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Towards a gamete matching platform: using immunogenetics
and artificial intelligence to predict recurrent miscarriage
Aldo Mora-Sánchez 1, Daniel-Isui Aguilar-Salvador 1 and Izabela Nowak2

The degree of Allele sharing of the Human Leukocyte Antigen (HLA) genes has been linked with recurrent miscarriage (RM).
However, no clear genetic markers of RM have yet been identified, possibly because of the complexity of interactions between
paternal and maternal genes during embryo development. We propose a methodology to analyse HLA haplotypes from couples
either with histories of successful pregnancies or RM. This article describes a method of RM genetic-risk calculation. The proposed
HLA representation techniques allowed us to create an algorithm (IMMATCH) to retrospectively predict RM with an AUC= 0.71 (p
= 0.0035) thanks to high-resolution typing and the use of linear algebra on peptide binding affinity data. The algorithm features an
adjustable threshold to increase either sensitivity or specificity, allowing a sensitivity of 86%. Combining immunogenetics with
artificial intelligence could create personalised tools to better understand the genetic causes of unexplained infertility and a gamete
matching platform that could increase pregnancy success rates.
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INTRODUCTION
Women using assisted reproductive technologies have a sig-
nificantly higher risk of experiencing miscarriage than those
attempting natural pregnancies, even after adjusting for age.1 The
cause is not identified for about 50% of patients who experience
recurrent miscarriage (RM).2 As identifying the cause has proven
difficult, most preventing efforts are primarily focused on
assessing the quality of gametes prior to fertilisation3 and quality
of embryos before implantation.4 Currently, there are no methods
to accurately assess an individual couple’s genetic risk of RM; such
a risk prediction method would likely improve the process of
gamete donation.
Immune interactions are proposed as a possible explanation for

RM, as developing embryos can be considered as semi-allografts
to the maternal immune system. The fact that women with
autoimmune disorders have an increased incidence of RM lends
credence to this theory.5 Among others, Human Leukocyte
Antigen (HLA) proteins and Killer-cell immunoglobulin-like recep-
tors (KIR) are proteins thought to mediate immune interactions in
pregnancy.
HLA molecules are membrane proteins that present antigenic

peptides to T cells, which makes them determinant molecules of
the adaptive human immune system. HLA proteins are encoded
by different genes and are one of the most polymorphic regions
of the human genome.6 The most common explanation for this
high variability is that it resulted from the competition between
slowly evolving vertebrates and rapidly evolving pathogens.7 The
set of HLA proteins differ from person to person, and each HLA
variant has the ability to bind to different repertoires of peptides;
this variation consequently determines the immune system’s
ability to react to different pathogens. As each HLA variant is
potentially able to act against different sets of pathogens, natural
selection is hypothesized to favour heterozygous individuals.8

Both animal and human studies9 suggest that mating behaviour
favours HLA-diverse or HLA-dissimilar individuals. Indeed, couples
more dissimilar in their HLA alleles have been reported to be more
fertile.10 Although the specific signalling mechanisms responsible
for HLA-mediated mating behaviour remains unclear, it is known
that paternal and maternal haplotypes are not randomly matched
genetically.8,9 In spite of that, this information is not part of the
selection criteria when an assisted reproductive therapy patient
receives or selects a gamete from an unknown external party, and
therefore the matching is random at the genetic level.
KIRs, the second family of molecules thought to be involved in

immune interactions during pregnancy, are membrane proteins
expressed mainly by natural killer cells and by subsets of T cells.11

HLA Class I (HLA-A, -B and C) proteins interact with KIR, which act
as activating or inhibitory receptors that regulate the effector
properties of the cells that express them. Every individual can
carry multiple and diverse copies of both activating and inhibitory
receptors in their genome, creating a highly diverse genetic
region.
The interactions between immunity and pregnancy outcomes

have been demonstrated empirically at the population level, with
several studies showing consistently that HLA allele sharing
correlates with pregnancy outcomes.12 However, identifying
specific genetic markers, especially for individual couples, remains
elusive. Having observed the limitations present in previous
studies, we propose two strategies to identify genetic markers.
Cognizant that HLA proteins are highly polymorphic, the first

