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Abstract: Cone of Pinus densiflora (CP), or Korean red pinecone, is a cluster of Pinus densiflora fruit.
CP has also been verified in several studies to have anti-oxidation, anti-fungal, anti-bacterial, and
anti-melanogenic effects. However, anti-inflammatory effects have not yet been confirmed in the
inflammatory responses of pinecones to allergic contact dermatitis. The purpose of this study is to
prove the anti-inflammatory effect of CP on allergic contact dermatitis (ACD) in vitro and in vivo.
CP inhibited the expression of TSLP, TARC, MCP-1, TNF-α, and IL-6 in TNF-α/IFN-γ-stimulated
HaCaT cells and MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in PMACI (phorbol-12-myristate-13-acetate
plus A23187)-stimulated HMC-1 cells. CP inhibited the phosphorylation of mitogen-activated protein
kinase (MAPKs), as well as the translocation of NF-κB on TNF-α/IFN-γ stimulated in HaCaT cells.
In vivo, CP decreased major symptoms of ACD, levels of IL-6 in skin lesion, thickening of the
epidermis and dermis, infiltration of eosinophils and mast cells, and the infiltration of CD4+ T cells
and CD8+ T cells. This result suggests that CP represents a potential alternative medicine to ACD for
diseases such as chronic skin inflammation.

Keywords: Cone of Pinus densiflora; allergic contact dermatitis; HaCaT; HMC-1; MAPK; NF-κB; TARC;
MCP-1

1. Introduction

Allergic contact dermatitis (ACD) is a chronic inflammatory disease with urtication,
xeroderma, and severe eczema lesions as its main symptoms. In severe cases, it causes
psychological and emotional pain and sleep disturbance. ACD develops due to immune
system abnormalities and the influence of environmental factors such as smoking, acari-
nosis, and air pollutants. This disease affects about 15 to 20% of infants and 1 to 3%
of adults [1]. It was reported that about 80% of patients who develop allergic contact
dermatitis in infancy maintain ACD through adulthood [2].

Keratinocytes are the cells that form the skin [3]. The keratinization of keratinocytes
is precisely programmed and acts as a barrier to protect the skin [3]. However, if the
skin barrier function is defective due to the abnormal differentiation of keratinocytes, the
skin barrier function is lost due to the keratinization of keratinocytes, and the invasion
of allergens initiates an inflammatory response from the keratinocytes [4,5]. The skin can
cause several inflammatory skin diseases, such as allergic contact dermatitis, through the
inflammatory reaction of keratinocytes [4]. Keratinocyte plays an important role in skin
disease, in which HaCaT cells are mainly used for anti-inflammatory skin disease drug
experiments [6].

Mast cells are immune cells that are a major factor in allergic and inflammatory
responses [7]. Mast cells contain various allergens, cytokines, and chemokines that are
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released into the cells via the process of degranulation [8]. Mast cells are mainly present in
the epidermis, immediately below the epidermis, or within the epidermis and are involved
in inflammatory reactions in the skin [9]. Moreover, Mast cells are responsible for the main
operative responses of innate and acquired immunity and in the defense against some
bacteria, viruses, and parasites [10,11].

In ACD, TSLP (thymic stromal lymphopoietin) is a cytokine involved in the initia-
tion, development and progression of atopic disease in both mice and humans [12]. It is
produced by damaged epithelial cell and activates myeloid dendritic cells [13]. Activated
dendritic cells promote the differentiation of naïve CD4+ cells into a Th2 phenotype cell.
TSLP-activated dendritic cells produce Th2 attracting chemokine, such as TARC [14].

Thymus and activation-regulated chemokines (TARC and CCL17); the CCR4 ligands
involved the movement of CCR4+ Th2 cells and monocyte chemoattractant protein-1
(MCP-1); monocytes, T cells, and basophil-related chemokines of C-C; and the beta family
are all important chemokines that move inflammatory cells to the skin lesion [15,16]. They
are often secreted by the inflammatory responses of keratinocytes and mast cells [4,17].
TARC is bound to CCR4 and induces the infiltration of Th2 lymphocytes in acute phase
ACD. MCP-1 regulates the migration and infiltration of eosinophils, monocytes, and
macrophages and is significantly increased in patients with psoriasis and other skin dis-
eases [15,18]. These cytokines, such as TARC and MCP-1, trigger inflammation and play
a role in maintaining inflammation [19,20]. When allergens infiltrate the skin, mast cells
secrete IL-6 to induce the maturation of Th2 cells to promote inflammatory reactions,
eosinophil infiltration, and hyperkeratosis of the epidermis [7,21]. GM-CSF promotes both
the maturation and migration from epidermal Langerhans cells (LCs) and, subsequently,
the migration of these LCs to draining lymph nodes to activate T lymphocytes [22]. More-
over, the skin’s GM-CSF levels are associated with variations in the severity of ACD [22].
The secretion of IL-8 promotes an inflammatory response by hampering the ability to
inhibit T cell-mediated inflammation and brings neutrophils to the lesion site to intensify
the inflammatory response [23]. Further, mast cells expand blood vessels and increase per-
meability, thereby constructing an environment in which mast cells or other inflammatory
cells can easily penetrate the lesion site [24,25].

