristic of the model

is its ability to simulate the ‘‘tip-of-tongue’’ phenomenon, in

which one is certain about some features of the desired memory

item, yet has difficulty in retrieving it (sometimes being

unable to do so). If the requested address is far enough from

the original item (209 bits if N~1000), iterations of the process

will not decrease the distance—and time to convergence goes to

infinity.

The model is robust against errors for at least two reasons: i) the

contribution of any one hard location, in isolation, is negligible,

and ii) the system can readily deal with incomplete information

and still converge to a previously registered memory item. The

model’s sparse nature dictates that any point of the space may be

used as a storage address, whether or not it corresponds to a hard

location. By using about one million hard locations, the memory’s

distributed nature can ‘‘virtualize’’ the large address space. The

distributed aspect of the model allows such a virtualization.

Kanerva [7] also discusses the biological plausibility of the model,

as the linear threshold function given by the access radius can be

readily computed by neurons, and he suggests the interpretation of

some particular types of neurons as address decoders. Given these

preliminaries concerning the Sparse Distributed Memory, we

should now proceed to our second premise: chunking through

averaging.

STM Limits on a Sparse Distributed Memory
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Chunking through averaging
To chunk items, the majority rule is applied to each bit: given v

bitstrings to be chunked, for each of the N bits, if the majority is 1,

the resulting bitstring’s chunk bit is set to 1; otherwise it is 0. In

case of perfect ties (no majority), a coin is flipped.

We have chosen the term ‘chunking’ to describe an averaging

operation, and ‘chunk’ to describe the resulting bitstring, because,

through this operation, the original components generate a new

one to be written to memory. The reader should note, in SDM’s

family of high-dimensional vector models, called Vector Symbolic

Architectures (VSA), the operation that generates composite

structures is commonly known as superposition [10–12].

Obviously, this new chunked bitstring may be closer, in terms of

Hamming distance, to the original elements, than the mean

distance N=2 between random elements (500 bits if N = 1000),

given a relatively small v. The chunk may then be stored in the

memory, and it may be used in future chunking operations,

allowing, thus, for recursive behavior. With these preliminaries, we

turn to numerical results in the analysis section.

Analysis

Computing the Hamming distance from a chunk a to
items

Let f~ff 1,f 2,:::,f vg be the set of bitstrings to be chunked into

a new bitstring, a. The first task is to find out how the Hamming

distance is distributed between this averaged a bitstring and the set

f~ff 1,f 2,:::,f vg of bitstrings being chunked. This is, as

discussed, accomplished through majority rule at each bit position.

Imagine that, for each separate dimension, a supreme court will

cast a decision with each judge choosing yes (1) or no (0). If there is

an even number of judges, a fair coin will be flipped in the case of

a tie. Given that there are v~Df D votes cast, how many of these

votes will fall in the minority side? (Each minority-side vote adds to

the Hamming distance between an item f i and the average a.)

Note that the minimum possible number of minority votes is one,

and that it may occur with either 3 votes cast or two votes and a

coin flip. If there are two minority votes, they may stem from

either 5 votes or 4 votes and a coin flip, and so forth. We thus have

that, for v votes, the maximum minority number is given by tv=2s
(and the ambiguities between an odd number of votes versus an

even number of votes plus a coin flip are resolved by considering

2tv=2sz1 total votes). This leads to independent Bernoulli trials,

with success factor p~1=2, and the constraint that the minority

view differs from the majority bit vote. Let X be a random variable

with the number of minority votes. Obviously in this case,

P(1ƒXƒtv=2s)~P(Xƒtv=2s{1), hence we have, for v items,

the following cumulative distribution function of minority votes

[19]:

P(Xƒtv=2s{1)~
Xtv=2s{1

i~0

2tv=2s
i

� �
pi(1{p)2tv=2s{i~

~
Xtv=2s{1

i~0

(2tv=2s)!

i!(2tv=2s{i)!

1

2

2tv=2s

~4{tv=2s
Xtv=2s{1

i~0

(2tv=2s)!
i!(2tv=2s{i)!

