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ABSTRACT

Although the butterflies of North America have received considerable taxonomic

attention, overlooked species and instances of hybridization continue to be revealed.
The present study assembles a DNA barcode reference library for this fauna to identify
groups whose patterns of sequence variation suggest the need for further taxonomic
study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96%
of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance
to the nearest neighbor, producing a barcode gap in 76% of the species. Most species
(80%) were monophyletic, the others were para- or polyphyletic. Although 15% of
currently recognized species shared barcodes, the incidence of such taxa was far higher
in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10%
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of species displayed high intraspecific variation (>2.5%), suggesting the need for further
investigation to assess potential cryptic diversity. Aside from aiding the identification
of all life stages of North American butterflies, the reference library has provided new

perspectives on the incidence of both cryptic and potentially over-split species, setting
the stage for future studies that can further explore the evolutionary dynamics of this

group.
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OPEN ACCESS

DNA barcoding is an effective tool for addressing the widely recognized need for an
improved understanding of biodiversity. By employing sequence diversity in short,

How to cite this article D’Ercole J, Dincid V, Opler PA, Kondla N, Schmidt C, Phillips JD, Robbins R, Burns JM, Miller SE, Grishin N, Za-
kharov EV, DeWaard JR, Ratnasingham S, Hebert PDN. 2021. A DNA barcode library for the butterflies of North America. Peer] 9:e11157
http://doi.org/10.7717/peerj.11157


https://peerj.com
mailto:jdercole@uoguelph.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11157
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11157

Peer

standardized gene regions, such as the 648 base pair segment of the 5" region of
mitochondrial cytochrome ¢ oxidase 1 (CO1) employed for the animal kingdom (Hebert
et al., 2003), DNA barcoding allows both the identification of specimens and the discovery
of new species. Since its introduction, this marker has been adopted in fields ranging from
population genetics (Hajibabaei et al., 2007), phylogenetics (Hajibabaei et al., 2007), and
phylogeography (Dapporto et al., 2019) to ecology (Valentini, Pompanon & Taberlet, 2009)
and conservation (Dincd et al., 2018). It has also gained application in contexts ranging
from the detection of marketplace fraud (Galimberti et al., 2013) to the suppression of
illegal trade in endangered species (Rehman et al., 2015).

DNA barcoding enables the identification of specimens without morphological analysis
by querying their CO1 sequences against a reference library of DNA barcodes obtained from
carefully identified vouchers. These reference sequences are curated in the Barcode of Life
Datasystem (BOLD) (boldsystems.org) (Ratnasingham & Hebert, 2007), an informatics
platform that also hosts collateral data such as specimen images and collection data. Aside
from identifying specimens, DNA barcoding can help to delineate species boundaries
(Cariou et al., 2020), an important task since species play a central role in biodiversity
assessments and conservation actions. Rather than simply presuming that the current
taxonomic system is valid, DNA barcoding provides a basis for testing this assertion.
Prior studies have shown that closely allied congeneric species of Lepidoptera typically
show more than 2% divergence (Hebert et al., 2003; Huemer et al., 2014; Dincd et al., 2015).
Although some sister species do show lower divergence (Burns et al., 2007; Cong et al.,
2016), cases where species share barcode sequences can reflect over-splitting (Vila et al.,
2010) or introgressive hybridization (Zakharov et al., 2009; Cong et al., 2017). Conversely,
when members of a putative species show high sequence divergence, this often signals the
presence of overlooked species (Hebert ef al., 2004; Burns et al., 2007; Dincd et al., 2013).
DNA barcode data has also enabled the development of algorithms that employ sequence
information for species delimitation. The latter methods cluster specimens into Molecular
Operational Taxonomic Units (MOTUs) that have been shown to correspond closely with
recognized species in groups with well-established taxonomy (Ratnasingham ¢ Hebert,
2013).

