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Background. Microvascular obstruction (MVO) can result in coronary microcirculation embolism andmyocardial microinfarction.
Myocardial injury induced by MVO is characterized by continuous ischemia and hypoxia of cardiomyocytes. Autophagy and
apoptosis are closely associated with various cardiovascular diseases. Based on our previous study, we observed a decrease in
miR-30e-3p expression and an increase in Egr-1 expression in a rat coronary microembolization model. However, the specific
function of miR-30e-3p in regulating autophagy and apoptosis in an ischemia/hypoxia (IH) environment remains to be
deciphered. We exposed cardiomyocytes to an IH environment and then determined whether miR-30e-3p was involved in
promoting cardiomyocyte autophagy and inhibiting apoptosis by regulating Egr-1. Methods. Cardiomyocytes were isolated from
rats for our in vitro study. miR-30e-3p was either overexpressed or inhibited by transfection with lentiviral vectors into
cardiomyocytes. 3-Methyladenine (3-MA) was used to inhibit autophagy. RT-qPCR and western blotting were used to
determine the expression levels of miR-30e-3p, Egr-1, and proteins related to the autophagy and apoptosis process. Autophagic
vacuoles and autophagic flux were evaluated using transmission electron microscopy (TEM) and confocal microscopy,
respectively. Cardiomyocyte viability was evaluated using the MTS assay. Cell injury was assessed by lactate dehydrogenase
(LDH) leakage, and apoptosis was determined by flow cytometry. Results. Both miR-30e-3p expression and autophagy were
significantly inhibited, and apoptosis was increased in cardiomyocytes after 9 hours of IH exposure. Overexpression of miR-30e-
3p increased autophagy and inhibited apoptosis, as well as suppressed Egr-1 expression and decreased cell injury. In addition,
inhibition of miR-30e-3p reduced autophagy and increased apoptosis and cell injury. Conclusions. miR-30e-3p may be involved
in promoting cardiomyocyte autophagy and inhibiting apoptosis by indirectly regulating Egr-1 expression in an IH environment.

1. Introduction

Percutaneous coronary intervention (PCI) is considered an
effective myocardial reperfusion strategy for ST-segment ele-
vation myocardial infarction (STEMI). Nevertheless, the
occurrence of “no-reflow,” which is a complication caused by
a microvascular obstruction (MVO) during PCI, can seriously
affect therapeutic efficacy [1–3]. Studies have demonstrated
that myocardial injury caused by MVO is characterized by
persistent ischemia and hypoxia (IH) of cardiomyocytes after
microembolization [4]. However, the molecular mechanisms
underlying the regulation of MVO remain to be deciphered.

MicroRNAs (miRNAs) are small noncoding RNAs that
modulate posttranscriptional gene expression, including
degradation and translational repression [5]. miRNAs are

involved in the development of cardiovascular diseases [6],
as well as have an important role in alleviating cardiomyocyte
injury induced by ischemia or hypoxia [7, 8]. In our previous
study, we demonstrated that miR-30e-3p levels, autophagy,
and cardiac function were reduced in a coronary microembo-
lization rat model [9]. However, whether miR-30e-3p has a
protective or deleterious effect on cardiomyocytes exposed
to an IH environment remains elusive.

Autophagy and apoptosis contribute to maintaining car-
diomyocyte homeostasis and play a significant role in cardiac
physiology [10, 11]. Autophagy and apoptosis interact with
each other and are regulated by miRNAs [12, 13]. Autophagy
has been demonstrated to alleviate cardiomyocyte injury
induced by myocardial ischemia [12]. However, myocardial
ischemia can lead to cardiomyocyte apoptosis and
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myocardial injury [14]. Hence, autophagy plays an important
role in cardiomyocyte survival.

Egr-1 is an immediate-early gene and a zinc finger tran-
scriptional protein that has been associated with several car-
diovascular diseases [15, 16]. Studies have demonstrated that
Egr-1 is regulated by miRNAs in several cardiovascular dis-
eases [17, 18]. In our previous study, we demonstrated that
Egr-1 expression levels were increased and involved in the
regulation of autophagy and apoptosis in a rat model for cor-
onary microembolization [19]. However, whether miR-30e-
3p regulates autophagy and apoptosis via the modulation of
Egr-1 in IH-exposed cardiomyocytes is yet to be deciphered.

