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a b s t r a c t 

While tissue engineering investigators have appreciated adipose tissue as a repository of stromal/stem cells, they 

are only now beginning to see its value as a decellularized tissue resource. Independent academic investigators 

have successfully extracted lipid, genomic DNA and proteins from human fat to create a decellularized extra- 

cellular matrix enriched in collagen, glycoproteins, and proteoglycans. Pre-clinical studies have validated its 

compatibility with stromal/stem cells and its ability to support adipogenesis in vitro and in vivo in both small 

(murine) and large (porcine) subcutaneous implant models. Furthermore, Phase I safety clinical trials have in- 

jected decellularized human adipose tissue scaffolds in human volunteers without incident for periods of up to 

127 days. This commentary takes an opinionated look at the under-appreciated but potential benefits of obesity 

as an increasingly available biomaterial resource. 
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(

he past as prologue 

Over two decades ago, investigators recognized fat as a rich source of

dipose-derived stromal/stem cells (ASC) ( 1 ). After identifying the many

otential lineage differentiation pathways exhibited by ASC, De Ugarte,

edrick and colleagues made the prescient prediction that fat would be a

raw material for tissue engineering ” ( 1 ). As practicing plastic surgeons,

hey recognized the advantages of fat as an abundant and replenishable

uman tissue that was accessible through lipoaspiration, a relatively

on-invasive out-patient surgical procedure ( 1 ). Furthermore, they ap-

reciated that tissue engineering with ASC would require synthetic or

iological scaffolds ( 1 ). Nevertheless, the complexity of removing lipid

rom the adipose tissue delayed its consideration as starting material for

ecellularization protocols. Despite this substantial challenge, Flynn ex-

ended the utility of fat by demonstrating that adipose tissue could itself

e the source of a biological extracellular matrix (ECM). Using a combi-

ation of enzymatic, mechanical, and organic solvent extraction steps,

lynn isolated and characterized a decellularized adipose-tissue ECM

 2 ). With these advances, investigators across multiple fields began to

ppreciate that adipose tissue would serve not only as a raw material for

issue engineering cells and growth factors but also as a unique scaffold.

urrent attractions 

Multiple pre-clinical studies have begun to explore the utility of

ecellularized adipose-derived materials in regenerative medicine. Re-
Abbreviations: ASC, Adipose stromal/stem cell; CD4, Cluster of differentiation 4; E  

uloskeletal Transplant Foundation. 
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CM, Extracellular matrix; M2, alternatively activated macrophage; MTF, Mus-

ently, two independent academic groups have demonstrated the safety

nd utility of decellularized human adipose tissue scaffolds in both pre-

linical and clinical trials. The team at the University of Pittsburgh de-

ellularized human cadaveric adipose tissue through sequential steps

f lipid extraction with propanol, decellularization with sodium deoxy-

holate, and sterilization with peracetic acid, followed by lyophilization

nd milling ( 3 , 4 ). In their review of the literature, these authors noted

hat previous studies had demonstrated that these steps efficiently ex-

racted genomic DNA and triglycerides which were likely to cause a

oreign body reaction and immune rejection of a decellularized scaffold

mplant ( 5 ). Consistent with these observations from the literature, their

reclinical examination demonstrated that the injected scaffold was tol-

rated in immunodeficient mice and served as the matrix for adipocyte

ifferentiation in vivo ( 3 ). In clinical studies, patients with the scaffold

mplanted into the dorsum of the hand ( n = 14) or into the pannus of

atients scheduled for abdominoplasty ( n = 10) safely tolerated the allo-

eneic biomaterial without evidence of rejection ( 3 , 4 ). Furthermore, the

orsal hand implants displayed evidence of volume retention over time

nd in both instances, histological analyses documented evidence of cel-

ular infiltration and adipogenesis in a time dependent manner ( 3 , 4 ).

imilarly, the team at Johns Hopkins University decellularized human

bdominoplasty tissue by mechanical processing and rinsing followed

y sterilization in peracetic acid to create a biomaterial scaffold ( 5 ). Us-

ng a global, unbiased proteomic mass spectrometry approach, they de-

ermined that the decellularized adipose tissue contained multiple colla-

ens (I, II, IV, VI), proteoglycans (biglycan, decorin, lumican), and gly-
022 
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oproteins (cartilage intermediate layer protein, fibrillin, laminin), con-