While we can now, given v votes, compute the distribution of

minority votes, the objective is not to understand the behavior of

these minority bits in isolation, i.e., per dimension on the chunking

process. We want to compute the number of dimensions to (in a

psychologically and neurologically plausible way) store and

retrieve around M items—Miller’s number of retrievable

elements—through an averaging operation. Hence we need to

compute the following:

(i) Given a number of dimensions N and a set f of items, the

probability density function of the Hamming distance from

a to the chunked elements f i,

(ii) A threshold T : a number of dimensions in which, if an

element f i’s Hamming distance to a is farther from that

point, then f i cannot be retrieved,

(iii) As Df D grows, how many elements remain retrievable?

Given bitstrings with dimension N, suppose v~Df D elements

have been chunked, generating a new bitstring a. Let HN (a,f i) be

the Hamming distance from the chunked element a to f i, the i-th
element of f . What is the distance from a to elements in f ? Here

we are led to N Bernoulli trials with success factor pDf D. Since

N is large, HN (a,f i) for i~f1,2, . . . ,vg can be approximated

by a Normal distribution, we may use m~NpDf D and s~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NpDf D(1{pDf D)

p
. To model human short term memory’s limita-

tions, we want to compute a cutoff threshold TN which will

guarantee retrieval of around M items averaged in a and ‘‘forget’’

an item f i if HN (a,f i)wTN—where M is Miller’s limiting

number. Hence to guarantee retrieval of around 95% (2s) of M
items, we have TN,2s~NpMz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NpM (1{pM )

p
, where pM is the

success factor corresponding to M. Note that Cowan [20] has

argued for a ‘‘magic number’’ estimate of 4+1 items—and the

exact cognitive limit is still a matter of debate. The success factor

for 4 (or 5) elements is pf4,5g = .3125; and for 6 (or 7) elements it is

pf6,7g = .34375. By fixing the success factor at plausible values of

M (at {4,5}, or at an intermediary value between {4,5} and {6,7},

or at {6,7}), different threshold values TN,2s are obtained for

varying N, as shown in Table 1. In the remainder of this study, we

use the intermediary success factor pM~:328125~21=64 for our

computations; again without loss of generality between different

estimates of M.

We thus have a number of plausible thresholds and dimensions.

We can now proceed to compute the plausibility range: Despite

the implicit suggestion in Table 1 that any number of dimensions

might be plausible, how does the behavior of these (N,TN,2s)
combinations vary as a function of the number of presented

elements, Df D?

Varying the number of presented items
Consider the case of information overload, when one is

presented with a large set of items. Suppose one were faced with

dozens, or hundreds, of distinct items. It is not psychologically

plausible that a large number of elements should be retrievable.

For an item f i to be impossible to retrieve, the distance between

the averaged item a and f i must be higher than the threshold

point of the corresponding N. When we have an increasingly large

set of presented items, there will be information loss in the

chunking mechanism, but it should still be possible to retrieve

some elements within plausible psychological bounds.

Figure 1(a) shows the behavior of three representative sizes of N:

100, 212 and 1000 dimensions. (100 and 1000 were chosen

because these are described in Kanerva’s original examples of

SDM.) N~212 has shown to be the most plausible number of

dimensions, preserving a psychologically plausible number of items

after presentations of different set sizes. It is clear that N~100
quickly diverges, retaining a high number of items in a chunk (as

the number of presented items grows). Conversely, if N~1000,

the number of preserved memory items rapidly drops to zero, and

STM Limits on a Sparse Distributed Memory
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the postulated mechanisms are unable to retrieve any items at

all—a psychologically implausible development. Figure 1(b) zooms

in to illustrate behavior over a narrower range of N-values and a

wider range of presented items. Varying the number of presented

items and computing the number of preserved items (for a number

of representative dimensions) yields informative results. Based on

our premises, experiments show that to appropriately reflect the

storage capacity limits exhibited by humans, certain ranges of N
must be discarded. With too small a number of dimensions, the

model will retrieve too many items in a chunk. With too large a

number of dimensions, the model will retrieve at most one or

two—perhaps no items at all. This is because of the higher number

of standard deviations involved in the dimension sizes: for

N~100, the whole space has 20 standard deviations, and

TN~100,2s~42:2 is less than 2 standard deviations below the

mean—which explains why an ever growing number of items is

‘‘retrieved’’ (i.e., high probability of false positives). For N~1000,

the space has over 63 standard deviations, and TN~1000,2s~
357:82, is around 8.99 standard deviations below the mean. There

is such a minute part of the space below TN~1000,2s that item

retrieval is virtually impossible.