In this study, we established an in vitro model using
Sprague-Dawley (SD) rat cardiomyocytes exposed to an IH
environment to mimic MVO-mediated myocardial injury.
Using this model, we investigated the role of miR-30e-3p in
regulating Egr-1 expression on autophagy and apoptosis in
IH-exposed cardiomyocytes.

2. Methods

2.1. Cell Culture and Transfection

2.1.1. Cell Culture. The newborn SD rats (1 to 2 days)
were supplied by the animal experiment center of Guangxi
Medical University (Nanning, China). The protocols of the
animal experiment were approved by the Institutional
Animal Care and Use Committee of Guangxi Medical Uni-
versity (Approval No. 201901022). Primary neonatal cardio-
myocytes were harvested from the ventricles of newborn SD
rats after birth based on a previously published protocol [20].
Tissues were digested with 0.04% collagenase II and 0.08%
trypsin with occasional stirring. The supernatants were then
transferred to a new sterile container and centrifuged at
12000 rpm for 3min. Cardiomyocytes were then cultured at
5% CO2 at 37°C for 1.5 hours to remove fibroblasts. The
unattached cells were then transferred to a new culture flask
and incubated in high-glucose DMEM (Gibco, USA) with
10% fetal bovine serum (FBS, Gibco) and 1% penicillin-
streptomycin (Solarbio, China). Culture media were changed
after 36 hours. To replicate an ischemic environment, the
culture media were replaced with FBS-free low-glucose
DMEMmedia (Gibco, USA) and then incubated in a hypoxia
incubator (HERAcell VIOS 160i, Thermo Scientific, Wal-
tham, MA, USA) at 37°C, saturated with 3% oxygen, 5% car-
bon dioxide, and 92% nitrogen, as previously described [21].

2.1.2. Lentivirus Transfection. Lentiviral vectors (Hanbio
Biotechnology, China) were used to overexpress or inhibit
the expression of miR-30e-3p, including miR-30e-3p mimic
(MIR), miR-30e-3p antagonist (MIR antagonist), and miR-
30e-3p negative control (NC). The lentivirus was transfected
into cardiomyocytes by adding directly to the complete
medium at 50 multiplicity of infection (MOI). 24 hours after
transfection, culture media were replaced with low-glucose
DMEM without FBS and the cells were incubated in a hyp-
oxia incubator. 3-Methyladenine (3-MA) was then added
to the cardiomyocytes to inhibit autophagy. The cells were
pretreated with 5mM of 3-MA (Sigma, USA) for 2 hours

prior to lentivirus transfection, as described previously
[22]. Cardiomyocytes from ten newborn SD rats were used
in each group.

2.2. Cell Viability. Cell viability was determined by the Cell
Titer 96® AQueous One Solution Cell Proliferation Assay
(Promega, USA) containing 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazo-
lium (MTS) and the electron coupling reagent phenazine
methosulfate. Cells were cultured in 96-well plates and
incubated for different durations, followed by the addition
of a 20μl detection reagent to each well. After 2 hours, the
optical density for each treatment group was measured at
490 nm [23]. Cardiomyocyte viability was determined as a
percentage of the optical density of each group compared to
the control group.

2.3. Cytotoxicity Assay. The cardiomyocytes cultured in 6-
well plates were exposed to IH in each time point and, respec-
tively, transfected with lentivirus as previously described
after 24 hours of plating. The lactate dehydrogenase (LDH)
leakage assay was implemented using the cytotoxicity detec-
tion kit (Jiancheng Bioengineering Institute, China) to mea-
sure cell injury following the manufacturer’s instruction.
The absorbance was measured at 450 nm.

2.4. Western Blot Analysis. RIPA buffer (Solarbio, China) was
used to extract proteins from the cardiomyocytes. The
amount of total protein was measured using the bicinchoni-
nic acid (BCA; Beyotime, China) method. Equal amounts
of proteins were loaded and run onto a 10% or 12% SDS-
PAGE. The electrophoresed proteins (20μg) were then trans-
ferred to a PVDF membrane (Merck Millipore, USA). The
membranes were blocked for an hour in 5% fat-free milk with
TBS-T at room temperature. Blots were then incubated with
primary antibodies for LC3B, p62, Egr-1, cleaved caspase 3,
and GAPDH (Abcam, USA) overnight at 4°C. After three
washes with TBS-T, the membranes were incubated with a
secondary antibody (Abcam, USA) at room temperature for
an hour. The intensity of the protein bands was measured
using an imaging system (FLUORCHEMFC3, ProteinSim-
ple, USA) with an enhanced chemiluminescence kit (Thermo
Scientific, USA). ImageJ software (National Institutes of
Health, USA) was used for densitometric analysis. Specific
protein levels were normalized to GAPDH levels.