Specific cytokines of HaCaT cells have been demonstrated, in several studies, to acti-
vate the intracellular inflammatory response signaling pathways [26–29]. MAPKs, which
is the most widely studied intracellular signaling cascade response in the inflammatory
responses of HaCaT cells, generally consists of extracellular signal-regulated kinase (ERK),
c-Jun N-terminal kinase (JNK), and P38 subgroups [30]. ERK performs an important role
in the survival, proliferation, and differentiation of cells [30,31]. JNK facilitates cell death
through apoptosis and cell differentiation [31]. P38 performs the most important role in
the inflammatory reaction and is activated in various types of cell stress [30,31]. In the
NF-κB/IκBα signaling pathway, which is well-known to be downstream of MAPK, NF-κB
is generally combined with IκBα to form an inactive NF-κB complex [32]. However, IκBα,
an NF-κB inhibitory protein, is phosphorylated upstream. The phosphorylation of IκBα
causes poly-ubiquitination and degradation via the 26S proteasome, resulting in phospho-
rylation of NF-κB and translocation to the nucleus [33]. Nuclear translocated NF-κB is
involved in the expression of numerous genes involved in the function and development
of various immune system and inflammatory responses [32–34].

This study used a Cone of Pinus densiflora (CP), or a Korean red pine cone, which
is a cluster of the Pinus densiflora fruit. Recent studies have shown the anti-fungal, anti-
oxidant, anti-bacterial, anti-melanogenic, and anti-viral effects of pinecones [35–40]. In
addition, studies on terpenes and tannins, the main constituents of pinecones, have also
been actively conducted. Terpenes have shown to inhibit antioxidant effects in vitro, and
tannins have also been reported to exert anti-inflammatory effects by inhibiting MAPKs
and NF-κB pathways in a TNF-α-mediated cell model [41–44]. However, anti-inflammatory
effects have not yet been confirmed in the inflammatory responses of pinecones to allergic
contact dermatitis. The present study hypothesized that pinecones would have anti-
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inflammatory effects based on the results of research on the antioxidant effects of CP and
the anti-inflammatory effects of the major components of CP. Therefore, this experiment
was designed while predicting that pinecones would have an effect on keratinocyte hyper-
keratinization and inflammatory responses due to the inflammatory responses of allergic
contact dermatitis and the inflammatory responses of the mast cell.

To perform the experiment, cell experiments were conducted on HaCaT cells and
HMC-1 cells using keratinocytes and mast cells, which play an important role in ACD.
Animal experiments were performed using a mouse model of ACD-like skin lesions by
treating Balb/c mice with 1-Chloro-2,4-dinitrobenzene (DNCB) to establish an ACD-like
skin lesion model. Thus, this study demonstrated the effects of CP in TNF-α/IFN-γ-
stimulated HaCaT cells, PMACI (phorbol-12-myristate-13-acetate plus A23187)-stimulated
HMC-1 cells, and DNCB-induced ACD-like skin lesions in a Balb/c mouse model.

2. Materials and Methods
2.1. Reagents

HaCaT cells were purchased from Cell Line Service (CLS, Eppelheim, Germany).
HMC-1 cells were purchased from American Type Culture Collection (ATCC, Manas-
sas, VA, USA). Dulbecco’s Modified Eagle’s Medium (DMEM) and Dulbecco’s phos-
phate buffered saline (DPBS) were purchased from Welgene Biotech Co (Welgene bio Co,
Gyeongsan, Korea). The antibiotics penicillin/streptomycin (P/S) and trypsin were ob-
tained from Gibco (Carlsbad, CA, USA). Fetal bovine serum (FBS) was purchased from AT-
LAS Bio (Seoul, Korea). The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium assay kit (MTS assay kit) was supplied by Promega (Madison,
WI, USA). Anti-bodies of extracellular signal-regulated kinase (ERK), phosphorylation-ERK
(p-ERK), P38, phosphorylation-P38 (p-P38), c-Jun N-terminal kinase (JNK), phosphorylation-
JNK (p-JNK), nuclear factor kappa B subunit 1 (NF-κB), phosphorylation-NF-κB (p-NF-κB),
NF-kappa-B inhibitor α (IκBα), and phosphorylation-IκBα (p-IκBα) were purchased from
Cell signaling (Danvers, MA, USA). The protease inhibitor cocktail 1 (PI1, #P8340), phos-
phatase inhibitor cocktail 2 (PI2 #P5726), phosphatase inhibitor cocktail 3 (PI3, #P0044),
and 1-Chloro-2,4-dinitrobenzene (DNCB, 237329) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). The NE-PER™ Nuclear and Cytoplasmic Extraction Reagent kit,
bicinchoninic acid protein assay kit, and superscript II reverse transcriptase were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA). The nitrocellulose blotting
membrane and ECL solution were purchased from General Electric Healthcare Life Sci-
ences (GE Healthcare Life Sciences, Seoul, Korea). Interleukin-8 (IL-8), IL-1β, IL-6, IL-4,
granulocyte-macrophage colony stimulating factor (GM-CSF), monocyte chemoattractant
protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) were supplied by Becton,
Dickinson bio (BD bio, NJ, USA). PCR primers was obtained from Genotech Corp (Dae-
jeon, Korea). The Taq polymerase kit was supplied from Kapa Bio systems (Wilmington,
MA, USA). Anti-bodies of CD4 (ab183685) and CD8 (ab209775) were purchased from
Abcam (Cambridge, UK).

