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Abstract
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Background: Chromatin accessibility profiling assays such as ATAC-seq and DNase1-seq offer the opportunity to
rapidly characterize the regulatory state of the genome at a single nucleotide resolution. Optimization of molecular
protocols has enabled the molecular biologist to produce next-generation sequencing libraries in several hours,
leaving the analysis of sequencing data as the primary obstacle to wide-scale deployment of accessibility profiling
assays. To address this obstacle we have developed an optimized and efficient pipeline for the analysis of ATAC-seq

Results: We executed a multi-dimensional grid-search on the NIH Biowulf supercomputing cluster to assess the
impact of parameter selection on biological reproducibility and ChiP-seq recovery by analyzing 4560 pipeline
configurations. Our analysis improved ChlIP-seq recovery by 15% for ATAC-seq and 3% for DNase1-seq and
determined that PCR duplicate removal improves biological reproducibility by 36% without significant costs in
footprinting transcription factors. Our analyses of down sampled reads identified a point of diminishing returns
for increased library sequencing depth, with 95% of the ChIP-seq data of a 200 million read footprinting library

Conclusions: We present optimized ATAC-seq and DNase-seq pipelines in both Snakemake and bash formats as
well as optimal sequencing depths for ATAC-seq and DNase-seq projects. The optimized ATAC-seq and DNase1-seq
analysis pipelines, parameters, and ground-truth ChIP-seq datasets have been made available for deployment and
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Background

Regulatory control of RNA expression is a key compo-
nent of the central dogma of molecular biology. Under
the central dogma, protein and RNA products regulate
RNA expression. Modules of expression compose ex-
pression states associated with specialized biological ac-
tivities. The information contained within a genome is
expressed in a temporally and spatially coordinated pro-
gram of ever increasing differentiation. This program
starts with the embryonic stem cell and grows
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progressively more specialized. Control over RNA ex-
pression is predominantly achieved through the coopera-
tive behavior of multiple proteins that bind DNA called
transcription factors (TF) which modify chromatin and
recruit RNA polymerase II (RNAP) prior to transcrip-
tional elongation and mRNA expression [1].

Higher order control over RNA expression has been
postulated to exist in terms of an ‘epigenetic landscape’
[2] in which expression of transcription factors at spe-
cific developmental states and lineages restricts the pos-
sible set of expression modules that can be activated.
Thus, cells are limited to a stable expression state vector
that is associated with a given lineage and cell type.
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Multiple RNA profiling technologies have been devel-
oped to rapidly and comprehensively identify stable tran-
scriptional states including DNA microarrays and,
recently, RNA-seq via Next-Generation Sequencing
(NGS) [3]. While RNA profiling technologies may com-
prehensively identify the RNA stable state associated
with a given cell type (or cell in the case of single cell
RNA-seq), they do not provide information on the chro-
matin accessibility patterns and transcription factor
binding events that produce this stable state.

Chromatin accessibility profiling was developed to in-
terrogate the genomic circumstances that drives a given
expression state [4]. These techniques profile the acces-
sibility of the DNA to enzymatic digestion or transpos-
ition, that is regions of the genome occupied by protein
complexes (e.g., nucleosomes, transcription factor com-
plexes). Commonly used techniques for chromatin ac-
cessibility profiling include DNasel hypersensitivity
profiling (DNasel-seq) [5] and the Assay for
Transposase-Accessible Chromatin using Sequencing
(ATAC-seq) [6]. Briefly, nuclei are extracted from a sam-
ple and treated with concentrations of enzyme that
result in fewer cuts/insertions in regions of high nucleo-
some occupancy. At lower read depths (e.g., 40-60
million reads), the nucleosome occupancy of the genome
can be effectively identified. At higher read depths
(e.g., > 200 million reads), subtly lower rates of enzyme ac-
tivity reveal genomic intervals of transcription factor
bound DNA, commonly described as ‘footprints’ [7].
These footprints describe a subset of the protein bound
genomic DNA and enable genome-wide reconstruction of
the cellular gene regulatory network from a single experi-
ment. Importantly, transcription factor binding kinetics
and DNA-binding domain types impact the presence and
detectability of this footprint, with some TFs leaving
well-defined footprints and others leaving poorly-defined
footprints [8]. Despite these limitations, DNasel and
ATAC-seq-based genomic footprinting represent a rapid
and cost-effective means to build a model of cellular gene
regulation that can later be supplemented with traditional
gene regulatory network inference methods [9-12].