proposed strategy is to increase the resolution of their representa-
tion. The high degree of polymorphism implies that the potential
number of combinations of paternal and maternal protein variants
is extremely high, which poses serious difficulties for any study
design. We can illustrate this high variability by examining only
the three genes coding for HLA class I proteins: to date there are
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3,172 reported HLA-A proteins, 3,923 HLA-B proteins, and 2,920
HLA-C proteins (http://hla.alleles.org/nomenclature/stats.html). For
any given couple, the number of possible combinations is
therefore 31724+ 39234+ 29204, more than 50,000 times the
current earth’s population. No study design thus can make use of
full resolution HLA genotyping for analysing the effect of HLA
protein combinations on pregnancy. Regarding mathematical
representations, HLA proteins are categorical variables with high
cardinality (number of possible proteins); most researchers so far
have dealt with this high cardinality by representing protein
variants with ultra-low resolution. The study of genetic interac-
tions often relies on dividing thousands of proteins into two
functional groups. For instance, the joint effect of HLA-C and KIR
haplotypes is usually investigated by categorising HLA-C genes as
either in the C1 or the C2 group, and KIR genes as homozygous or
not for the A haplotype.13 In addition, allele sharing in research is
commonly reduced to a similar/dissimilar relationship.14 As these
assessments are binary, most of the information on diversity, key
for HLA functioning, is lost. As increasing the resolution of HLA
proteins would render certain analyses impossible, we propose
feasible mathematical representation techniques to handle the
high-resolution information of HLA variability.
The second proposed strategy to identify individual RM genetic

risk markers involves addressing the complexity of genetic
interactions, as the joint effect of multiple genes is rarely
considered in the literature. When studying the impact of
maternal-paternal interactions on pregnancy outcomes, the vast
majority of studies focus either on the effect of allele sharing at a
single locus,14, or on the interaction of two loci.13 Recent advances
in machine learning techniques applied to medicine have showed
their potential to analyse the joint effect of multiple variables and
to consider their interactions. For a recent review of how machine
learning can contribute to comprehensive, inexpensive, and
accurate diagnostics, see.15

The study described in this article is the first of its kind to
simultaneously increase protein resolution while at the same time
addressing multiple complex genetic interactions. We first
constructed explanatory variables (features) to train our machine
learning model to predict cases of RM. This process of
constructing relevant features is denominated “feature engineer-
ing”. Two aspects during this process allowed us to increase the
resolution of the protein representation. To our knowledge, our
approach is the first of its kind in two aspects concerning feature
engineering. First, we expressed the degree of allele sharing
between paternal-maternal genes in a continuous, instead of
binary, manner. Second, in the context of genetic associations, we
used linear algebra methods to numerically represent HLA
proteins by using peptide binding affinity data. The engineered
features were used as the input of machine learning algorithms.
Our method has several additional advantages over existing
methods, specifically the fact that it is able to go beyond finding
relevant predictors at the population level and is, to our
knowledge, the first one able to predict probabilities on a case-
by-case basis. The latter could be particularly advantageous for
clinical applications, in particular personalised genetic counselling.

RESULTS
Discriminative power and accuracy
The classifier achieved an AUC= 0.71 (p= 0.0035). The AUC is a
measure of the predictive power of the classifier, being AUC= 1 a
perfect classifier and 0.5 a random classifier. The accuracy of the
model was 0.67 (p= 0.0045).

Specificity and sensitivity of the classifier
Accurately identifying the group a potential gamete pair belongs
to could reduce the risk of RM in a gamete donation program. To

this end, we calculated the specificity and sensitivity of the
classifier (Fig. 1). We can observe that it is possible to achieve a
sensitivity of 86% if we accept a false positive rate of 57%. The
clinical implications of accepting a false-positive rate of 57% in the
specific case of gamete donation are developed in the discussion.
Figure 2 shows how the classifier behaves when features are

gradually added to the model, illustrating how the joint analysis of
features outperforms the analysis of single features. Figure 3
compares the AUC of IMMATCH algorithm with that of a classifier
trained with HLA-C1/C2 and KIR-A homozygosity information, as
this interaction has been reported to be relevant at the population
level for spontaneous abortion.16 In addition, the comparison is
extended to the AUC of the feature that, alone, obtained the
highest AUC value.

DISCUSSION
Incorporating the joint effect of predictors is the only way to
analyse the underlying complexity of genetic interactions. In our
study, single features performed no better than random chance in
predicting the risk group membership of an individual case. The
classifier using the reported interactions between HLA-C2 and KIR
AA performed no better than random chance either. This
illustrates how a reduction in haplotype resolution by dividing
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Fig. 1 ROC curve of the IMMATCH algorithm. Sensitivity and 1-
specificity are plotted as a function of the classification threshold. A
unique sensitivity-specificity pair exists for each threshold value. The
green line corresponds to all possible sensitivity-specificity pairs
obtained by varying the classifier’s threshold, whereas the red line
corresponds to the sensitivity-specificity pairs of a random classifier
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Fig. 2 Predictive power of joint features. Classification performance
measured as the AUC as a function of the number of features used
to build the classifier, to evaluate the joint predictive power of
features
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HLA-C and KIR genes into two groups (similar and dissimilar), a
strategy that according to some evidence could lead to a relevant
predictor of RM at the population level, might not be sufficient for
predicting individual outcomes.
Accurately assessing the risk for obstetric complications