2.2. Preparation of the Cone of Pinus densiflora

The Cone of Pinus densiflora-ethyl acetate extract (CP) used in this study was col-
lected and identified (voucher number: CLP09-27) at Chollipo Arboretum in Taean-gun,
Chungcheongnam-do; the cones were provided by Professor Jaeho Park of Joongwon
University and used as samples. CP was extracted by sonication for 3 days with 100%
methanol. The extract was filtered (no. 3; Whatman, Maidstone, UK) and concentrated
with a vacuum evaporator (N-1110S, EYELA, Shanghai, China). The methanol extract was
then fractionated using petroleum ether and ethyl acetate. The CP fraction of ethyl acetate
was concentrated and lyophilized. The extract of CP was stored in −70 ◦C until use.
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2.3. Cell Culture and Cell Viability

HaCaT cells, a human keratinocyte cell line, were cultured in DMEM with 10% FBS
and 1% P/S at 37 ◦C in 95% humidity using a 5% CO2 incubator. HMC-1 cells, a human
mast cell line, were cultured in IMDM with 10% FBS and 1% P/S at 37 ◦C in 95% humidity
with a 5% CO2 incubator. Subculture was conducted every 2-3 days. HaCaT cells were
seeded in a 96-well cell culture plate with 1.5 × 104 cells. After 24 h, CP was treated with
concentrations of 0, 12.5, 25, 50, and 100 µg/mL for 24 h. HMC-1 cells were seeded in a
96-well plate with 1 × 105 cells. After 24 h, CP was treated with concentrations of 0, 12.5,
25, 50, and 100 µg/mL for 24 h. Then, cell viability was measured using an MTS assay kit
according to the manufacturer’s instructions. Absorbance was measured at 490 nm using a
Versamax microplate reader (Molecular devices, San Jose, CA, USA).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

HaCaT cells were seeded in a 6-well cell culture plate with 1 × 106 cells. After
stabilization for 24 h, CP (5, 10, and 20 µg/mL) was treated for 1 h, and the cells were
treated with TNF-α/IFN-γ (each 10 ng/mL) for 24 h. After 24 h, the media were collected
and centrifuged for 5 min at 4 ◦C and 13,200 rpm. HMC-1 cells were seeded in a 24-well
cell culture plate with 3 × 105 cells. After 24 h, CP (5, 10, and 20 µg/mL) was treated over
1 h, and the cells were treated with PMACI (PMA 25 nM/A23187 1 µM) for stimulation.
After 6 h, all media were collected and decreased using a centrifuge for 5 min at 4 ◦C and
3000 rpm. The supernatants were used for cytokine analysis, and the cells were used for
DNA expression analysis. Samples were stored at −70 ◦C. The cytokine levels of IL-6, IL-8,
IL-1β, GM-CSF, MCP-1 and TNF-α were measured using ELISA kits (BD bio) according to
the manufacturer’s instructions. Absorbance was measured using a Versamax microplate
reader (Molecular devices, CA, USA).

2.5. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-PCR)

RNA was extracted with Trizol according to the manufacturer’s instructions. cDNA
was synthesized using SuperScript II reverse transcriptase according to the manufacturer’s
instructions. RT-PCR was performed using a KAPA Taq extra PCR kit on a TouchTM

thermal cycler (Bio-rad Lab, Hercules, CA, USA). The synthesized DNA was subjected
to electrophoresis on 1.2% agarose gel containing N′,N′-dimethyl-N-[4-[(E)-(3-methyl-
1,3- benzothiazol-2-ylidene)methyl]-1-phenylquinolin-1-ium-2-yl]-N-propylpropane-1,3-
diamine (SYBR green I). The bands were captured using a NαBITM. All bands were
quantified using Image J software. The applied housekeeping gene was GAPDH. The used
RT-PCR primer sequence is outlined in Table 1.

Table 1. Primer Sequence and PCR conditions.

Gene
Name Orientation Primer Sequence Anneling Tm (◦C) Cycle Reference

TSLP Forward
Reverse

5′-TCC TCT GAA GAC CTG ACC-3′
5′-TCT CCT TTC TCC CTA ATC CTC-3′ 59.5 ◦C 40 kim et al. [45]

TARC Forward
Reverse

5′-ACT GCT CCA GGG ATG CCA TCG TTT TT-3′
5′-ACA AGG GGA TGG GAT CTC CCT CAC TG-3′ 57.5 ◦C 44 NM_002987.3

IL-6 Forward
Reverse

5′-GAT GGC TGA AAA AGA TGG ATG C-3′
5′-TGG TTG GGT CAG GGG TGG TT-3′ 59 ◦C 45 NM_000600.4

GAPDH Forward
Reverse

5′-CGT CTA GAA AAA CCT GCC AA-3′
5′-TGA AGT CAA AGG AGA CCA CC-3′ 50 ◦C 30 NM_001256799.3

Abbreviations: TSLP, Thymic stromal lymphopoientin; TARC/CCL17, Thymus and activation-regulated chemokine; IL-6, Interleukin 6;
GAPDH, glyceraldehyde-3phosphate dehydrogenase.
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2.6. Western Blot

HaCaT cells were seeded in a 60 mm cell culture dish with 1 × 106 cells. After 24 h,
CP (20 µg/mL) was treated for 1 h; then, the TNF-α/IFN-γ (each 10 ng/mL) was treated
for 5, 15, and 30 min (or 60 min). After that, the medium was removed in each well, and
the cells were washed with DPBS 3 times. Cells were then lysed with a radioimmunopre-
cipitation assay buffer (RIPA buffer, 0.1% SDS, 150 mM NaCl, 50 mM Tris-cl, 1% nP-40,
0.5% Na-deoxycholate, PI1, PI2, PI3). Lysed cells were then collected with a cell scraper and
centrifuged for 20 min at 4 ◦C and 13,200 rpm. Then, the supernatant was transferred to
a new tube. The samples were stored at −70 ◦C until use. Nuclear protein was extracted
using a nuclear extraction kit according to the manufacturer’s instructions. Samples were
quantitatively analyzed using a bicinchoninic acid assay kit (BCA assay kit), and the same
amount of protein was separated by sodium dodecyl sulphate polyacrylamide gel elec-
trophoresis (SDS-PAGE) using 10% polyacrylamide gel and transferred to a nitrocellulose
membrane. The membrane was blocked for 1 h with 5% skim milk and washed with
tris-buffered saline including 0.05% Tween-20 (TBS-T). The membrane was then cultured at
4 °C overnight (O/N) with each primary antibody. Then, the membrane was cultured for
1 h at room temperature with a peroxidase-conjugated secondary antibody. Each expression
was detected by X-ray film using an enhanced ECL solution. The relative protein levels
were quantified using Image J software (ver. 1.53a, National Institutes of Health, Bethesda,
MD, USA). The Western blot antibody data are presented in Table 2.