2.5. RNA Extraction and RT-qPCR. The TRIzol reagent
(TaKaRa, Japan) was used to extract total RNA following
the manufacturer’s protocol. RNA concentration was deter-
mined using the NanoDrop system (Thermo Scientific,
USA). The TaqMan Reverse Transcription Kit (TaKaRa,
Japan) was used to synthesize specific cDNA for miR-30e-
3p and Egr-1. RT-qPCR was performed using the SYBR
Green I PCR kit (TaKaRa, Japan) and the ABI PRISM 7500
system (Applied Biosystems, USA). Primer sequences were
designed and synthesized by TaKaRa Biotechnology (Dalian,
China) (sequences are listed in Table 1). The 2-ΔΔCt method
was used to calculate the relative expression levels of miR-
30e-3p and Egr-1 mRNA normalized to U6 and GAPDH
levels, respectively.
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2.6. Transmission Electron Microscopy (TEM). Cardiomyo-
cytes were incubated in 6-well plates. After two times of elu-
tion with PBS, 0.1M sodium cacodylate buffer with 2.5%
glutaraldehyde was promptly used to fix the cells, after which
the cells were transferred to 1% osmium tetroxide and let
stand at room temperature for one hour. Ethanol at ascend-
ing concentrations (50–100%) was used to dehydrate the
specimens. Then, the specimens were embedded in Spurr’s
epoxy resin and cut apart with an ultramicrotome, after
which the thin sections (60–80 nm) were mounted on copper
mesh grids. After staining with 1% uranyl acetate and lead
citrate, the sections were observed using TEM (H-7650, Hita-
chi, Tokyo, Japan).

2.7. mRFP-GFP-LC3 Adenovirus Transfection. Cardiomyo-
cytes were incubated in confocal dishes with the culture
medium containing mRFP-GFP-LC3 adenoviruses (Hanbio,
China) at 50 MOI for 2 hours. 24 hours later, the transfection
medium was replaced. The cells were then cultivated in FBS-
free low-glucose DMEM with hypoxia for subsequent exper-
iments. The dots representing autophagy were measured
using a confocal microscope (NIKON, Tokyo, Japan). Quan-
tifying RFP, GFP, and merged points (dots/cell) were used to
evaluate autophagic flux.

2.8. Flow Cytometry. The Annexin V-FITC/PI double stain-
ing kit (BD Biosciences, USA) was used to detect cardiomyo-
cyte apoptosis by flow cytometry. Briefly, cardiomyocytes
were collected after IH exposure, washed with ice-cold PBS,
and resuspended in 500μl binding buffer. And then, the cells
were incubated with Annexin V-FITC and PI (5μl each) for
15min at room temperature while avoiding light. Data were
collected with a flow cytometer (BD Biosciences, USA)
within one hour and analyzed with the FlowJo software
(BD Biosciences, USA).

2.9. Statistical Methods. All the continuous data were pre-
sented with the measurement of the mean ± standard
deviation ðSDÞ. The variance was analyzed with one-way
ANOVA. All the analysis was conducted with SPSS 22.0
(SPSS Inc., USA). The significance criteria were P < 0:05.

3. Results

3.1. Expression of miR-30e-3p, Egr-1, and Proteins Associated
with Autophagy in IH-Exposed Cardiomyocytes. Cardio-
myocyte activity gradually declined in a time-dependent
manner determined using an MTS assay after IH exposure
(Figure 1(a)). Cellular viability decreased to 50% in the 12-
hour group, suggesting that cardiomyocyte viability reduced
in an IH environment. In addition, we found that IH expo-
sure increased LDH levels in cardiomyocytes in a time-
dependent manner (Figure 1(b)). This indicated that IH
exposure induced cardiomyocyte injury. RT-qPCR was then
used to determine the expression of miR-30e-3p and Egr-1
mRNA. miR-30e-3p expression was significantly reduced at
6, 9, and 12 hours of culture (Figure 1(c)). Egr-1 mRNA
expression was significantly increased at 3, 6, and 9 hours
in the different groups (Figure 1(d)). LC3 and P62 expres-
sion, two key proteins involved in autophagy, was mea-