istent with independent reports ( 5 , 6 ). When implanted subcutaneously

nto immunodeficient mice, the decellularized adipose tissue supported

he formation of a fat depot. Indeed, the decellularized adipose tissue

lone retained volume over time at a level comparable to that of intact

at grafting. Nevertheless, it was noteworthy that the addition of human

SC to the decellularized adipose tissue graft reduced the level of vol-

me retention over time as compared to decellularized adipose tissue

mplants alone ( 6 ). Yorkshire pigs tolerated subcutaneous injections of

he decellularized adipose tissue in volumes of 3 to 20 ml per site for pe-

iods of up to 4 weeks. Analyses of the infiltrating cell number between

he edge and center of the implant indicated that there was minimal

vidence of rejection ( 5 ). Further clinical studies were performed in pa-

ients scheduled to undergo abdominoplasty or panniculectomy ( n = 8

ubjects). Subcutaneous implantation of 2 to 4 ml of decellularized scaf-

olds for periods of 5 to 127 days were tolerated without severe ad-

erse events. Flow cytometry analyses determined that the implants pro-

oted infiltration of CD4 + and FoxP3 + T cells as well as activation of M2

acrophges ( 5 ). Together, these studies validate decellularized human

dipose tissue as a novel biomaterial for clinical applications with early

doption likely for cosmetic and reconstructive plastic surgery, ortho-

edics, and dental/craniofacial repairs. Furthermore, global proteomics

rovides a reproducible and readily available technology to assess bio-

aterial product composition. This could be adapted as an industry-

ide quality assurance/quality control methodology for product char-

cterization and lot release. 

Additional studies have manufactured decellularized adipose tissue

n multiple formats suited for specific clinical applications. Flynn and

olleagues have electro sprayed decellularized adipose tissue into liquid

itrogen followed by sieving-based size separation to create beads that

an be self-assembled with luciferase-trackable ASC. Together, these can

e cultured in molds to create constructs suitable for soft tissue recon-

truction ( 7 ). This team has further advanced their processing methods

nzymatically digesting the decellularized adipose tissue with 𝛼-amylase

igestion prior to electrospray to create a microcarrier bead formula-

ion. These have proved suitable for stromal cell adhesion and expan-

ion in spinner flask bioreactors as well as subcutaneous implantation

nto immunocompetent mice ( 8 ). Likewise, decellularized adipose tissue

an be processed as a hydrogel sheet, with or without the incorporation

f ASC; this has been used to successfully repair critical sized femoral

one defects in an immunocompetent murine model ( 9 ). Finally, it has

een possible to further modify the properties of decellularized human

dipose tissue matrices by chemical cross-linking to polyethyleneglycol

ia thiol/acrylate addition ( 10 ). When implanted subcutaneously in im-

unocompetent mice, these chemically modified decellularized adipose

CM constructs supported host cell infiltration and adipogenesis ( 10 ).

hus, there is ample evidence that decellularized adipose tissue is com-

atible with multiple formats (beads, foam, hydrogel, sheet) applicable

o a myriad of clinical situations and conditions requiring a range of

iscoelastic and tensile properties. 

review of future features 

Research grade decellularized adipose scaffolds have been validated

igorously by multiple independent academic investigations in pre-

linical in vitro and in vivo models and are being explored in ongoing

linical investigations and trials. Indeed, MTF Biologics now distributes

enuva TM as a decellularized human adipose-derived product for soft

issue augmentation in the United States (https:www.myrenuva.com).

t present, adipose tissue is routinely discarded as medical waste. Its

se as a biomaterial offers the opportunity to deploy adipose tissue in

 manner not unlike that of decellularized bone grafts, the most com-

only transplanted human tissue other than blood. With hundreds of

housands of healthy individuals undergoing elective liposuction and

bdominoplasty annually, it is feasible to consider the development of a
2 
re-screening process to allow for the collection of clinical grade adipose

issue as a raw material. Adipose tissue received from donors meeting

trict inclusion/exclusion criteria could be stored frozen for future de-

ellularization processing with minimal complications. Unlike ASC iso-

ation steps that must be performed within hours of tissue collection,

CM preparations from human adipose tissue can be delayed for weeks,

onths or longer if the starting tissue is kept appropriately cryopre-

erved during the interval. It is likely that clinical grade decellularized

dipose scaffolds comparable to Renuva TM will soon gain full regula-

ory approval for specific clinical applications. As post-marketing data

ccumulates from such products, surgeons will gain confidence in the

se of decellularized adipose tissue and adopt it as a routine tool for

atient care. Of course, such post-marketing studies must focus on po-

ential shortfalls in the product’s performance, such as the ability of the

mplant to retain volume over time as this remains a confounding vari-

ble for autologous fat grafting procedures. 
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