Table 2. Western blot and immunohistochemical primary anti-body and secondary anti-body conditions.

Primary Antibody Primary Antibody Dilution System Used Size

Phospho-ERK 1:1000 Western blot 42, 44 kDa
Phospho-JNK 1:1000 Western blot 46, 54 kDa
Phospho-P38 1:1000 Western blot 43 kDa

ERK 1:1000 Western blot 42, 44 kDa
JNK 1:1000 Western blot 46, 54 kDa
P38 1:1000 Western blot 43 kDa

Phospho-NF-κB 1:1000 Western blot 65 kDa
IκBα 1:1000 Western blot 39 kDa

Lamin B 1:1000 Western blot 67 kDa
β-actin 1:500 Western blot 43 kDa
CD4+ 1:200 Immunohistochemistry -
CD8+ 1:200 Immunohistochemistry -

Goat-anti-Rabbit IgE 1:10,000 Western blot -
Goat-anti-mouse-IgE 1:10,000 Western blot -

Abbreviations: Phospho, Phosphorylation; ERK, extracellular signal-regulated kinases; JNK, c-Jun N-terminal kinase; NF-κB, nuclear
factor-kappa B; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; cluster of differentiation 4, CD4;
cluster of differentiation 8, CD8; IgE, Immunoglobulin E.

2.7. Animal Experiment

Six-week-old male Balb/c mice were purchased from Korean Animal Technology
(KOATECH co, Seoul, Korea). All mice were bred in a controlled room (22 ± 2 ◦C tem-
perature, 50 ± 10% humidity, 12 h light/dark cycle) and stabilized for 7 days. Mice were
divided into 4 groups (n = 8/group): the normal group (Nor), the control group (only
DNCB, Con), those treated with 1 mg/mL CP (with DNCB, CP_L), and those treated with
10 mg/mL CP (with DNCB, CP_H). This animal experiment was approved by the Kyung
Hee Medical Center animal care and use committee (KHMC-IACUC-18-016).

2.8. ACD Model and Drug Treatment

All mice were anesthetized using an inhalation anesthetic by mixing 5% isoflurane
with 100% oxygen. After anesthesia, 2–2.5% isoflurane was inhaled and maintained. The
back of the mouse was shaved using a clipper under anesthesia. DNCB was dissolved in
olive oil and acetone at a ratio of 3:1. To induce ACD-like skin lesions, DNCB was diluted
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in 1% and 0.5% and applied to the back skin of the mice. All mice except for the Nor group
were primarily sensitized with 1% DNCB. Primary sensitization involved treatment of the
dorsal skin with 200 µL of 1% DNCB over 3 days. After 5 days of primary sensitization,
200 µL of 0.5% DNCB was applied to the back skin for secondary sensitization 3 times a
week for 5 weeks. CP was diluted in PBS/Olive oil (9:1). During secondary sensitization,
200 µL of CP_L and H was topically applied every day for 35 days. CP_L and H were
topically applied to the dorsal skin 2 h after secondary sensitization. On the 36th day, all
mice were exposed to 5% isoflurane to sacrifice them. It was confirmed that the heartbeat
and breathing stopped after sustaining isoflurane exposure for about 5 min or more, after
which 0.8–1 mL of blood was collected. The weights of the mice were 30–35 g at the time of
sacrifice. The schedule of the animal experiment is shown in Figure 1.

Figure 1. Schedule of animal experiments for 1-Chloro-2,4-dinitrobenzene (DNCB)-induced allergic contact dermatitis
(ACD)-like lesions in the Balb/c mice model. Mice were divided into four groups (Nor, Con, CP-L, and CP-H groups). Each
group was assigned eight mice. CP-L and CP-H were treated every day for 35 days.

2.9. Histological and Immunohistochemical (IHC) Staining

The skin tissue was fixed with Neutral Buffered Formalin (NBF) and washed with
flowing water for O/N. Dehydration was carried out using ethanol, the cleaning response
was studied using xylene, and the tissue was embedded in paraffin wax. Tissue blocks were
sectioned with a 5 µm thickness using a rotary microtome (RM2125 RTS, Leica Biosystems,
Wetzlar, Germany). The sectioned tissues were stained with hematoxylin and eosin (H&E)
to measure the dermal and epidermal thickness and degree of eosinophil tissue infiltration.
To observe the infiltration of mast cells, the tissue was stained with toluidine blue. The
infiltration of CD4-positive T cells (CD4+ T cell) and CD8-positive T cells (CD8+ T cell)
was confirmed by staining with IHC. Heat-induced epitope retrieval was performed in
a 0.01 M sodium citrate buffer, pH 6.0, using a cooker (CPC-600, Cuisinart, CT, USA),
and then cooled. Peroxidase activity was inhibited with 0.3% H2O2 (w/v) in methanol
at room temperature for 30 min. The tissues were washed twice with TBS and blocked
with 10% normal serum in TBS for 30 min. The tissues were then incubated with CD4+ or
CD8+ antibodies at 4 ◦C for 24 h. The color reaction of CD4+ T cells or CD8+ T cells was
examined using a Polink-2 Plus AP rabbit kit (D70-18, GBI Labs, WA, USA) according to the
manufacturer’s instructions. The background was stained with hematoxylin. Stained tissue
was observed by a light microscope (BX51, Olympus, Tokyo, Japan) at ×400 magnification.
The data on antibodies stained using IHC are provided in Table 1.