sured using western blot analysis (Figure 1(e)). LC3II
protein expression was increased significantly in the 3-
hour group and then subsequently decreased drastically at
9 and 12 hours (Figure 1(f)). p62 protein levels were
reduced markedly at 3 hours and increased significantly after
6 hours (Figure 1(g)). Egr-1 expression was increased signifi-
cantly at 3, 6, and 9 hours of culture and then decreased after
9 hours (Figures 1(h) and 1(i)). These results indicated that
IH exposure downregulated the expression of miR-30e-3p
and upregulated Egr-1 expression. In addition, IH exposure
inhibited autophagy and induced cardiomyocyte injury.

3.2. Observation of Autophagosomes by TEM and
Measurement of Autophagic Flux by Confocal Microscopy.
Autophagic vacuole formation is a characteristic indicator
of autophagy. During autophagy, intracellular components
are encapsulated by double-membrane autophagic vesicles
and then fuse with lysosomes to form autolysosomes for sub-
sequent degradation. We observed normal intracellular
structures at the baseline; however, after IH exposure, there
were visible intracellular double-membrane autophagic vac-
uoles and mitochondrial swelling. Autophagy was signifi-
cantly increased at 3-hour IH exposure and then decreased
gradually after 6 hours (Figure 2(a)).

Increased levels of autophagosomes or inhibition of
autophagosome-lysosome formation leads to LC3 accu-
mulation. Confocal microscopy was used to determine
autophagic flux after transfection with mRFP-GFP-LC3 ade-
novirus. Autolysosomes were represented by the red color
and autophagosomes by yellow color (overlay). Autophagic
flux demonstrated that autolysosomes (mRFP+dots) and
autophagosomes (mRFP+GFP+dots) were increased after 3
hours and reduced afterward in an IH environment
(Figure 2(b)).

3.3. IH Exposure Induces Apoptosis in Cardiomyocytes. Apo-
ptosis was determined using flow cytometry and western blot
assays. Flow cytometry assays demonstrated that apoptosis in
cardiomyocytes increased in a time-dependent manner after
IH exposure (Figures 3(a) and 3(b)). IH exposure also
increased the levels of cleaved caspase 3, a key apoptosis pro-
tein (Figures 3(c) and 3(d)). This indicated that apoptosis
increased gradually over time in cardiomyocytes cultured in
an IH environment.

Table 1: The sequences of PCR primers used in this study.

Gene Primer sequences (5′-3′)
miR-30e-3p forward ACGCTTTCAGTCGGATGTTTACAGC

miR-30e-3p reverse GTGCGTGTCGTGGAGTCG

Egr-1 forward GAACAACCCTACGAGCACCTG

Egr-1 reverse GCCACAAAGTGTTGCCACTG

U6 forward GGAACGATACAGAGAAGATTAGC

U6 reverse TGGAACGCTTCACGAATTTGCG

GAPDH forward GGCACAGTCAAGGCTGAGAATG

GAPDH reverse ATGGTGGTGAAGACGCCAGTA
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3.4. Overexpression of miR-30e-3p Promotes Autophagy and
Reduces IH-Induced Cardiomyocyte Injury by Regulating
Egr-1 Expression. miR-30e-3p expression was increased or
reduced using lentivirus transduction of cardiomyocytes.
We selected nine hours post IH to evaluate autophagy and
cardiomyocyte injury. Cell viability increased significantly,
and LDH levels reduced dramatically after overexpression
of miR-30e-3p in IH-exposed cardiomyocytes. Conversely,
cell viability decreased and LDH levels increased after inhibi-
tion of miR-30e-3p (Figures 4(a) and 4(b)). RT-qPCR data
demonstrated that miR-30e-3p expression increased and
Egr-1 mRNA significantly decreased after overexpression of
miR-30e-3p in IH-exposed cardiomyocytes (Figures 4(c)
and 4(d)). In addition, LC3II levels increased significantly
and p62 and Egr-1 expression was markedly reduced after
overexpression of miR-30e-3p. Conversely, after inhibition
of miR-30e-3p, Egr-1 and p62 expression increased signifi-
cantly and LC3II protein was reduced (Figures 4(e) and
4(h)). In addition, LC3II expression was significantly reduced
after the addition of 3-MA and miR-30e-3p (Figure 4(e)).