Most studies have tested the capacity of DNA barcodes to discriminate species when
viewed from a local or regional context, and only a few have examined resolution at
a continental scale (e.g., Kerr et al., 2007; Lukhtanov et al., 2009; Bergsten et al., 2012;
Huemer et al., 2014; Zahiri et al., 2017; Dincd et al., 2021). The latter studies are important
because they can reveal cases of low interspecific divergences, potentially reducing the
effectiveness of DNA barcoding for species delimitation. Prior studies have shown the
general effectiveness of DNA barcoding for butterflies (Lukhtanov et al., 2009; Dincd et
al., 2011; Dincd et al., 2015; Lavinia et al., 2017; Dincd et al., 2021), but have also exposed
discordances with current taxonomy including probable cases of synonymy (e.g., Vila et
al., 2010) and frequent instances of overlooked species (e.g., Hebert et al., 2004; Burns et
al., 2008).

The butterfly fauna of North America has seen more intensive morphological study than
any other comparably diverse insect lineage on this continent (Warren et al., 2012). Despite

D’Ercole et al. (2021), PeerJ, DOI 10.7717/peerj.11157 2/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.11157

Peer

this attention, there remains uncertainty in the status of many taxa, often reflecting the
subjectivity inherent in decisions on species boundaries based on morphology alone. The
present study assembles a comprehensive DNA barcode library for the butterfly fauna of
North America, delivering an identification system for most of these species while testing
the current taxonomy. This work also provides an overview of patterns of genetic diversity
and offers insights on mechanisms responsible for shaping the genetic diversity of the
butterflies of this continent.

METHODS

Sampling

This study sought to recover DNA barcodes for the butterfly fauna of Canada and USA.
BOLD hosts a checklist for 846 species (CL-NABUT) derived from Pelham’s list (Warren et
al., 2012) with a few changes based on recent publications. Table S1 provides a condensed
version of this checklist for the 648 species with persistent populations in North America,
excluding those introduced by humans.

The sampling program aimed to capture geographic and phylogenetic diversity for
each species in continental North America (i.e., islands beyond the continental shelf
were excluded). Specimens from Canada (6,935) and USA (7,037) were sequenced when
possible, but this left some gaps which were filled by analyzing specimens from Central
America (602), South America (27), Europe (7), Asia (4) and unvouchered (11) records
from GenBank (Fig. 1). Overall 14,626 specimens were analyzed, and associated metadata
are available on BOLD (v4.boldsystems.org) in the public dataset “DS-USCANLEP”
(dx.doi.org/10.5883/DS-USCANLEP). From this total, 10,425 vouchers are held in public
natural history collections, 3,864 in private collections, 259 derive from GenBank, and
78 were unvouchered. Permission from all the institutional and private collections was
obtained to access and study the records. The Centre for Biodiversity Genomics made the
largest contribution (4,474 records), followed by the Canadian National Collection (1,771)
and the Smithsonian’s National Museum of Natural History (1,010).

iNEXT (INterpolation and EXTrapolation) (Hsieh, Ma ¢» Chao, 2016), was employed to
estimate sampling completeness using R (R Studio Team, 2016). This approach implements
the Chaol diversity estimator (Chao, 1984) to generate accumulation curves that can be
used to estimate the total haplotype diversity in a species. This asymptotic value was
compared with the observed haplotype diversity to quantify sampling completeness, an
approach used to estimate coverage for European butterflies (Dincd et al., 2021). Because
the present study targeted species resident in North America, levels of genetic diversity for
introduced species and tropical strays (for which sampling was limited) were likely to be
underestimated. As a result, estimates of sampling completeness excluded species whose
distribution primarily falls outside North America. Moreover, species represented by fewer
than six specimens were also excluded, reducing consideration to 402 of the 648 species
(Table S1). For each species in the barcode library, we recorded the number of specimens
(N), the number of observed haplotypes (H), the fraction of haplotype diversity retrieved
(R), and the number of additional haplotypes which remain to be sampled (L).
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Figure 1 Sampling coverage. Overlapping sampling points are shown as darker circles. Twenty-eight
records are not shown in the map as they derived from Argentina, Brazil, China, India, Italy, and Peru.
Full-size &l DOI: 10.7717/peer;j.11157/fig-1