2.10. Clinical Skin Severity Score

The effect of CP in DNCB-induced ACD-like skin lesion mice was estimated by the
changes in severity of skin lesions (modified SCORAD, Scoring atopic dermatitis). Severity
of ACD-like skin lesions was evaluated on the day of the sacrifice as follows. The dorsal
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lesions were evaluated for 6 symptoms: redness, swelling, oozing (or crusting), scratching
marks, skin thickening, and dryness. Each symptom was graded from 1 to 3 (none, 0;
mild, 1; moderate, 2; serve, 3). The score was defined as the sum of the individual scores.
The SCORAD evaluation was performed after group blinding.

2.11. Statistical Analysis

All experiments were repeated at least three times independently. Data are presented
as the mean ± standard error of the mean (SEM). Statistical analysis was performed using
Graphpad PRISM software (Ver 7.00, Graphpad software Inc., San Jose, CA, USA). A
t-test or one-way analysis of variance (ANOVA) was used to evaluate the treatment effect,
followed by Dunnett’s multiple comparison test. p values of p < 0.05 and p < 0.01 were
considered significant.

3. Results
3.1. Cell Viability of CP and the Effects of CP for Pro-Inflammatory Cytokines in HaCaT Cells

To confirm the cytotoxicity of CP in HaCaT cells, CP was treated for 24 h at 0, 12.5,
25, 50, and 100 µg/mL in HaCaT cells. There was no cytotoxicity at 12.5 and 25 µg/mL,
but toxicity began to appear at 50 µg/mL in HaCaT cells (Figure 2A). Therefore, the
HaCaT cell experiment was conducted at concentrations of 5, 10, and 20 µg/mL, which are
concentrations that did not show toxicity.

Figure 2. Effect of Cone of Pinus densiflora (CP) on TNF-α/IFN-γ-stimulated HaCaT cells. (A) Viability of CP in HaCaT cell
by MTS assay. HaCaT cells were treated with different concentrations of CP (0, 12.5, 25, 50 and 100 µg/mL) for 24 h. (B,C)
MCP-1, TNF-α expression in TNF-α/IFN-γ-stimulated HaCaT cells. The cells were treated with different concentrations of
CP (5, 10 and 20 µg/mL) for 1 h and then treated with TNF-α/IFN-γ (10 ng/mL) for 24 h. Absorbance was measured using
a microplate reader at 490 nm. (D–F) mRNA levels of inflammatory cytokine in TNF-α/IFN-γ-stimulated HaCaT cells. The
cells were treated with different concentrations of CP (5, 10 and 20 µg/mL) for 1 h and then treated with TNF-α/IFN-γ
(10 ng/mL) for 3 h (TSLP) of 24 h (TARC and IL-6). The mRNA expression level of TSLP, TARC and IL-6 was quantitative,
analyzed by comparing it with GAPDH in the Image J Program. All data represent the means ± SEM (# p < 0.05 and
## p < 0.01 vs. TNF-α/IFN-γ non-treat group. * p < 0.05 and ** p < 0.01 vs. only TNF-α/IFN-γ-treat group).

The inhibition of pro-inflammatory cytokines for CP in TNF-α/IFN-γ-stimulated Ha-
CaT cells was analyzed using an ELISA kit. The expression levels of the pro-inflammatory
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cytokines MCP-1 and TNF-α were significantly increased in the Con group compared
to the Nor group in the HaCaT cells (Figure 2B,C). When the HaCaT cells were treated
with CP, the MCP-1 expression level significantly decreased at concentrations of 5, 10, and
20 µg/mL of CP compared with the Con group (Figure 2B), and the TNF-α expression
level was significantly inhibited at a concentration 20 µg/mL CP compared with the Con
group (Figure 2C) in HaCaT cells.

Expression of the pro-inflammatory cytokines TSLP, TARC and IL-6 mRNA was
confirmed in HaCaT cells. RT-PCR was used to confirm whether CP inhibited expression
of the pro-inflammatory cytokines TSLP, TARC and IL-6 mRNA in HaCaT cells (Figure 2).
TSLP, TARC and IL-6 mRNA levels significantly increased in the Con group compared
with the Nor group in the HaCaT cells. CP significantly decreased TARC mRNA at 5, 10,
and 20 µg/mL concentrations compared with the Con group (Figure 2E). Moreover, CP
markedly decreased TSLP and IL-6 mRNA levels at 20 µg/mL compared with the Con
group (Figure 2D,F).

3.2. Cell Viability of CP and the Effect of CP on Pro-Inflammatory Cytokines in HMC-1 Cells

The cytotoxicity of CP was measured in HMC-1 cells. CP was administered at 0, 12.5,
25, 50, and 100 µg/mL concentrations for 24 h in HMC-1 cells. HMC-1 cells showed no
cytotoxicity at all concentrations of CP (Figure 3A). Therefore, the HMC-1 cells experiment
was conducted at concentrations of 12.5, 25, 50, and 100 µg/mL.