3.5. Overexpression of miR-30e-3p Increases Autophagosomes
and Autophagic Flux. Using TEM, the autophagic vacuoles
in cardiomyocytes were reduced after exposure to an IH
environment. The autophagic vacuoles increased after miR-
30e-3p overexpression, while inhibition of miR-30e-3p
expression and treatment with 3-MA reduced autophagy

(Figure 5(a)). In addition, overexpression of miR-30e-3p sig-
nificantly increased autophagic flux as determined by confo-
cal microscopy. Conversely, inhibition of miR-30e-3p and
treatment with 3-MA reduced autophagic flux (Figure 5(b)).

3.6. Overexpression of miR-30e-3p Attenuates Apoptosis in
IH-Exposed Cardiomyocytes. Flow cytometry assays demon-
strated increased apoptosis after cells were treated with a
miR-30e-3p antagonist, while miR-30e-3p overexpression
significantly reduced apoptosis levels (Figures 6(a) and
6(b)). In addition, cleaved caspase 3 levels were significantly
reduced after miR-30e-3p overexpression and increased after
miR-30e-3p knockdown (Figures 6(c) and 6(d)). Based on
these results, cardiomyocyte apoptosis induced by IH expo-
sure could be inhibited by overexpressing miR-30e-3p.

All these results indicate that miR-30e-3p may be
involved in promoting autophagy and inhibiting apoptosis
by indirectly regulating Egr-1 expression in IH-exposed
cardiomyocytes.

4. Discussion

Studies have demonstrated that the characteristic features
of myocardial injury induced by MVO are persistent IH
of cardiomyocytes after microembolization [4]. In the
present study, we cultured rat cardiomyocytes in an IH
environment to simulate MVO. We determined that
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Figure 1: Expression of miR-30e-3p, Egr-1, and key protein involved in autophagy in IH-exposed cardiomyocytes. (a) Viability of IH-
exposed cardiomyocytes reduced gradually in a time-dependent manner as determined using MTS assays. (b) Quantitation of LDH
secretion levels in IH-exposed cardiomyocytes. (c, d) Expression levels of miR-30e-3p and Egr-1 mRNA measured using RT-qPCR. (e)
LC3II and p62 expression determined by western blot analysis. (f, g) Quantification of LC3II and p62 protein levels. (h) Egr-1 protein
expression determined by western blot analysis. (i) Quantification of Egr-1 protein levels (n ≥ 3; ∗P < 0:05 and ∗∗P < 0:01, compared to the
0 h group). h: hour; LDH: lactate dehydrogenase.
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Figure 2: Autophagic vacuoles and autophagic flux determined by TEM and confocal microscopy. (a) Autophagic vacuoles measured using
TEM in the five groups. Red arrows represent autophagolysosomes or autophagosomes. Visible intracellular double-membrane autophagic
vacuoles and mitochondrial swelling after IH exposure, magnification 30,000x. (b) Autophagic flux determined by confocal microscopy
with double fluorescence of mRFP-GFP-LC3. Autophagic flux increased significantly at 3 h post IH exposure and then gradually decreased
over time. Magnification 400x (n ≥ 3; ∗P < 0:05 and ∗∗P < 0:01, compared to the 0 h group). h: hour.
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Figure 3: Apoptosis induced by IH exposure in cardiomyocytes. (a) Apoptosis levels of cardiomyocytes measured using flow cytometry. (b)
Summarized apoptosis index. (c) Cleaved caspase 3 protein expression levels determined by western blot. (d) Quantification of cleaved
caspase 3 protein levels (n ≥ 3; ∗P < 0:05 and ∗∗P < 0:01, compared to the 0 h group). h: hour; C-caspase 3: cleaved caspase 3.
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Figure 4: Overexpression of miR-30e-3p promotes autophagy and alleviates cardiomyocyte injury by regulating Egr-1 in IH-exposed
cardiomyocytes. (a) Viability of cardiomyocytes determined using MTS assays. (b) Quantitation of LDH secretion levels in IH-exposed
cardiomyocytes. The levels of (c) miR-30e-3p and (d) Egr-1 mRNA measured using RT-qPCR. Overexpression of miR-30e-3p reduced
Egr-1 mRNA levels, while inhibition of miR-30e-3p increased Egr-1 mRNA expression. (e) Expression of LC3II and p62 determined by
western blot. (f, g) Quantification of LC3II and p62 protein levels. (h) Egr-1 expression determined by western blot. (i) Quantification of
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overexpression of miR-30e-3p could promote autophagy
and inhibit apoptosis by indirectly regulating Egr-1 expres-
sion in IH-exposed cardiomyocytes.