The process of cellular gene regulatory network
(GRN) reconstruction via TF footprinting is computa-
tionally intensive and requires multiple data transforma-
tions, each of which have multiple possible parameters
that may or may not significantly impact the quality and
accuracy of the network generated. To assess the impact
of parameter selection on network generation, we exe-
cuted a computational grid search across eight param-
eter arguments and five different pipeline steps, with a
total of 4560 different pipelines evaluated. The process
of evaluating 4560 different pipelines collectively utilized
72,960 CPUs with 3.75 GB RAM each. The mean total
time that each pipeline took was 2 h, and running all

Page 2 of 13

pipelines on the Biowulf supercomputing system con-
sumed more than 100,000 CPU hours (http://hpc.nih.gov)
for each run. The results from each of the 4560 argument
combinations was then assessed against ‘ground truth’
ENCODE chromatin immunoprecipitation (ChIP)-seq re-
sults describing TF binding within the GM12878 lympho-
blastoid cell line for both DNasel hypersensitivity and
ATAC-seq chromatin accessibility profiling [13]. We
present the results of this grid search to provide investiga-
tors insight to the impact of parameters on pipeline
function. Additionally, we provide optimized Snakemake
and bash pipelines with pre-configured algorithmic pa-
rameters capable of maximizing biological reproducibility
and network accuracy for DNasel hypersensitivity profil-
ing and ATAC-seq [14].

Results

Metrics used

Four metrics were calculated: alignment reproducibility,
open chromatin reproducibility, TF footprint reproducibil-
ity, and recapitulation of known TF ChIP-seq data (Fig. 1).

Footprints increase linearly with reads - ChiP-seq
recovery yields diminishing returns with read depths
greater than 60 million readz

ATAC-seq and DNasel-seq reads were ‘downsampled’
(reduced in sample size) to investigate the relationship
between read depth, number of footprints detected, and
ChIP-seq recovery. Reads were sampled from 20 to 200
million single-end reads; the number of open chroma-
tin regions, the number of footprints, and the ChIP-seq
AUC was calculated at each sampling (Fig. 2). Our ana-
lysis indicated that the number of detected TF foot-
prints scaled with read depth according to a slope of
2722 footprints per additional million reads for DNasel
and 2290 footprints per additional million reads for
ATAC (Fig. 2a). Inspection of the downsampled data in-
dicated that a reduction of read depth explained 73 and
98% of the variance in ATAC-seq and Dnasel-seq foot-
print number respectively. The number of footprints
detected was also linearly related to the number of
peaks, indicating that downsampling primarily impacts
the ability of the system to detect footprints by restrict-
ing the ability of the system to detect a peak. ROC
AUC (area under the repeater operating characteristic
curve), a measure of a predictor’s ability to predict true
positives, increased non-linearly as read depths in-
creased (Fig. 2b). Put another way, accurate footprint
recovery of TF binding as measured by ChIP continued
to increase but at a lower rate at higher read depths.
Analysis of ChIP recovery indicates diminishing return
in the significance of the footprints produced with at
read depths greater than 60 million reads. ChIP-seq
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Fig. 1 Visualization of pipeline metrics (a) Alignment reproducibility is measured as the correlation between two replicates in the number of
reads that fall inside 10 kb genomic bins. Bins with similar read densities in each replicate indicate higher reproducibility; bins with an imbalance
signify lower reproducibility. b Open chromatin reproducibility is measured by assessing average peak height across all bases in the window
compared between replicates. Collections of bins in which the average peak height is similar between replicates result in high reproducibility
scores. ¢ To measure biological significance, known transcription factor binding information from ChiP-seq is compared to predicted protein
binding footprints at each site that is a match to a protein’s binding site motif. If the footprint prediction lines up with known ChlIP-seq data, the
binding motif is a true positive protein binding site; if the footprint prediction does not line up with ChiP-seq data, the binding motif is a false
positive. Likewise, if a binding motif lines up with ChiP-seq but has no footprint, it is a false negative, and if the binding motif lines up with

recovery as measured by ROC AUC continued to im-
prove as the number of reads accumulated. Fitting the
mean-AUC-to-reads relationship to a power function
gave a rough expectation of the number of reads neces-
sary to achieve a given mean AUC. To predict the num-
ber of reads required to achieve an AUC of 0.95, we fit
a function to the DNasel-seq and ATAC-seq data. This
analysis indicated that 2.85 billion reads of DNasel-seq
data to reach a 0.95 mean AUC, while the function for
ATAC-seq data projected a total of 2.15 billion reads to
reach the same AUC. Wellington’s performance using
the default arguments was particularly poor leading to
extreme improvements by Wellington in mean AUC
over random of 10,355 and 1013% for DNase- and
ATAC-seq, respectively.