Mitochondrial CO1 characterization and quality control

DNA extraction, PCR, and sequencing followed standard protocols at the Canadian Centre
for DNA Barcoding (CCDB). DNA was extracted using a silica-based method in 96-well
plate format (Ivanova, DeWaard ¢» Hebert, 2006). PCR volumes and thermal cycling
conditions followed DeWaard et al. (2008) or Hebert et al. (2013) in the case of older
museum specimens. Trace files were assembled into contigs with CodonCode Aligner
(CodonCode Corporation, http://www.codoncode.com) to generate a sequence record for
each specimen. DNA extracts from museum specimens often contain low concentrations
of degraded DNA. Although Sanger sequencing can usually recover DNA barcodes from
specimens less than 50 years old (Hausmann et al., 2009; Lees et al., 2011; Hebert et al.,
2013), sequence length is often <200 bp (Allentoft et al., 2012). Some specimens that failed
to generate a Sanger sequence were processed with a next-generation sequencing protocol
(D’Ercole, Prosser ¢ Hebert, 2021).

All except five of the 14,626 sequence records included at least 500 unambiguous base
pairs of CO1. All sequences were examined for stop codons and the few containing them
were removed as likely NUMTS.

Although most specimens were identified by taxonomic specialists through analysis of
morphological (i.e., external characters and genitalia) and ecological traits, prior studies
have revealed that misidentifications are inevitable in any large-scale study (Mutanen et al.,
2016). As a result, Neighbor-Joining (NJ) trees (one for each family) including all records
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were examined to detect cases where two or more species were admixed in a sequence
cluster, a pattern that often arises as a result of misidentification or contamination.
The external morphology of specimens in such clusters was examined to confirm their
identity, an approach that revealed some errors which were corrected prior to further
analyses. Because a detailed inspection (i.e., nuclear markers or genitalic dissections) of
all specimens was not possible and because of taxonomic uncertainty in some groups,
additional cases of misidentification may remain in our dataset. The NJ tree was also
employed to aid the identification of unnamed specimens.

Genetic analysis

DNA sequences were aligned on BOLD by employing a Hidden Markov Model (Eddy,
1998) based on amino acid sequences. Intraspecific and interspecific genetic distances
were calculated using BOLD employing the Kimura two parameter (K2P) distance model
(Kimura, 1980). The barcode gap was examined by plotting maximum intraspecific distance
for each species against the distance to its nearest neighbor (i.e., minimum interspecific
distance). Intraspecific distances and barcode gap analysis could only be calculated for the
755 species represented by two or more specimens.

Bayesian phylogenies (one for each butterfly family) were employed to assess the number
of species displaying monophyly. BEAST2 (Bouckaert et al., 2014) was used to generate the
trees. The selection of the best model of molecular evolution for phylogenetic investigation
was performed with JModeltest2 (Guindon ¢ Gascuel, 2003; Darriba et al., 2012). The
GTR model of molecular evolution (Tavaré, 1986), along with the gamma function
discretized in four categories, and a parameter for the proportion of invariable sites, were
used to estimate genetic distances. Each branch was assumed to evolve at the same rate,
accumulating divergence at 1.5% per million years (Quek et al., 2004), following a strict
molecular clock. The Markov chain Monte Carlo (MCMC) chain length was 10,000,000
with log frequency every 1,000 samples of the posterior distribution. The pre-burnin was
set at 1,000. TreeAnnotator (Bouckaert et al., 2014) was employed to combine the Bayesian
trees sampled from the posterior distribution while convergence was confirmed with Tracer
(Rambaut et al., 2018). This analysis was restricted to the 755 species represented by two
or more specimens as only they could satisfy the definition of monophyly (Hennig, 1966).