Figure 3. Effect of CP on phorbol-12-myristate-13-acetate plus A23187 (PMACI)-stimulated HMC-1 cells. (A) Viability of CP
in HMC-1 cell by MTS assay. HMC-1 cells were treated with different concentrations of CP (0, 12.5, 25, 50 and 100 µg/mL)
for 24 h. (B–F) Inflammatory cytokine expression in PMACI-stimulated HMC-1 cells. The cells were treated with the
different concentrations of CP (25, 50 and 100 µg/mL) for 1 h and then treated with PMACI for 7 h. Absorbance was
measured using a microplate reader at 490 nm. All data represent the means ± SEM (## p < 0.01 vs. TNF-α/IFN-γ non-treat
group. * p < 0.05 and **p < 0.01 vs. only TNF-α/IFN-γ-treat group).

The inhibition of pro-inflammatory cytokines for CP in PMACI (PMA 25 nM/A23187
1 µM)-stimulated HMC-1 cells was analyzed using an ELISA kit. MCP-1 (Figure 3B),
GM-CSF (Figure 3C), TNF-α (Figure 3D), IL-6 (Figure 3E), and IL-8 (Figure 3F) expression
levels significantly increased in the Con group compared with the Nor group in HMC-1
cells. When HMC-1 cells were treated with CP, the MCP-1 expression level significantly
decreased at concentrations of 50 and 100 µg/mL of CP compared with the Con group
(Figure 3B), and the GM-CSF expression level significantly inhibited at concentrations
of 50 and 100 µg/mL of CP compared with the Con group in HMC-1 cells (Figure 3C).
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TNF-α expression level significantly decreased at a concentration 50 and 100 µg/mL
of CP compared with the Con group in HMC-1 cells (Figure 3D). IL-6 expression level
significantly decreased at concentrations of 50 and 100 µg/mL of CP compared with the
Con group (Figure 3E). IL-8 expression level markedly decreased at a concentration of
100 µg/mL of CP compared with the Con group (Figure 3F).

3.3. Effect of CP on the MAPKs and NF-κB/IκBα Signaling Pathway in TNF-α/IFN-γ-Stimulated
HaCaT Cells

Western blot was performed to confirm whether CP suppresses the MAPKs signaling
pathway. The phosphorylation of ERK, JNK, and P38 increased in the Con group compared
with the Nor group (Figure 4A). CP was not affected by the phosphorylation of ERK
and JNK (Figure 4B,C), but CP inhibited the phosphorylation of P38 at 5, 15, and 30 min
(Figure 4D).

Figure 4. Effect of CP on MAPK signaling pathway in TNF-α/IFN-γ-stimulated HaCaT cells. (A–D) HaCaT cells were
treated with CP (20 µg/mL) for 1 h and then stimulated with TNF-α/IFN-γ for 5, 15 and 30 min. The phosphorylation of
MAPKs was analyzed by western blot analysis. Phosphorylations of MAPKs (ERK, JNK, P38) were normalized to total
MAPKs. (E–G) HaCaT cells were treated with CP (20 µg/mL) for 1 h and then stimulated with TNF-α/IFN-γ for 5, 15,
30 and 60 min. The phosphorylation of the NF-κB/IκBα signaling pathway was analyzed using western blot analysis.
p-NF-κB was normalized to Lamin B, and IκBα was normalized to β-actin. All data represent the means ± SEM (# p < 0.05
and ## p < 0.01 vs. TNF-α/IFN-γ non-treat group. * p < 0.05 and ** p < 0.01 vs. only TNF-α/IFN-γ-treat group).

After confirming that CP suppresses the expression of P38, the effect of CP on the NF-
κB/IκBα signaling pathway downstream from MAPKs signaling was analyzed. Western
blot was performed to confirm whether CP suppresses the NF-κB/IκBα signaling pathway.
The phosphorylation of NF-κB increased in the Con group compared with the Nor group,
and IκBα decreased in the Con group compared with the Nor group (Figure 4E). However,
CP significantly decreased NF-κB translocation compared with the Con group at 5, 15, and
30 min (Figure 4F). Moreover, CP significantly increased IκBα compared with the Con
group at 5 and 15 min (Figure 4G).

3.4. Effect of CP on DNCB-Induced ACD-Like Skin Lesion in the Balb/c Mouse Model

To confirm the effect of CP in the ACD-like skin lesion model, after inducing an
ACD-like skin lesion with DNCB, CP was applied to the dorsal skin for 5 weeks. ACD
lesions such as redness, swelling, oozing, scratching marks, skin thickening, and dryness
occurred in the Con group. The SCORAD index revealed significantly improved symptoms
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of redness, swelling, oozing, scratching marks, skin thickening, and dryness in the CP-L
and CL-H groups. There were more that significantly decreased in CL-H group than CL-L
group (Figure 5A,B). The all mice’s weights were not unusual (Figure 5C). The levels of
alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and liver weight
were measured to confirm liver damage and toxicity. Spleen weights were measured to
investigate the systemic immune response. As shown Figure 5D–G, CP application did not
affect the liver and spleen. Additionally, we measured the levels of IL-4 and IL-6 in tissue
to confirm the effect of CP in the expression of inflammatory cytokine in skin lesion. As
shown Figure 5H,I, CP-H significantly decreased expression of IL-6 but did not affect the
expression of IL-4.

Figure 5. Effect of CP in DNCB-induced ACD-like skin lesion. (A) CP was treated in DNCB-induced an ACD-like skin
lesion mice model for 5 weeks. (B) The SCORAD index of ACD-like skin lesion mice (n = 8 per group) was evaluated.
(C) Body weight was measured once a week. (D–F) Level of alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) and liver weight were measured to examine for liver toxicity and function. (G) Spleen weight was measured to
confirm the systemic immune response. (H,I) Levels of IL-6 and IL-4 in tissue lysate were measured by ELISA. All data
represent the means ± SEM (## p < 0.01 vs. Nor group. * p < 0.05 and ** p < 0.01 vs. Con group).