PCR duplicate removal
As part of the procedure for ATAC-seq and DNase-seq,
the enzymatically-digested genomic fragments are PCR
amplified. This process of PCR amplification can intro-
duce bias into the composition of the library via stochastic
‘PCR jackpotting’ in which randomly selected genomic in-
tervals are amplified by the DNA polymerase [15]. We
evaluated the impact of PCR duplicate removal by asses-
sing footprinting pipelines that included combinations of
input data with no PCR duplicate removal and those with
PCR duplicate removal, using SAMtools and Picard to
transform and index incoming alignment files (Fig. 3).
When PCR duplication removal was introduced, the
reproducibility of footprinting data alignments measured
as Pearson correlation between two replicates’ genomic
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Fig. 2 The impact of library read depth on number of footprints detected and ChIP-seq recovery as measured by AUC. The number of footprints
and biological information of those footprints was calculated in a single downsampled library. Error bars depict the 95% confidence interval around
mean values at each downsampling (n = 3). a Number of footprints were measured against read depths at each downsampling. The number of
detected footprints increases linearly with read depth. b Mean AUC was measured as a function of downsampled read depth. The increase in AUC

with additional reads exhibits a diminishing return per read as read depths increase beyond 100 million reads
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Fig. 3 PCR duplicate removal improves biological reproducibility. Pearson correlation representing reproducibility between replicates and mean
AUC representing biological information plotted for each footprinting algorithm with and without PCR duplicate removal. Error bars represent
95% confidence interval. a Across all parameter combinations, Pearson correlation coefficients were plotted with and without PCR duplicate
removal for each footprinting algorithm. PCR duplicate removal improves biological reproducibility in both HINT and Wellington driven pipelines.
b Across all parameter combinations, mean AUC was plotted with and without PCR duplicate removal for each footprinting algorithm. ChiP-seq
recovery does not significantly improve in either algorithm with PCR bias correction. AUC-optimized pipelines for HINT use PCR bias correction,
while AUC-optimized pipelines for Wellington do not
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significant impacts on the detection of transcription
factor binding events.

Open chromatin regions

When calling open chromatin regions, peak detection al-
gorithms scan across the genome, finding uniformly-sized
bins that contain an enriched number of aligned reads.
Following peak detection, overlapping bins are stitched to-
gether to form open chromatin regions of high read dens-
ity. Our pipelines utilized the HOMER software suite to
identify open chromatin regions. Two arguments to
HOMER were assessed across the grid search: i) peak size,
controlling the size of the bins; and i) minDist, control-
ling the minimum distance allowed between two peaks.
Analysis of grid search results indicates that peak size al-
tered the biological reproducibility of detected open chro-
matin regions (Fig. 4a, b).

Assessment of replicate correlation scores indicates that
smaller peak sizes show higher mean reproducibility
scores for both DNase- and ATAC-seq but also limited
the area in which footprints could be called. This smaller
search space seems to explain the lower AUC seen in
lower peak sizes. To confirm that open chromatin regions
extended beyond where reads aligned within known regu-
latory regions, a subset of promoters were visually
inspected. Visual inspection of BAM files in IGV indicated
that the use of progressively larger peak sizes results in er-
rors of open chromatin region calls in genomic intervals
associated with large numbers of aligned reads
(Additional file 4: Figure S3a). Thus, a tradeoff exists
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between expanding footprinting across cis-regulatory re-
gions and containing footprinting within truly open chro-
matin. The pipelines with the highest recovery of
ChIP-seq used peak sizes of 200—500. Altering the mini-
mum distance between peaks had no effect on reproduci-
bility or footprint value (Additional file 4: Figure S3C-E).

Reproducibility vs. transcription factor ChIP recovery
DNasel-seq and ATAC-seq footprints were evaluated both
for their isogenic replicate reproducibility and their ability
to recapitulate known transcription factor binding patterns
as described by ChIP-seq (Fig. 5). Optimizing for reproduci-
bility decreased the mean AUC of the pipeline relative to a
default set of parameters. Reproducibility-optimized mean
AUCs above random decreased relative to default HINT
pipelines’s mean AUCs by 21 and 13% for DNase- and
ATAC-seq, respectively. Put another way, the pipelines se-
lected for maximal biological reproducibility were not opti-
mal for AUC recovery. AUC optimized HINT pipelines
improved ChIP recovery AUC by 3 and 15% for DNasel-
and ATAC-seq, respectively (Fig. 6).

ChIP optimized/reproducibility optimized pipelines
Optimized Snakemake pipelines for ATAC and DNasel
footprinting are available for download at the Chiorini
Lab github page (www.github.com/ChioriniLab).