The presence of both potentially overlooked and over-split species was tested with
three approaches. The first and simplest approach employed a fixed divergence value of
2.5% to discriminate intraspecific from interspecific diversity. Although the application
of fixed thresholds is controversial (Collins ¢ Cruickshank, 2013), it provides a useful
point of reference for comparison with other studies. The other two methods were the
General Mixed Yule Coalescent (GMYC) (Pons et al., 2006; Fujisawa ¢ Barraclough, 2013)
and the Barcode Index Number System (BIN) (Ratnasingham ¢» Hebert, 2013). These
methods for species delimitation have been shown to perform well in recovering species
counts congruent with taxon boundaries established through morphological studies
(Ratnasingham & Hebert, 2013). While GMYC typically generates more MOTUs than
morphospecies (Miralles & Vences, 2013; Kekkonen ¢ Hebert, 2014), the BIN system was
designed to provide a conservative estimate of the number of species (Ratnasingham &
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Hebert, 2013). The likelihood-based GMYC model makes use of the Bayesian ultrametric
trees to determine the transition between intra- and interspecific branching patterns. The
R package “splits” (Ezard, Fujisawa ¢ Barraclough, 2009) was employed for the GMYC
analysis. A few specimens that were only identified to a generic level were excluded
from analysis, and subspecies designations were stripped from specimens that possessed
them. The dataset was then collapsed to retain only unique haplotypes (5,116) as past
studies showed this approach optimizes results (Talavera, Dincd ¢ Vila, 2013; Tang et al.,
2014). BOLD was employed to assign each sequence to a BIN (Ratnasingham ¢ Hebert,
2013). GMYC and BIN assessments generated results falling into four categories: Match,
Merge, Split, and Mixture. A species was assigned to the Match category when all of its
specimens were assigned to one MOTU. In cases where two or more species shared the same
MOTU, they belonged to the Merge category. A species was placed in the Split category
when its component specimens were assigned to two or more MOTUs. Finally, a species
characterized by a more complex pattern, including both Match and Split, was assigned to
the Mixture category.

Barcode sharing
Barcode sharing describes the situation where individuals of two or more species share
identical DNA sequences. As opposed to this, following the character-based definition
outlined by DeSalle, Egan ¢ Siddall (2005), species with diagnostic barcodes are those
whose sequences show consistent nucleotide differences (or a combination of nucleotide
differences) from any other species. As a result, DNA barcodes can be diagnostic even
when they derive from species with such low divergence that they are assigned to a single
MOTU. To better reflect the differing exposure of species to biogeographic shifts during the
Pleistocene, species involved in barcode sharing were partitioned into three categories. The
first category (North/alpine hereafter) included species with a geographic distribution north
of the last glacial maximum (LGM) and alpine/subalpine species on mountains south of the
LGM. The second category (Mid-latitude hereafter) included species with a distribution
extending across the LGM. The third category (South hereafter) was composed of species
located south of the LGM. The assignment of each species to one of these categories
was based on its current distribution (Scott, 1986; Brock ¢ Kaufman, 2006). Because the
probability of detecting barcode sharing is influenced by sampling intensity, iNEXT was
used to evaluate sampling completeness by region (North/alpine, Mid-latitude, South).
The Spearman’s correlation coefficient was employed to assess the association between
the number of species with barcode sharing in a genus and the total number of species in
that genus.