associated with a given pair of gametes could improve gamete
donor selection. Our classifier has an adjustable classification
threshold value that can be raised or lowered to improve
sensitivity or specificity. A low threshold would increase sensitivity
at the expense of specificity. This scenario is particularly
interesting for gamete donor selection, where sensitivity is
undoubtedly more important than specificity. This difference is
because the patient is expected to choose only one or two donors
from a catalog whose size can range from dozens to thousands.
With a sensitivity of 86% and a false-positive rate of 57%, even if
slightly more than half of the donors proposed as potentially
leading to RM for a specific recipient are false negatives, there is
still a 86% probability that the selected donor(s) will lead to a
healthy pregnancy. The above situation contrasts with the case of
a disease diagnostic test for an individual. In such case, false
positives are as important as false negatives, since a false positive
is likely to unnecessarily change the lifestyle of the patient.
Ultimately, and especially for gamete catalogues with a small

number of donors, there is no need to divide the donors into low
and high risk groups. Instead of setting a threshold and making
two categories, donors could be ranked according to their
likelihood of leading to a healthy pregnancy and this ranking
would change from recipient to recipient, which would become a
valuable additional criterion for recipients.
When more data becomes available, other types of feature

selection techniques or classifiers better suited to large data sets
might allow for the discovery of associations involving other
genes. Furthermore, the physicochemical continuous representa-
tion of the proteins (see “Methods” section and the Supplemen-
tary Information) can be used itself as a set of features. Such
representation would allow mapping the large number of
different protein variants to a reduced number of continuous
variables, rendering feasible the mathematical analysis of
paternal-maternal genetic combinations.
It has been suggested that the immunogenetics field is not

sufficiently advanced to guide clinical interventions for the
prevention of negative pregnancy outcomes.17 One of the
limitations for this is that very large studies are required to find
genetic markers. It has been estimated that in order to detect the
risk of reduced birth weight with 90% power, data from almost

4,000 pregnancies would be required. Although this estimated
volume of data may be true for that particular problem with
traditional statistics. Taking this problem as a classification task
significantly reduces the required number of data needed. Taking
the present study as an example, we can use the binomial
distribution to compute the probability of correctly identifying, by
chance, more than 67% of the 95 cases (49 belonging to one class
and 46 to the other class). Such probability is as low as 0.13%. This
corresponds to a p value of p= 0.0013, consistent with our
numeric estimation of the p value via a permutation test.
Therefore, even relatively small sample sizes can lead to significant
p values in a classification task, as the probability of obtaining
positive results by chance decreases exponentially with the
number of items to be classified. Conversely, when using
population statistics, if multiple hypotheses are tested, several
associations with seemingly significant p values may appear by
chance. Traditional statistical tests require an additional p value
correction that incorporates the number of hypothesis; however,
the output of a classifier is a single score that combines all the
predictors into one hypothesis and does not require further
corrections.
In summary, the feature extraction methods developed here

allow us to take better advantage of the high-resolution data
available through current sequencing technologies. The com-
puted p value suggests that, when taken together, the proposed
measures are indeed markers of RM, and the obtained classifier
could predict RM on a case-by case basis. These results could be
further extended to embryo selection, in combination with current
screening techniques. It is unlikely that a handful of immune
genes can completely explain a phenomenon as complex as RM,
and therefore an AUC of 1 might not be realistic. However, larger
data collection is likely to further increase the predictive power of
the classifier. Continued research on this subject may help to
unveil the genetic factors of unexplained infertility and further
contribute to helping couples with difficulty conceiving.

METHODS
Study design
A subset of 200 DNA samples from a previous study on spontaneous
abortion18 was used. Patients and their partners were recruited from the
Department of Surgical, Endoscopic and Oncologic Gynaecology and from
the Department of Gynaecology and Gynaecologic Oncology from the
Polish Mothers’ Memorial Hospital–Research Institute in Poland. The RM
group was made up of patients who had experienced at least
3 spontaneous miscarriages, but had no prior history of chromosomal
aberrations, uterine anomalies, or hormonal disturbances; no Toxoplasma,
Chlamydia, Listeria, or Brucella infection; and who tested negative for the
presence of autoantibodies. Only samples from couples where the female
was under 37 years old were considered for this study. Given the inclusion
criteria, the RM group was composed of cases of unexplained RM.
The control group was recruited from Department of Obstetrics and