Discussion
Chromatin accessibility profiling and transcription factor
footprinting analyses represent an exciting opportunity
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Fig. 4 Impact of HOMER peak parameters on reproducibility. Assessment of the impact of HOMER peak sizes on DNase1-seq and ATAC-seq
isogenic reproducibility. a Pearson correlation coefficients for average peak height in genomic bins was measured for each peak size parameter
for all parameter combinations, for each data type. b Distributions of Pearson correlation coefficients between replicates are plotted for each peak
size. Smaller peak sizes result in higher reproducibility of the openness of 10 kb genomic windows between replicates. Results are shown in one
plot for both DNase1-seq and ATAC-seq. Note that ATAC-seq replicates were produced within one lab whereas the DNase1-seq libraries were
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biological reproducibility was investigated by overlapping the footprints of replicates and measuring the number of footprints with an overlapping
replicate footprint. The percentage of overlap required between the two replicates was increased and the proportion of still-overlapping footprints
plotted. For ATAC-seq data, the pipeline optimized to reproduce intermediate alignment and OCR files does not produce reproducible footprints as
well as AUC-optimized pipelines. b Dnasel-seq footprint biological reproducibility was investigated by overlapping the footprints of replicates and
measuring the number of footprints with an overlapping replicate footprint. The percentage of overlap required between the two replicates was
increased and the proportion of still-overlapping footprints plotted. In DNase1-seq data, the pipeline optimized to reproduce intermediate alignment
and OCR files produces more reproducible footprints than AUC-optimized or default pipelines. ¢ The relationship between footprint reproducibility
and ChiP-seq AUC was measured. Each pipeline’s proportion of footprints that overlap with the footprints of its replicate (at 1% overlap required) is
plotted against that pipeline’s mean AUC. Pipelines with the highest AUC for each data type are marked with arrows
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to glean new insights on fundamental principles of gene
regulation and expression. Herein, we present an opti-
mized and integrated pipeline for the robust analysis of
chromatin accessibility data that processes all steps from
raw FASTQ input to production of a final, optimized
gene regulatory network. These pipelines are freely ac-
cessible, and our approaches and data are available for
additional optimization as new algorithms for footprint-
ing analysis become available.

Diminishing return on AUC at 60-80 M reads

Recovery of transcription factor footprints within the
ATAC/DNase sequencing signal requires deep sequencing
to identify the protein bound region of DNA protected

from enzymatic cleavage. We identified a linear relation-
ship between read depth and footprints quantity for both
the DNase and ATAC-seq data. Our results indicate that
even 200 million reads is insufficient to exhaust the bio-
logical information gathered from footprinting, an obser-
vation also noted in Barozzi et al. [14]. Deeper sequencing
and downsampling will be necessary to determine if there
is a natural plateau to the number of footprints that can
be detected across the genome.

We noted diminishing returns in ChIP recovery as se-
quencing depth increases over 60—80 million reads for
both ATAC and DNase-seq. Mean AUC at the 100 mil-
lion read depth was within 80% of the 200 million read
depth AUCs for both data types, and mean AUC at the



Pranzatelli et al. BMC Genomics (2018) 19:563

Page 7 of 13

N\

—
Q
~

Default ATAC-seq w/ HINT
1.01 Default ATAC-seq w/ Wellington
AUC-Optimized ATAC-seq w/ HINT
AUC-Optimized ATAC-seq w/ Wellington
0.91 Reproducibility-Optimized ATAC-seq w/ HINT
[
I
3 0.8
@
el
=4
=}
o 0.7
<
<
0.6 1
0.5 1
O D & & O > O & 20 O O 0 O D A
B P /O LT L7 Y (LAY AP KLY K7L N
C A FEE LSS PO
%"\b@% [ \v“$$$$(t}o§ 0/1/&,‘/&
9
Transcription Factors
(c)
1.04
0.8
> 0.6 1
S
b=
i
Q
w04
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity

specificity over sensitivity

Fig. 6 Impact of ChIP-seq recovery optimization on ATAC-seq and DNase 1-seq footprinting performance. a Per-TF ChiP-seq recovery for ATAC-seq
pipelines. b Per-TF ChIP-seq recovery for DNase1-seq pipelines. ¢ ROC curves for ATAC-seq ChIP recovery. d ROC curves for DNase1-seq ChIP recovery.
There is an imbalance between negative TFBSs and positive TFBSs of approximately 10:1, and footprint algorithms are conservative and tend towards

Default DNase-seq w/ HINT
1.01 Default DNase-seq w/ Wellington
AUC-Optimized DNase-seq w/ HINT
AUC-Optimized DNase-seq w/ Wellington
0.91 Reproducibility-Optimized DNase-seq w/ HINT
[
I
3 0.8
@
©
=4
=}
o 0.7
<
<
0.6 1
0.5 A
O D & & O X O T R O O O D A
O v O LT L7 Y (& AT AV Y LAY K7LV
C AT T S Y
T e TSI IS
Q
Transcription Factors
1.04
0.8
> 0.6 1
S
£
i
Q
» 0.4 4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity

160 million read depth was within 95% of the 200 mil-
lion read depth mean AUC for both data types. This
plateau was observed in all individual TF without obvi-
ous differences in DNA binding kinetics between TF.
One explanation is that all TF share the same kinetic
properties, or footprints detected at higher read ranges
describe transient TF binding that is not detectable in a
ChIP-seq assay, or that the footprints detected at higher
read depths have diminishing accuracy. Regardless, our
data supports that 100 million reads is a defensible read
depth for a sequencing run and 160 million reads is an
optimal read depth.

Reproducibility vs. transcription factor ChlIP recovery
Utilizing Picard to remove putative PCR duplicates im-
proves biological reproducibility scores between biological

(DNasel-seq) and technical (ATAC-seq) replicates.
Similarly, smaller peak sizes of open chromatin regions
(OCRs) lead to reproducibility improvements. Because of
these small peak sizes, there is no reproducibility-optimized
Wellington pipeline, as Wellington requires the sizes of
shoulder and footprint sequences to sum to a value greater
than 50 base pairs. Picard PCR duplicate removal is used in
some AUC-optimized pipelines, whereas small peak sizes
are not used in any AUC-optimized pipelines.