RESULTS

Sampling and DNA barcoding performance

The present dataset provides barcode coverage for 96.2% (i.e., 814 of 846) of North
American butterfly species with an average of 18 sequences per species (Fig. 1, Figs. S1-S6,
dx.doi.org/10.5883/DS-USCANLEP). However, 59 species were represented by singletons,
including 34 of the 648 species on the truncated list (Table S1). The coverage rises to
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97.2% (630 of 648) when only species with permanent populations in North America are
considered (Table S1). Estimates of sampling completeness were performed with iNEXT

on 63.8% (402 of 630) of the species in the truncated list (Table S1). This analysis, which
considered 12,860 specimens, indicated that their 3,212 unique haplotypes corresponded
to 67% of the haplotype diversity in this subset of North American butterflies (Table S1).
In order to raise haplotype recovery to 100%, it was estimated that at least another 4,702

haplotypes would need to be recovered, an average of 12 haplotypes per species (Table S1).

Genetic diversity

Maximum intraspecific distances averaged 0.97% (range 0-8.4%) while the nearest
neighbor distance averaged 3.7% (range 0—14.3%), almost 4-fold higher than the maximum
intraspecific distance (Fig. 2, Table S2). A barcode gap was present in 573 of 755 species
(75.9%) represented by at least two individuals (Fig. 2, Table S2).

The Bayesian trees revealed that 604 of the 755 species (80%) represented by two or
more individuals formed monophyletic groups, while the other 151 (20%) were either
paraphyletic or polyphyletic (Figs. S7-512, S13 and Table S2). Species with just a single
barcode sequence were necessarily excluded from this analysis, but 55 of the 59 possessed
barcodes distinct from their nearest neighbor. While discrimination between paraphyly
and polyphyly is not essential for specimen identification, it is critical to distinguish those
species characterized by overlapping phylogenetic branches from those species sharing
barcodes with their nearest neighbor(s). Twenty-six species (3.4%) fell in the first category
and 125 (16.6%) species in the latter (Fig. S13).

Use of a fixed distance threshold (2.5%) exposed 79 cases (9.7%) where intraspecific
distance was above the set threshold and 324 (39.8%) cases where interspecific divergence
was below it. MOTU delineation revealed a variable number of entities depending on the
method employed. BIN analysis was performed on all but one species (the sole sequence
for Calephelis rawsoni did not qualify for analysis) and revealed 772 BINs, comprised of
540 Matches (66.4%), 55 Splits (6.8%), 181 Merges (22.3%), and 37 Mixtures (4.6%). By
comparison, GMYC analysis generated 862 taxonomic units, partitioned in 527 Matches
(64.7%), 63 Splits (7.8%), 150 Merges (18.4%), and 74 Mixtures (9.1%) (Figs. S7-512).
Opverall, the three analyses provided concordant support for 369 species recognized by
the current taxonomy, but they also revealed 24 species split into two or more units, 124
grouped with one or more nearest neighbor(s), and 34 in both previous categories. The
performance of the three methods is compared in Table S2.

Barcode sharing
In total, 125 of the 814 (15%) species shared their barcode with another species (Table S2).
The incidence of barcode sharing on the condensed list (Table S1) was highest at 42.2%
(38/90) for the Northern/alpine species, dropped to 25.6% (55/215) for the Mid-latitude
species, and was just 9.2% (30/325) for the Southern species.

iINEXT (Table S1) revealed that the analysis of an average of 41 specimens/species in
Northern/alpine species detected an average of 8 unique haplotypes/species, corresponding
to 66% of the estimated haplotype diversity for these taxa. By comparison, the analysis of
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an average of 39 specimens/species for the Mid-latitude species detected an average of 10
haplotypes/species and represented 64% of their estimated diversity. Finally, the analysis
of 16 specimens for the Southern species revealed an average of 5 unique haplotypes,
corresponding to 71% of their estimated haplotype diversity.

The incidence of barcode sharing varied among butterfly families. The Hesperiidae
(21/205, 10.2%) and Riodinidae (2/18, 11.1%) were least impacted, followed by
Nymphalidae (30/173, 17.3%), Papilionidae (7/31, 22.6%), Lycaenidae (38/137, 27.7%),
and Pieridae (25/66, 37.9%) (Table 1, Table S1). Spearman’s coefficient revealed a positive
but non-significant correlation between the incidence of barcode sharing and the number
of species in a genus (R? =0.37, p = 0.056; Fig. S14).