Several studies have demonstrated that cardiomyocyte
autophagy is activated during myocardial ischemia [24].
Autophagy provides energy during myocardial ischemia
to play a protective role against injury [25]. In addition,

inhibition of cardiomyocyte apoptosis improves heart func-
tion after ischemia [26]. Our results demonstrated that
autophagy in cardiomyocytes increased significantly at 3
hours post IH exposure but decreased gradually soon after-
ward in a time-dependent manner. This indicated that
autophagy increases in response to initial IH but decreases
gradually over time with continuous stimulation. Autophagy
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has been demonstrated to negatively correlate with apoptosis.
Reduced autophagy results in an increase in apoptosis and
cardiomyocyte cell injury.

miRNAs regulate autophagy and apoptosis by modu-
lating gene expression in cardiomyocytes [27, 28]. miR-
30e-3p is a member of the miR-30 family and plays a role
in several cardiovascular diseases [29, 30]. Previous studies
have demonstrated that members of the miR-30 family
play different roles in various environments. miR-30a has
been demonstrated to increase autophagy in hypoxia-
exposed cardiomyocytes [31], while downregulation of
miR-30e could inhibit apoptosis to protect the heart from
myocardial ischemia/reperfusion injury [32]. Interestingly,
studies have also demonstrated that overexpression of miR-
30a inhibits autophagy to alleviate hypoxia/reoxygenation
injury in cardiomyocytes [33]. Upregulation of miR-30e-5p
has been shown to alleviate hypoxia-induced apoptosis by
targeting Bim to protect cardiomyocytes [34]. This suggested
that the role of miR-30 family members on cardiomyocyte
protection is different under various physiological condi-
tions. In addition, augmentation of autophagy has been
shown to protect cardiomyocytes during hypoxia, but exces-
sive activation of autophagy results in cardiomyocyte death
during myocardial ischemia/reperfusion injury [35]. Our
study demonstrated that IH inhibits miR-30e-3p expression
in a time-dependent manner. We observed that autophagy
was significantly increased at 3 and 6 hours post IH; how-
ever, miR-30e-3p expression levels did not change. This sug-
gests that autophagy was modulated by multiple factors
rather than miR-30e-3p alone during the early stages of IH.
Upregulation of miR-30e-3p increased autophagy and
reduced apoptosis significantly. This was consistent with
the increasing trend of autophagic flux and the expression
of key autophagic proteins. These results demonstrated that
overexpression of miR-30e-3p could promote autophagy
and inhibit apoptosis in IH-exposed cardiomyocytes.

In our previous study, we demonstrated that silencing Egr-
1 expression could increase autophagy, inhibit apoptosis, and
improve cardiac function in a rat model of coronarymicroem-
bolization [19]. In the present study, we demonstrated that
overexpression of miR-30e-3p inhibited Egr-1 expression, as
well as augment autophagy, reduced apoptosis, and alleviate
cardiomyocyte injury after IH exposure. These were similar
to the results of direct inhibition of Egr-1 expression and indi-
cated that Egr-1 expression was negatively correlated with
miR-30e-3p expression. This suggested that Egr-1 could be
indirectly regulated by miR-30e-3p. Identifying the genes
which miR-30e-3p directly regulated involved in the modula-
tion of Egr-1 under IH conditions needs further study.

In this study, we used 3-MA to inhibit autophagy in
cardiomyocytes. The results revealed that 3-MA treatment
resulted in decreasing autophagy, increasing apoptosis, and
aggravating cardiomyocyte injury. It indicated that miR-
30e-3p overexpression increasing autophagy can protect
cardiomyocytes but not lead to autophagic death and
aggravate cardiomyocyte injury. In addition, 3-MA treat-
ment in cardiomyocytes overexpressing miR-30e-3p
resulted in increased apoptosis, which supports the antag-
onistic relationship between autophagy and apoptosis.

5. Conclusion

In summary, this study demonstrated that miR-30e-3p serves
a significant role in promoting cardiomyocyte autophagy and
inhibiting apoptosis induced by IH via indirectly regulating
Egr-1 expression. These findings suggest that targeted
upregulation of miR-30e-3p expression to increase autoph-
agy during the initial period of IH may alleviate cardiomyo-
cyte injury.
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