PCR duplicate removal takes out identically-ended se-
quencing reads (reads that look like the result of PCR
bias). For example, in a chromatin accessibility assay
performed on a population of 50,000 cells, it is expected
that the enzyme cuts the same base pair position in mul-
tiple genomes at some unknown rate. Pipelines that used
PCR duplicate removal exhibited as much as a 50%
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reduction in the number of footprints found relative to
their untreated counterpart pipelines. In our data, TF foot-
printing detection by Wellington was negatively impacted
by PCR duplicate removal, with a mean reduction of 84%
of the AUC above random. Similarly, larger peak sizes
increase the genomic interval in which footprinting is de-
tected while decreasing the degree of biological reproduci-
bility. Lost opportunities to call footprints, in the case of
peak size, or lost information to call footprints, in the case
of PCR duplicate removal, may explain the apparent con-
tradictions we observed between increased reproducibility
and diminished AUC scores for certain pipelines.

We noted that pipelines optimized for reproducibility in
alignment and peak calling do not score well on AUC,
and vice versa. This tradeoff is explicable by the two argu-
ment differences between these pipelines: HOMER peak
size and bias correction. High reproducibility was found
in samples with small peak sizes, and visual inspection de-
termined those peaks overlapped with only the highest
points of alignment, leading to safe and reliable peak as-
sertions. However, as peaks are the only regions in which
footprints are searched for, fracturing of open chromatin
regions limits footprinting in regulatory regions and can
reduce AUC. HINT’s known DNase bias correction in-
creases reproducibility in DNase-seq footprints but re-
duces mean AUC. This phenomenon is currently
inexplicable. Interestingly, none of the evaluated bias cor-
rection methods improved ATAC-seq footprint reproduci-
bility or mean AUC.

It is worth noting that overlap of footprints between
replicates was higher in DNasel-seq pipelines optimized
for reproducibility relative to AUC-optimized or default
pipelines, and lower in ATAC-seq pipelines optimized for
reproducibility relative to AUC-optimized or default pipe-
lines. It is not clear why this is the case. Using an
AUC-optimized pipeline with HINT results in the highest
biological information possible gleaned from footprinting.

We also found that AUCs representing ChIP recovery
for ATAC-seq data in GM12878 were universally lower
than ChIP recovery AUCs from DNase-seq data. Our
optimized pipelines for ATAC-seq data used very sensi-
tive alignment but were otherwise identical to optimized
pipelines for DNase-seq for each algorithm. It may be
the case that algorithms have been optimized on
DNase-seq data and modes for using ATAC-seq data are
not mature. Neither optimized pipeline using HINT uti-
lized either known DNasel bias or bias estimated from
the data. As footprinting algorithms continue to include
ATAC-seq training data, it is very likely that perform-
ance on this kind of data will improve.

Conclusions
Chromatin accessibility profiling assays such as ATAC-seq
and DNasel-seq offer the opportunity to rapidly
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characterize the regulatory state of the genome at a single
nucleotide resolution. Significant optimization of molecu-
lar protocols has enabled the generation of sequencing li-
braries in several hours. The remaining computational
analysis of next generation sequencing data is the primary
obstacle to wide-scale deployment of accessibility profiling
assays (e.g., ATAC-seq). To address this obstacle, we have
developed an optimized and efficient pipeline for the ana-
lysis of ATAC-seq and DNasel-seq data.

Our pipeline was designed to maximize ChIP recovery,
the current ‘gold standard’ in transcription factor occu-
pancy assessment. In addition, we performed a computa-
tionally intensive grid search across 4560 possible
argument combinations to identify the impact of param-
eter selection on pipeline performance. Our analyses iden-
tified the optimal argument combinations for ATAC-seq
and DNasel analysis and these pre-optimized pipelines
were translated into Snakemake pipelines for routine and
reproducible deployment to supercomputing clusters.
Each iteration of these analyses required approximately
11.5 CPU years to reach completion and are being made
freely available at the Chiorini Lab Github to avoid
duplication of effort within the scientific community.
Additionally, the raw datasets and code for pipeline valid-
ation have been made publically available allowing investiga-
tors to easily profile, and rapidly improve, future pipelines
and algorithms for transcription factor footprinting.

Genome wide chromatin accessibility mapping offers a
unique window into the regulatory state of the cell by
allowing an investigator to rapidly map cellular genomic
states. We anticipate continued development in algo-
rithms and molecular protocols that will improve the ac-
curacy and efficiency of gene regulatory network inference
from ATAC/DNase sequencing. As chromatin profiling is
a valuable tool to characterize the networks and TF bind-
ing events that define a cell's operation, we expect that
chromatin profiling assays will continue to see use in can-
cer genomics, cell engineering, and monogenic diseases
cases evading exomic diagnosis. The optimized analysis
pipelines and quantitative profiling metrics for construc-
tion of ATAC/DNase-seq networks provided here contrib-
ute to the scientific community by providing an easily
accessed platform for analysis and pipeline engineering.