DISCUSSION

This study generated a DNA barcode reference library for 96% of the North American
butterfly fauna (814 of 846 species) with an average of 18 records per species. This level of
sampling captured 67% of the estimated haplotype diversity, but at least 4,705 haplotypes
await detection. The present library was effective in assigning newly encountered specimens
to either a species or to a small number of closely allied species. Because butterflies are
key bioindicators (Syaripuddin, Sing ¢ Wilson, 2015) and umbrella species (New, 1997),
this library facilitates their use in tracking the impacts of habitat loss, fragmentation, and
climate change. Along with the reference barcodes available for other taxonomic groups
(Ratnasingham ¢ Hebert, 2007), the present work also provides a basis for exploring species
interactions.
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Table 1 Distribution of barcode sharing with respect to the LGM by family. Proportions are shown in

brackets.
Above LGM and Across LGM Below LGM Total
alpine/subalpine
Papilionidae 2/7 (28.6%) 3/11 (27.3%) 2/13 (15.4%) 7/31 (22.6%)
Pieridae 16/18 (88.9%) 8/15 (53.3%) 1/33 (3%) 25/66 (37.9%)
Hesperiidae 3/11 (27.3%) 10/62 (16.1%) 8/132 (6.1%) 21/205 (10.2%)
Lycaenidae 9/15 (60%) 14/54 (25.9%) 15/68 (22.1%) 38/137 (27.7%)
Riodinidae 0 1/3 (33.3%) 1/15 (6.7%) 2/18 (11.1%)
Nymphalidae 8/39 (20.5%) 19/70 (27.1%) 3/64 (4.7%) 30/173 (17.3%)
Total 38/90 (42.2%) 55/215 (24.9%) 30/325 (9.2%) 123/630 (19.5%)

The sequence records analyzed in this study were mainly obtained during two ways.
The first approach involved the collection of fresh material and lasted about two decades
(2000-2019), while the latter spanned three years (2015-2017) and consisted of the targeted
analysis of specimens held in two major natural history collections—the Smithsonian’s
National Museum of Natural History and the Canadian National Collection. Previous
studies on Lepidoptera, largely regional in scale, indicated that most species are separated
from their nearest neighbor by a barcode gap (e.g., Janzen et al., 2005; Hajibabaei et
al., 2006; Lavinia et al., 2017). Increased geographical coverage should lead to higher
intraspecific genetic variation as a result of the isolation-by-distance effect (Wright, 1943),
and reduced interspecific divergences as more species are analyzed (Avise, 2000). Both
factors should reduce the difference between intra- and inter-specific divergence. It needs
emphasis that exceptions to this model were observed in butterflies and that narrow
suture zones with high diversity alternate with extended regions with little variation (e.g.,
Gompert et al., 2010; Dapporto et al., 2019; Platania et al., 2020). This continental-scale
study revealed that average maximum CO1 divergences within species was nearly four
times less than the average minimum distance to the nearest neighbor. Reflecting this fact,
76% of the species displayed a barcode gap ensuring their unambiguous identification.
Identification of specimens using the criterion of monophyly raised identification success
as 80% of North American butterfly species formed a monophyletic cluster. These results
approximate those obtained in a study of European butterflies where monophyly was
met for 94% of species at a regional level (Iberia) (x2 = 23.1; p-value <0.001) versus
85% for the continent (Dincd et al., 2015) (x2 =2.71; p-value = 0.099). As the European
study only considered approximately 60% of the fauna, the proportion of monophyletic
species is likely to decline with increased coverage. In a study examining how increased
geographic scale affected the barcode gap in Asian butterflies, Lukhtanov et al. (2009)
found that the barcode gap decreased with distance, but that species resolution was nearly
unaltered. Interestingly, they showed that monophyly, unlike the barcode gap, was less
affected by geographic coverage. The evidence for reduced identification success in the
present study is likely explained, at least in part, by the 5-fold higher sampling effort (18
specimens/species) than in Lukhtanov et al. (2009) (3 specimens/species). Although the
presence of a barcode gap or monophyly are sufficient conditions to ensure the correct
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assignment of a sequence to its correct species, these are not essential criteria. For example,
a species whose component sequences are paraphyletic or polyphyletic can meet neither
criteria, but can be perfectly diagnosable (Ross, Murugan & Li, 2008; Bergsten et al., 2012).