With an intermediary success factor pM between p4 and p7

established by the cognitive limits 4 and 7, we have computed the

number of dimensions of a SDM as lying in the vicinity of 212

dimensions. Variance is minimized when N~212—and retrieval

results hold psychologically plausible ranges even when hundreds of

items are presented (i.e., the SDM would be able to retrieve from a

chunk no more than nine items and at least one or two, regardless of

how many items are presented simultaneously). Finally, given that

this work rests upon the chunking through averaging postulate, in

the next section we will argue that the postulated mechanism is not

only plausible, but also empirically testable.

Results and Discussion

The chunking through averaging postulate
Consider the assumption of chunking through averaging. We

propose that it is plausible and worthy of further investigation, for

three reasons.

First, it minimizes the current controversy between Miller’s

estimations and Cowan’s. The disparity between Miller’s 7+2 or

Cowan’s 4+1 observed limits may be a smaller delta than what is

argued by Cowan. Our ‘‘chunking-through-averaging’’ premise

may provide a simpler, and perhaps unifying, position to this

debate. If chunking 4 items has the same probability as 5 items,

and chunking 6 items is equivalent to chunking 7 items, one may

find that the ‘magic number’ constitutes one cumulative

probability degree (say, 4-or-5 items) plus or minus one (6-or-7

items).

A mainstream interpretation of the above phenomenon may be

that, as with any model, SDM is a simplification; an idealized

approximation of a presumed reality. Thus, one may see it as

insufficiently complete to accurately replicate the details of true

biological function due to, among other phenomena, inherent

noise and spiking neural activity. In this case, one would interpret

it as a weakness, or an inaccuracy inherent to the model. An

alternative view, however improbable, may be that the model is

accurate in this particular aspect, in which case, the assumption

minimizes the current controversy between Miller’s estimations

and Cowan’s.

The success factors computed above show that for either 4 or 5

items, we have p~:3125, while for 6 or 7 items we have

p~:34375. If we assume an intermediary value of p—which is

reasonable, due to noise or lack of synchronicity in neural

processing—the controversy vanishes. We chose to base our

experiments on the mean value (p~21=64~:328125), and the

results herein may be adapted to other estimates as additional

experiments settle the debate.

Moreover, a chunk a tends to be closer to the f i chunked items

than these items are between themselves. For example, with

Df D~5 and N~212, the Hamming distance between a chunk and

a random item is drawn from a distribution with m~N21=64 and

s~(
ffiffiffiffiffi
N
p ffiffiffiffiffiffiffiffi

903
p

)=64; in here, from the point of view of the

chunked item a, the closest 1% of the space lies at 53 bits, while

99% of the space lies at 84 bits. Contrast this with the distances

between any two random, orthogonal, items, which are drawn

from m~N=2 and s~
ffiffiffiffiffi
N
p

=2: from the point of view of a random

item, the closest 1% of the space lies at 89 bits, while 99% of the

space lies at 122. This disparity reflects the principles of

orthogonality between random concepts and of close paths between concepts

(or small worlds [15]): the distance between 2 items from any 5 is

large, but the distance to the average of the set is small. Of

course, as Df D grows, the distance to a also grows (since

limDf D?? pDf D~1=2), and items become irretrievable. One thing

is clear: with 5 chunked items, the chance of retrieving a false

positive is minute.

Finally, the assumption of chunking through averaging is

empirically testable. Psychological experiments concerning the

difference in ability to retain items could test this postulate. The

assumption predicts that (4, 5) items, or more generally that

(2v,2vz1) for integer vw0 will be registered with equal

probability. It also predicts how the probability of 2vz2 retained

items should drop in relation to 2vz1 if vw0. This is

counterintuitive and can be measured experimentally. Note,

however, two qualifications: first, as chunks are hierarchically

organized, these effects may be hard to perceive in experimental

settings. One would have to devise an experimental setting with

Table 1. Threshold values.