Methods

Pipeline

The structure of our footprinting analysis pipeline is pre-
sented in Fig. 7 and Additional file 1: Table S1. Briefly, the
first step in the pipeline was to perform quality control on
the FASTQ file of raw reads from the sequencing instru-
ment using FastQC (http://www.bioinformatics.babraha-
m.ac.uk/projects/fastqc). For ATAC-seq, FastQC adds
additional information by identifying the tags remaining in
the read from Tn5 tagmentation. Removal of tagmentation
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Fig. 7 Flowchart of the pipeline. Dog-eared squares are files, diamonds are software packages, tables represent the arguments passed to the pipeline
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tags was accomplished via truncation of 20 bp of signal
from the 5’ end of the transcript using Trimmomatic [16].
For the ATAC-seq data used to validate the pipeline, the
entire read was trimmed to 20 bp to minimize the number
of reads resulting from PCR chimerism (Additional file 2:
Figure S1 and Additional file 3: Figure S2).

Following quality control, the second step is to align
reads to the genome using Bowtie2 [17]. A series of align-
ment arguments are passed to the pipeline. These first
two arguments specify if Bowtie2 is to align reads globally
or locally as well as sensitively or very sensitively. A global
alignment subtracts overhangs in the sequenced reads
from the alignment score, whereas a local does not.
“Sensitive” and “very sensitive” are modes of alignment
used by Bowtie2. Running Bowtie2 on “very sensitive”
causes the program to attempt more potential alignments
than “sensitive” before discarding or aligning a read.

In the third step, aligned reads are converted to a bin-
ary format using (as the third argument) either
SAMtools [18] or the Broad Institute’s Picard package
(http://broadinstitute.github.io/picard). These tools are

then used to sort and index the aligned reads. If Picard
is used to convert the reads to binary format, the aligned
reads are also queued for PCR duplicate removal via the
Picard MarkDuplicates function. PCR duplicates are
identical copies of reads which can introduce PCR bias
to the TF footprinting analysis by over-representing a
small number of highly duplicated genomic regions. In
genomic footprinting, PCR duplicate removal may lower
bias or, alternatively, discard biological information.

In the fourth step, the aligned reads are analyzed by
the HOMER [19] findpeaks function to identify open
chromatin regions (OCRs). OCRs are operationally de-
scribed as intervals of the genome with higher aligned
read density than background. Functionally, OCRs are
therefore regions of the genome with low nucleosome
occupancy that demonstrate higher enzymatic accessibil-
ity and read signal. Following OCR identification, the
computationally expensive HINT [21] and Wellington
[22] footprinting algorithms are targeted to these areas
of the genome HOMER identified as peaks to search for
TF footprints using alignment information. The “peak
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height” of an OCR corresponds to the number of reads
that align to that region and is a metric that quantita-
tively describes the chromatin accessibility of a genomic
interval. The two arguments passed to HOMER to
process aligned reads are the OCR’s sizes, which are the
size in base pairs of the regions that HOMER uses to
scan across the genome (and are thus the lower limit on
the length of a peak); and the minimum distance allowed
between OCRs. These are the fourth and fifth arguments
in the tested pipelines.

The final step of the analysis pipeline is to pass the
aligned reads and OCRs to a TF footprinting identification
algorithm. We evaluated two footprinting algorithms,
Wellington and HINT. Wellington utilizes a beta-bino-
mial distribution to estimate footprints and leverages the
observation that enzymatically accessible genomic DNA
in the nucleus results in strand-specific increases in en-
zyme activity around transcription factor footprints.
Wellington requires two arguments: a p-value cutoff and a
desired false discovery rate. HINT is a hidden Markov
model based footprinting algorithm that incorporates bias
correction for known DNasel digestion biases. Usefully,
HINT also incorporates functions that enable de novo es-
timation of enzymatic bias from input data. The only par-
ameter that can be passed to HINT is the mode of bias
correction. Both Wellington and HINT return genomic
intervals of predicted protein binding. These proposed
protein binding intervals are then intersected on the gen-
ome with transcription factor position weight matrices to
generate predicted transcription factor binding intervals
and a final gene regulatory network.

Pipeline validation metrics

The data used to validate this pipeline came from
GM12878, a lymphoblastoid cell line. DNasel-seq data
used to validate the pipeline is ENCODE data [13] from
the Stamatoyannopolous and Crawford labs download-
able at https://www.encodeproject.org/experiments/ENCS
ROOOEJD/ and https://www.encodeproject.org/experiment
s/ENCSROOOEMTY/, respectively. ATAC-seq data used to
validate the pipeline was acquired from Buenrostro et al.
[6] via the Gene Expression Omnibus repository
GSE47753. Biological reproducibility was assessed by as-
sembling at least two independently sampled datasets
for each source (ATAC-seq and DNasel-seq). All the
ATAC-seq data was produced within the Buenrostro
Lab, whereas the DNasel-seq data is replicated across
the Stamatoyannopoulos lab and Crawford labs, poten-
tially impacting observed reproducibility due to technical
and biological variance.