3.5. Effect of CP on the Epidermal or Dermal Thickness and Infiltration of Eosinophils, Mast Cells,
CD4+ and CD8+ T Cells

H&E and toluidine blue staining were performed to evaluate the efficacy of CP in skin
lesions. Epidermal and dermal thickness significantly increased in the Con group compared
with the Nor group (Figure 6A). However, CP_L or CP_H significantly decreased epidermal
and dermal thickness compared with the Con group (Figure 6F,G). The infiltration of mast
cell was confirmed in the toluidine-blue-stained skin tissue. The tissue infiltration of mast
cells markedly increased in the Con group compared with the Nor group (Figure 6B). Both
CP_L and CP_H significantly suppressed the infiltration of mast cells into the skin lesions
(Figure 6H). H&E staining was performed to observe the infiltration of eosinophils into the
skin tissue. The infiltration of eosinophil significantly increased in the Con group compared
with the Nor group (Figure 6C), but CP_L or CP_H significantly suppressed the infiltration
of eosinophils into the skin lesions (Figure 6I).
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Figure 6. Effect of CP on immunohistochemical (IHC) and histological staining of DNCB-induced
ACD-like skin lesions in mice. (A,E–G) Epidermal and dermal thickness were assessed via H&E
staining (×100, scale bar 200 µm; ×200, scale bar 100 µm). (B,H) Mast cells (red arrow heads) were
measured by toluidine blue staining (×200, scale bar, 100 µm). (C,I) Eosinophils (green arrow heads)
were counted after hematoxylin and eosin staining (×400, scale bar 50 µm). (D,J) Infiltration of CD4+

T cells (black arrows) was examined by IHC staining of skin tissue sections (×400, scale bar 50 µm).
(E,K) Infiltration of CD8+ T cells (yellow arrows) was examined by IHC staining of the skin tissue
sections (×400, scale bar 50 µm). All data represent the means ± SEM (## p < 0.01 vs. Nor group.
* p < 0.05 and ** p < 0.01 vs. Con group).
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IHC staining was performed to verify the effects of CP on the infiltration of CD4+ T
and CD8+ T cells into the skin lesions. Skin infiltration of CD4+ T cells markedly increased
in the Con group compared with the Nor group (Figure 6D), but both CP_L and CP_H
significantly reduced the infiltration of CD4+ T cells into the skin lesions. (Figure 6J). Skin
infiltration of the CD8+ T cells markedly increased in the Con group compared with the
Nor group (Figure 6E), but both CP_L and CP_H significantly reduced the infiltration of
CD8+ T cells into the skin lesions (Figure 6K).

4. Discussion

The purpose of this study was to evaluate the effects of CP on TNF-α/IFN-γ-stimulated
HaCaT cells, PMACI-stimulated HMC-1 cells, and DNCB-induced ACD-like skin lesions.
This study confirmed the anti-inflammatory effect through the intracellular inflammatory
response mechanism in HaCaT cells stimulated with TNF-α/IFN-γ and the HMC-1 cells
model stimulated with PMACI, which is mainly used in allergic contact dermatitis research,
as well as DNCB-induced ACD-like skin lesions. The anti-inflammatory effect of CP on the
pathological and histological symptoms of ACD-like skin lesions in a Balb/c mouse model
was also verified.

In ACD, TSLP secreted by epidermal keratinocyte is a trigger that induces dendric-cell-
mediated allergic inflammation. Dendritic cells activated by TSLP enhance Th2-mediated
inflammation by producing chemokines such as TARC [14]. The actions of TARC and MCP-
1 play an important role in the inflammatory responses of allergic contact dermatitis [15,16].
These chemokines serve to collect other inflammatory cells at the site of the inflammatory
reaction and play a role in sustaining inflammation. GM-CSF is mainly secreted from
keratinocyte and mast cells and promotes the stimulation of LCs to eosinophils, neutrophils,
and basophils, causing chronic allergic contact dermatitis [22]. IL-6 plays an important
role in inflammation and immunity by inducing the maturation of Th2 cells, the inhibition
of various macrophage functions, and the activation and proliferation of eosinophils and
mast cells [21]. IL-8 acts extensively on various types of cells, including neutrophils,
monocytes, endothelial cells, and fibroblasts, and for this reason, it plays an important role
in inflammatory diseases such as chronic inflammation [23]. Therefore, the response of pro-
inflammatory cytokines in TNF-α/IFN-γ-stimulated HaCaT cells and PMACI-stimulated
HMC-1 cells was confirmed.

As a result of the experiment, CP treatment significantly decreased the expression
of TARC, MCP-1, IL-6, and TNF-α in stimulated HaCaT cells and markedly decreased
the expression of MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in HMC-1 cells. These results
indicate that CP exerts anti-inflammatory effects by inhibiting inflammatory chemokines
and cytokines secreted from stimulated HaCaT cells and stimulated HMC-1 cells. Based on
the experimental results, to determine through which mechanism the anti-inflammatory
effect of CP is achieved, the MAPKs signaling pathway, which is the most well-known
inflammatory reaction mechanism, and the NF-κB/IκBα signaling pathway, which is
well-known as being downstream of MAPKs, were identified.