N
TN ,2s

(M~4 or 5)

TN ,2s

(intermediary
value)

TN ,2s

(M~6 or 7)

64 27.42 28.51 29.6

128 50.49 52.62 54.75

192 72.85 76.01 79.16

256 94.83 99.02 103.2

320 116.58 121.8 126.99

384 138.17 144.4 150.61

448 159.62 166.88 174.11

512 180.98 189.25 197.49

576 202.25 211.54 220.8

640 223.45 233.76 244.03

704 244.6 255.92 267.2

768 265.69 278.02 290.32

832 286.74 300.09 313.4

896 307.75 322.11 336.43

960 328.72 344.1 359.43

1024 349.66 366.05 382.4

100 40.52 42.2 43.87

1000 341.82 357.82 373.79

10000 3217.7 3375.16 3532.49

Thresholds TN,2s given plausible success factors and dimension combinations.
doi:10.1371/journal.pone.0015592.t001
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assurances that only chunks from the same level are retrievable–

neither combinations of such chunks, nor combinations of their

constituting parts. The final qualification is that, as v grows, the

aforementioned probability difference tends to zero. Because of

the conjunction of these qualifications, this effect would be hard to

perceive on normal human behavior.

Figure 1. Preserved items as a function of v; selected values of N .
doi:10.1371/journal.pone.0015592.g001
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Concluding remarks
Numerous cognitive scientists model the limits of human short-

term memory through explicit ‘‘pointers’’ or ‘‘slots’’. In this paper

we have considered the consequences of a short-term memory

limit given the mechanisms of i) Kanerva’s Sparse Distributed

Memory, and ii) chunking through averaging. Given an

appropriate choice for the number of dimensions of the binary

space, we are able to model chunks that limit active memory’s

storage capacity, while allowing the theoretically endless recursive

association of pre-registered memory items at different levels of

abstraction (i.e., chunks may be chunked with other chunks or

items, indiscriminately [1,21]). This has been pointed out in [22],

however, in here we use the short-term memory limitations as a

bounding factor to compute plausible ranges for N.

Some observations are noteworthy. First, our work provides

plausible bounds on the number of dimensions of a SDM—we

make no claims concerning Kanerva’s recent work (e.g., [14]).

Given our postulates, it seems that 100 dimensions is too low a

number, and 1000 dimensions too high. In our computations,

assuming pM~21=64, variance of the number of items retained

(as a function of the number of presented items and at least one

retrievable item) was minimized at 212 dimensions. This value was

chosen as our optimal point of focus for it provided stable,

psychologically plausible behavior for a wide range of set sizes. We

have concentrated on the SDM and chunking through averaging

postulates, yet future research could also look at alternative neural

models; for it is certain that the brain does not use explicit slots or

pointers when items are chunked. One can reasonably argue: what

good can come from replacing one magic number with another?

There are two potential benefits: first, by fixing parameter N , we

can restrict the design space of SDM simulations and ensure that a

psychologically plausible number of items is chunked. Another

advantage is theoretical: the number 212 suggests that we should

look for neurons that seem to have, or respond majoritarily to,

such a number of active inputs in their linear threshold function.

Of course, a single 212 bit vector in SDM does not encode

meaningful content at all. The existence of a bitstring can only be

meaningful in relation to other bitstrings close to it. Consider, for

instance, an A4 sheet of paper, of size 210mm6297mm

(8.3in611.7in). A 120061200 dots-per-inch printer holds less

than 228 potential dots in an entire sheet. While the space of

possible black and white printed A4 sheets is a very large set of

2139838400 possible pages, the vast majority of them, rather like the

library of Babel, are composed of utter gibberish. Any single dot

needs only 28 bits to be described, and because the dots usually

cluster into strokes, chunks can be formed. Moreover, because

strokes cluster to form fonts, which cluster to form words, which

cluster to form phrases and paragraphs; combinations of large sets

of 212 dimensional bitstrings can encode the meaningful content

of pages and books—provided those items have been previously

chunked in the reader’s mind. Without chunks there can be no

meaning; this paragraph, translated to Yanomami (assuming that’s

possible), would become unreadable to its intended audience and

to its authors.

Sparse Distributed Memory holds a number of biologically and

psychologically plausible characteristics. It is associative, allowing

for accurate retrieval given vague or incomplete information

(which is relevant given the potential for asynchronous behavior

[23]); it is readily computable by neurons; it seems suitable for

storage and retrieval of low-level sensorimotor information [24], it

is a plausible model of the space of human concepts, and it exhibits

a phenomenon strikingly similar to the tip-of-the-tongue situation.

With the results presented herein, sparse distributed memory also

reflects the natural limits of human short-term memory.
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