Three metrics of data reproducibility were assayed
across the pipeline. The first metric was the correlation
of sequence read alignments. Under this metric, the gen-
ome is divided into 10 kilobase bins and the number of
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reads in each bin is compared between replicates for
each bin. A summary Pearson correlation coefficient is
then calculated, with higher Pearson correlation coeffi-
cients between genome bin sets suggestive of similar
patterns of aligned reads across the genome.

The second metric of reproducibility quantitatively as-
sesses OCR reproducibility between replicates. Peaks are
averaged across 10 kilobase bins and compared between
replicates to produce a Pearson correlation coefficient
that summarizes the reproducibility of the assay to de-
tect OCRs across multiple replicates.

The final reproducibility metric assayed was the per-
centage of TF footprints detected as present and over-
lapping in two biological replicates. This metric assesses
the ability of the assay to detect biologically reproducible
TF binding events.

In addition to the three metrics of reproducibility, we
assessed the ability of chromatin accessibility based data
to recover transcription factor binding by comparing iden-
tified footprints to the ‘gold standard’ of ChIP-seq for each
footprint. Transcription factor ChIP data for BHLHE4O0,
BRCA1, CTCE EBF1, IRF3, MXI1, NFE2, NFYA, NFYB,
NRF1, STAT1, STAT3, USF2, ZNF143 and ZNF274 was
downloaded from ENCODE. This data was compared to
footprint coverage of the genome at all positions matching
that transcription factor’s binding motif to assess the abil-
ity of transcription factor footprinting to recover known
ChIP-seq binding information.

Software

Software used in the pipeline includes FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc), seqtk
(https://github.com/lh3/seqtk), Bowtie2 v.2.29 [17],
SAMtools v.1.3.1 [18], HOMER v.4.8.2 [19], BEDtools
v.2.25.0 [23], BEDops v.2.4.26 [24], pyDNase v.0.2.4 [22], R
v.34, deepTools v.2.24 [25], Picard v.2.9.2, UCSC tools
v.344 [26], RGT v.0.9.9 [20, 21], and Trimmomatic v.0.36
[16]. All code was translated to the Snakemake [27] pipeline
management platform to streamline scientific supercom-
puting deployment and maximize data reproducibility. This
work utilized the computational resources of the NIH HPC
Biowulf cluster. (http://hpc.nih.gov).

These software packages were selected based on the ori-
ginal footprinting tutorial from Piper and found at https://
pythonhosted.org/pyDNase/tutorial html. The tested pipe-
lines use software used both in that tutorial and in the
Hardison ATAC-seq pipeline found at https://www.enco
deproject.org/pipelines/ENCPL035XIO/.

Downsampling

ATAC-seq and DNase-seq data was downsampled using
seqtk (https://github.com/lh3/seqtk) to 20, 40, 60, 80,
100, 120, 140, 160 and 200 million reads. Random seeds
for seqtk were set to the same value as the number of


https://www.encodeproject.org/experiments/ENCSR000EJD
https://www.encodeproject.org/experiments/ENCSR000EJD
https://www.encodeproject.org/experiments/ENCSR000EMT
https://www.encodeproject.org/experiments/ENCSR000EMT
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/lh3/seqtk
http://hpc.nih.gov
https://pythonhosted.org/pyDNase/tutorial.html
https://pythonhosted.org/pyDNase/tutorial.html
https://www.encodeproject.org/pipelines/ENCPL035XIO
https://www.encodeproject.org/pipelines/ENCPL035XIO
https://github.com/lh3/seqtk

Pranzatelli et al. BMC Genomics (2018) 19:563

reads being downsampled to and three permutations of
the data were iteratively sampled. Downsampled samples
were used to assess the impact of read number on the
total number of transcription factor footprints detected
and AUC recovery.

Trimming

ATAC-seq fastq reads were trimmed using Trimmo-
matic [16] to remove Tn5 tagmentation adapters. The
final length of the trimmed determined to be mappable
without a high expected rate of random alignment was
20 and Trimmomatic was called with the arguments
HEADCROP:20 CROP:20.

Alignment

Alignment was performed with Bowtie2 [17]. Alignments
were performed using the --sensitive (default), —-sensiti-
ve-local, --very-sensitive, and --very-sensitive-local
pre-configured alignment parameters. Default align-
ments are global, requiring the entire read to align to
the genome.

To process alignments for downstream analysis,
SAMtools [18] was used to process reads without the re-
moval of PCR duplicates. The impact of PCR duplicate re-
moval was assessed via the use of Picard to process reads
and remove PCR duplicates. The SAMtools processes
used were view, sort and index, while the Picard processes
used were SortSam, MarkDuplicates and BuildBamIndex.