Inflammatory cytokines are mainly expressed in the MAPKs signaling pathway and
the NF-κB/IκBα signaling pathway, a downstream pathway [28]. P38, part of the MAPKs
family, is primarily involved in the inflammatory response [30]. P38 phosphorylated by
external stimuli influences downstream signaling [30,31]. In the NF-κB/IκBα signaling
pathway, which is well known as a signaling pathway downstream of MAPK, the inactive
NF-κB complex, which exists in a normal state, is phosphorylated by P38, causing NF-κB
and IκBα to separate from each other, and the phosphorylated NF-κB is then translocated to
the nucleus, and IκBα is degraded [32,33]. The nuclear translocation of NF-κB is involved
in the expression of numerous genes involved in various immune system and inflammatory
responses causing ACD [33]. Thus, the effect of CP was confirmed for the MAPKs sig-
naling pathway and the NF-κB/IκBα signaling pathway in the TNF-α/IFN-γ-stimulated
HaCaT cells.
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In the study results, CP inhibited the phosphorylation of P38 in the activated MAPK
family of stimulated HaCaT cells, inhibited the nuclear translocation of NF-κB, and in-
hibited degradation due to the phosphorylation of IκBα. These results suggest that CP
inhibits the effects downstream by suppressing the phosphorylation of P38 in the major
intracellular inflammatory response mechanisms; it has a positive effect by inhibiting the
phosphorylation of IκBα in the inactive NF-κB complex, thus preventing stimulation of
upstream. It was also confirmed that inhibiting the phosphorylation of NF-κB inhibits the
secretion of inflammatory cytokines by suppressing the nuclear translocation of NF-κB.

This study confirmed the intracellular inflammatory reaction caused by the effect of
CP on the expression and secretion of inflammatory cytokine. Based on this study, animal
experiments were conducted to confirm the effect of CP on ACD-induced skin lesion.
The main symptoms of ACD-lesions are increased thickness of the epidermal and dermal
layers [46,47]. ACD causes the infiltration of various inflammatory cells, hyperkeratosis
of keratinocytes from inflammatory reactions, and induces the epidermis and dermis to
become thick and hard, leading to rashes, eczema, persistent scratching, and erythema [48].
Increased eosinophils and mast cells in ACD lesions secrete various inflammatory cytokines
and chemokines in the tissue to induce inflammation and other inflammation-inducing
cells, thereby further exacerbating the lesion site in the skin [25,49]. Thus, the DNCB-
induced ACD-like skin lesions model was used to confirm the effect of CP on pathological
symptoms, organ toxicity, and histological symptoms.

Toxicity of CP was tested by observing conditions such as skin, physical activity,
behavior patterns, diarrhea, convulsions, tremors, and lethargy according to the recom-
mendations of the Organization for Economic Cooperation and Development (OECD) [50].
AST and ALT data and liver and spleen weights were measured after mouse sacrifice to
prove again that there was no toxicity at the corresponding concentration. The pathological
symptoms of ACD were visually confirmed by the SCORAD index. As a result of the
study, CP alleviated the pathological symptoms of allergic contact dermatitis-like skin
lesions. These results showed that CP has a positive effect on ACD-like skin lesions, and a
histological experiment was conducted to determine whether the pathological symptoms
of ACD-like lesions were alleviated and by what kind of action.

CP was confirmed to decrease the thickness of the epidermis and dermis through
histological experiments, thus confirming the reason why the thickness of the epidermis and
dermis was decreased by CP. Moreover, the importance of the infiltration of inflammatory
cells in the inflammatory response of the tissue was also confirmed. H&E was performed
to confirm the infiltration of eosinophil and confirmed that eosinophil infiltration was
decreased by CP. Moreover, toluidine blue staining was performed to confirm that the
infiltration of the mast cells was decreased by CP.

CD4+ T cells and CD8+ T cells refer to lymphocytes with a marker called CD4 or CD8
on the cell surface [51]. These cells perceive the allergens presented by antigen-presenting
cells (APCs) and activate T-cells via the interaction of the major histocompatibility complex
class (MHC) and T-cell receptor (TCR) [52]. The activated T-cells differentiate into several
types of T-helper cells, secrete various inflammatory cytokines, and trigger an inflammatory
reaction [53]. As a result of the experiment, it was also confirmed that CP decreases the
infiltration of CD4+ T and CD8+ T cells in the inflammatory response of ACD.

In summary, CP inhibited activation of the MAPK family P38 and the NF-κB/IκBα
signaling pathway, thereby inhibiting the expression of TARC, MCP-1, TNF-α, and IL-6 in
HaCaT cells and the expression of MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in HMC-1 cells.
CP reduced the pathological symptoms of ACD and reduced histological symptoms such
as epidermal and dermal thickness, the infiltration of eosinophils, mast cells, CD4+ T cells,
and CD8+ T cells in vivo. These results suggest that CP may be an effective alternative
medicine for ACD-like lesions.

To conclude, in the ACD inflammatory response, CP inhibits the differentiation process
of Th cells via CD4+ T cells and CD8+ T cells, thereby reducing the secretion of inflammatory
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cytokines and inhibiting eosinophil and mast cell infiltration to alleviate the inflammatory
response. This response reduces the thickness of the epidermis and dermis.

In many studies, the composition of Cone of Pinus densiflora has been studied. The ter-
pene group, known as the main component of pinecones, includes, e.g., alpha-pinene, beta-
pinene, and abietic acid. Alpha-pinene and beta-pinene contribute to the anti-inflammatory
reaction, and abietic acid has inhibited the translocation of NF-κB. As a result of the studies,
the anti-inflammatory effect of CP is shown by the efficacy of the terpene-based compo-
nents known to be contained in drops. However, since the component of CP used in the
experiment was not clearly identified, it appears that additional experiments are needed.
HPLC should be performed to clarify the CP components, and it is necessary to compare
the efficacy of the components identified by performing HPLC with a CP acetate extract.
In later studies, we will conduct a comparative experiment of the HPLC and CP extracts
and the components identified in the HPLC.
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