Gynaecology, Medical University of Warsaw and from the Strzelce Opolskie
District Hospital. This group consisted of healthy couples with at least two
children born healthy and no history of miscarriage or endocrinological or
immunological disorders. Experimental protocols were approved by the
local ethics committees (with the agreement of the Medical University of
Wrocław and the Polish Mothers’ Memorial Hospital–Research Institute in
Łódź) and informed consent was obtained from both members of the
couples included in the study.
The 200 DNA samples corresponded to 100 couples. 50 of these couples

belonged to the RM group and the remaining 50 couples belonged to the
control group. 5 couples were not included because DNA concentration
from 5 participants was not high enough to perform high-resolution
genotyping. The final number of couples analysed was therefore 95, with
49 RM examples and 46 healthy controls.

DNA preparation and genotyping
Genomic DNA was isolated from venous blood using the Invisorb Spin
Blood Midi Kit (Invitek, Berlin, Germany), following the manufacturer’s
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Fig. 3 Comparative predictive power of IMMATCH. Performance of
the algorithm (IMMATCH) compared to a classifier trained only with
the best feature, and a classifier trained with a marker reported in
the literature (HLA-C, KIR interactions). Dotted line indicates the
performance of a random classifier
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instructions. DNA was stored at −80 °C until further use. DKMS Life Science
Lab performed the HLA-A, B, C genotyping using their in-house Next
Generation Sequencing methodology, accredited by the European
Federation for Immunogenetics and the American Society for Histocom-
patibility and Immunogenetics. When necessary, amino acid sequence was
inferred from the typing information using the IPD and IMGT/HLA
Database.19

Feature extraction
We chose to express allele sharing in a continuous manner to go beyond
the binary assessment of similarity/dissimilarity commonly used in the
literature. Representing allele sharing with a continuous, rather than
binary, value expresses the complete spectrum of similarity.
We propose using functional, structural and evolutionary properties of

the HLA proteins to build functions that map two proteins into a
continuous distance metric. In particular, we propose three such functions
per locus, f1, f2 y f3, each of which leads to a variable, or feature. As there
are two maternal (say, L1 and L2) and two paternal (L3 and L4) alleles at a
locus L, each feature Fi(L) is constructed as

F i Lð Þ ¼ f i L1; L3ð Þ þ f i L1; L4ð Þ þ f i L2; L3ð Þ þ f i L2; L4ð Þð Þ=4
Each function fi is meant to be a way to assess in a non-binary manner the
extent to which two proteins are similar. Therefore, each feature Fi
estimates, on average, how similar paternal and maternal proteins are at a
given locus when using the function fi for similarity assessment. The total
number of features per couple is thus three times the number of loci
considered.
The functions f1 and f2 assess the similarity, or distance, between two

proteins in terms of peptide sequence similarity. Such assessment is
performed via a substitution matrix, that estimates how similar two
peptides are. The first function (f1) uses the BLOSUM5020 matrix (see
Supplementary Information); the second function (f2) uses the PMBEC
matrix.21

The third function (f3) was derived using a mapping technique that
assigns a protein to a vector of n numbers, by means of experimental
measures regarding the binding affinity between reference peptides to
that protein. These vectors, that are meant to describe physicochemical
properties of the protein, are embedded in an n-dimensional abstract
mathematical space. We will refer to this numeric representation as the
physicochemical continuous representation of a protein. The similarity

between two proteins is then computed as the inner product of the
vectors representing the two proteins, as discussed in depth in the
Supplementary Information. As the set of numbers conforming the vector
represents physicochemical properties of the protein, we can expect this
similarity assessment to provide information that is not redundant with the
f1 and f2 assessments. The protein mapping was inspired by matrix
factorisation techniques22 used for recommender systems, which are
systems that use historical data to predict user preferences of certain
items.23 We drew analogies between HLA proteins and users, peptides and
items, and binding affinities and user preferences.
We decided to focus our analysis on allele sharing, as allele sharing

consistently showed correlation with RM in the literature.12 Furthermore,
we used only class I HLA genes for two reasons. The first reason is that f3
requires binding affinity data, which are not available for all of the class II
HLA genes. The second reason is that, as diversity is key for the efficacy of
all the HLA loci, any mechanism favouring it is likely to be observed across
loci. Therefore, the genetic dissimilarity in a few HLA genes might be a
proxy measure of the genetic dissimilarity of the remaining HLA genes. If,
due to parsimony, a few genes must be chosen for the analysis, it is more
convenient to choose the three class I genes, as they are more
polymorphic than the class II HLA genes.
Specifically, for each couple, 9 features were extracted, 3 features for

each of the three HLA class I loci. Not enough binding affinity was available
for 31 of the 1140 (six copies of each of the 190 participants) HLA proteins,
and in these cases, the proteins were replaced by the closest ones as
discussed in detail in the Supplementary Information.