Open chromatin regions

Open chromatin regions were identified from alignment
files using HOMER [19] makeTagDirectory, findPeaks
and pos2BED functions, as well as BEDtools [23] sort
and merge functions. These bedfiles representing open
chromatin regions were analyzed by the footprint detec-
tion algorithms, HINT [21] and Wellington [22].

Reproducibility metrics

To compute reproducibility in alignment space, deep-
Tools [25] multiBamSummary and plotCorrelation were
used to summarize the alignments in genomic bins of
size 10 kb across the hgl9 genome and compare these
alignments between two biological replicates. High Pear-
son correlation coefficients describe pipelines in which
alignments are mapping to the same genomic bins be-
tween two replicates.

To compute reproducibility in open chromatin region
calling across the genome, deepTools’ multiBigwigSum-
mary and plotCorrelation were used to quantify the
similarity in open chromatin calling between replicates
using 10 kb bins. The average score for open chromatin
was calculated and compared between bins. High
Pearson correlation coefficients are assigned to pipelines
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in which both replicates have open chromatin regions in
the same genomic bins.

AUC evaluation

To produce PWM hits for individual proteins, the cisBP
[28] database was mapped to the human hgl9 genome
with FIMO using a p-value cutoff of 1E-04 [29]. Tran-
scription factor binding was assessed via analysis of
ChIP-seq data for GMI12878 acquired from the
ENCODE [13] consortium from data accessions begin-
ning in ENCSR0O00D and ending in NN, ZS, ZN, ZU,
Z0, ZM, Z1, NM, ZY, ZX, 7], ZQ, ZL, ZV and YW.

The ability of the pipeline to recapitulate known tran-
scription factor binding events was assessed by compari-
son of the TF footprint predictions with known TF
binding events from ChIP-seq data. Footprints overlap-
ping known TF binding intervals via ChIP-seq were
assessed as true positives, while footprints without over-
lapping ChIP-seq peaks were labeled as false positives.
ChIP-supported protein binding sites that did not overlap
a footprint were considered false negatives, and ChIP
negative, footprint negative binding sites were considered
to be true negatives. Predictions from footprints were or-
dered by score from Wellington or HINT, and binding site
predictions that didn’t overlap with predictions from foot-
prints were ordered randomly. Receiver operating charac-
teristic (ROC) curves were produced from these
predictions and the area under curve (AUC) for each tran-
scription factor was calculated. Across all of the transcrip-
tion factors tested, there were on average 10 negative TF
binding sites for each positive TF binding site.

Additional files

Additional file 1: Table S1. Parameters passed to each pipeline.
Default, AUC-optimized and reproducibility-optimized pipelines for
ATAC-seq and DNasel-seq are shown using each footprinting algorithm.
Parameters for each pipeline are listed. These parameters correspond to
Fig. 7, and these pipelines can be found at github.com/ChioriniLab. (PDF 182 kb)

Additional file 2: Figure S1. FastQC Reveals Tn5 Tags and PCR
Chimerism. Non-random distributions of the first ~10 bases after
tagmentation correspond to the Tn5 tagmentation after library primers are
removed. This non-random region at the beginning of the read is
characteristics of ATAC-seq data. In the ATAC-seq sample from Buenrostro,
a second non-random region can be seen, suggesting PCR chimerism.
(PDF 57 kb)

Additional file 3: Figure S2. Trimming reads improves alignment of the
GM12878 ATAC-seq reads. Tn5 transposase attaches mosaic end (ME) tags
that need to be trimmed from the 5" end of the read. Additionally, however,
trimming low-quality base pairs from the 3" end of the ATAC-seq reads so
that all reads had the same length improved alignment to the genome
(shown in green). With a 3 billion base pair genome, the chance that a
sequence of a certain length will align randomly is high for sequences
shorter than 17 base pairs. To minimize random alignment while removing
low-quality base pairs for this ATAC-seq data, we trimmed the reads to a
final length of 20 base pairs. (PDF 13 kb)

Additional file 4: Figure S3. Visual inspection reveals consistent overlap
between HOMER peaks and OCRs at peak size of 200. (a) Read coverage
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for DNasel-seq (top) and ATAC-seq (bottom) shown underneath open
chromatin regions called by HOMER at peak sizes ranging from 10 base
pairs to 2000 base pairs. Peak reproducibility between replicates was
shown to be higher with lower peak sizes. Visualized using the Broad
Institute’s Integrative Genomics Viewer (software.broadinstitute.org/software/
igv/). (b,c,d) Metrics of reproducibility and biological information plotted
against the HOMER argument minDist for all pipelines. Pipelines could have a
minDist of 0, 50 or 500, and these values had no effect on correlation between
replicates or recapitulation of known ChIP-seq. (PDF 1272 kb)
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AUC: Area under the curve; ChiP-seq: Chromatin immunoprecipitation;
DNasel-seq: DNasel hypersenstivity profiling; GRN: Gene regulatory network;
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