Classification
Classification refers to the process of predicting the class (in this case,
either RM or healthy pregnancy) to which an example (the features of the
previous section, derived from the genotype of a couple) belongs, using an
algorithm trained on previous data (the features derived from the
genotype of other couples) with a known class. An algorithm that predicts
a certain example’s class membership is known as a classifier. We used a
support vector machine (SVM) with a linear kernel as classifier for our
study. This choice was done due to the sample size. For the same reason,
to avoid overfitting, we tested only the default value of the margin
constant C (C= 1), the only hyperparameter of an SVM with a linear kernel.
A hyperparameter is a parameter defined before the learning process, and
therefore it is independent of the data. Further discussion on SVM

Fig. 4 Algorithm diagram. The classification process, from genotyping data to the estimation of the probability of belonging to the RM group.
Leave-one-out cross-validation iterates the above process for each couple. At each iteration, the selected couple is removed from the training
set to evaluate the performance of the classifier with new data
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hyperparameters can be found in.24 The process that starts with
genotyping a couple and ends with predicting the probability to belong
to the RM group is illustrated in Fig. 4.
Leave-one-out cross-validation (LOOCV) was used to test the classifier’s

ability to correctly predict the class to which new data belong.25 Broadly,
LOOCV consists of removing one example, training the classifier with the
remaining examples, predicting the class of the removed example,
evaluating how accurate the prediction was, and finally computing the
mean value of the accuracy by iterating over all possible examples. For N
examples, LOOCV allows an independent test set of an effective size of N,
and a training set of an effective size of N-1. In this case, it was 95 and 94
examples, respectively. A receiver operating characteristic (ROC) curve was
used to evaluate the cross-validation procedure, that is, the performance of
the classifier when faced with new data. An ROC curve graphically
expresses the behaviour of the true positive rate versus the false-positive
rate when the classification threshold (see next paragraph) is varied, as
shown in Fig. 2. A performance metric derived from the ROC, the area
under the curve (AUC),26 is simply the area under a ROC curve. A typical
AUC value for a random classifier whose features do not predict the
outcome is 0.5, whereas a classifier where the features completely explain
the phenomenon would have an AUC of 1.0.
The output of the classifier is the probability p that a given example

belongs to the RM group. It is possible to set a classification threshold, that
is the value of p above which an example is considered to belong to the
RM group. The true positive rate (sensitivity) and the false-positive rate (1-
specificity) of the classifier depend therefore on the chosen classification
threshold, as setting a low threshold reduces specificity but increases
sensitivity and vice-versa.

Data analysis pipeline
In summary, the algorithm IMMATCH consists of the following steps:

1. Create a data matrix D of size 95 × 9 (9 features for each of the 95
couples) with the features described in the previous section, and a
label vector l of size 1 × 95 with the labels (control or RM) of each
couple.

2. Create a submatrix Di of size 94 × 25 by removing the i-th row (a
whole couple) of D, and a sub-vector li (of size 1 × 94) by removing
the i-th element of l. Neither Di nor li contain any information about
the couple i.

3. Train an SVM with Di and use it to predict the probability p (or score)
that couple i belongs to the RM group.

4. Repeat the process for all the couples i, to form a vector of 95 scores.
Compute the AUC with the vector of scores and the label vector l.

Steps 1 to 4 are illustrated in Fig. 4.

Statistical significance
A random permutation test was used to estimate statistical significance.27

A p value can be defined as the probability of obtaining an effect at least as
extreme as the one observed when the null hypothesis is true. In this case,
an effect at least as extreme means an AUC value at least as large as the
one observed, and the null hypothesis is that the features are not
predictors of RM. To estimate this probability, a permutation test shuffles
the label vector l to disrupt any possible correlation between the features
and the labels (making the null hypothesis hold) and computes the
resulting AUC. The previous process was iterated 2000 times, and the p
value was calculated by computing the fraction of the times that the
obtained AUC was equal or greater than the AUC obtained with the non-
shuffled vector I. A similar approach was taken to compute the p value
associated with the accuracy.

Code availability
The code used for this analysis is available upon reasonable request but it
is not publicly available. Requests to access the codes will be reviewed by
Immune Compass LTD to verify whether restrictions due to Intellectual
Property apply.

DATA AVAILABILITY
The data that support the findings of this study are available upon reasonable
request, subject to the agreement of the study participants to share their genotype
and clinical data.
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