Because the capacity of DNA barcoding (Ratnasingham ¢ Hebert, 2007) to deliver a
correct identification ultimately depends upon the presence of diagnostic (or a diagnostic
combination of) characters, sequence sharing by species indicates that their discrimination
will be compromised. This study revealed that 15% of North American butterfly species
share their DNA barcodes with another species. Work on European butterflies revealed
3% barcode sharing at a regional level (Iberia), and 7% at a continental scale (Dincd
et al., 2015). Although the latter value is about half that observed for North America
(x2 =12.6; p-value <0.001), it was inferred based on 60% of the European fauna and
more comprehensive taxonomic and geographic coverage will almost certainly increase the
incidence of barcode sharing for European butterflies. Because the level of barcode sharing
does not only depends on geographic coverage, it is important to ascertain the factors
underlying this pattern. First, both the incomplete sorting of ancestral polymorphisms
and introgression can lead to barcode sharing, particularly between recently diverged
species. The former factor should be less important for mitochondrial than nuclear genes
because their lower effective population size facilitates the loss of ancestral polymorphisms.
The impact of introgression is more controversial. Although Haldane’s rule predicts
that the heterogametic sex (females in Lepidoptera) of hybrid individuals is not likely to
pass on mitochondrial DNA (Haldane, 1922), introgression has often been reported in
butterflies (e.g., Sperling, 1993; Gompert et al., 2006; Wahlberg et al., 2009). This could be
explained by a more general hypothesis, broadly applicable to all organisms, suggesting
that low purifying selection on introgressed mitochondrial genes favours the transfer of
these elements (over nuclear ones) across species boundaries ( Harrison, 1993). Another
feature that facilitates contact between closely related lineages, increasing the likelihood
for introgression, is the high dispersal capability of some butterflies (Stevens, Turlure ¢
Baguette, 2010). Second, although butterflies possess a relatively well-established taxonomy,
recent studies have exposed taxonomic uncertainty including cases of over-split species
(e.g., Vila et al., 2010). Such unrecognized cases of synonymy can produce barcode sharing.
Third, although the specimens examined in this study were identified by specialists, DNA
barcode results revealed a number of misidentifications. In other cases, the discrimination
of morphologically similar species is so difficult that diagnostic characters might have been
misinterpreted inflating the incidence of barcode sharing. A full investigation of the roles
played by these three factors is beyond the scope of this study, however, an exhaustive study
of 42,000 specimens representing nearly 5,000 species of European Lepidoptera showed
that just 40% of non-monophyletic species were generated by biological factors (i.e.,
introgression, incomplete lineage sorting) while 60% reflected methodological problems
such as misidentifications (Mutanen et al., 2016).

The incidence of barcode sharing in North American butterflies varies nearly 5-fold
with latitude, being far higher among species found in the North/alpine (42%) than at
Mid-latitude (25%) or South (9%) locales. A similar pattern was evident for 1541 North
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American noctuoid moth species as the Canadian fauna showed 10% barcode sharing
(Zahiri et al., 2014), versus 7% for the continent (Zahiri et al., 2017).

Although the main scope of this work was to build a comprehensive barcode library
for the identification of North American butterflies, effort was made to capture diversity
from regions where contact zones, hybrid zones, and phylogeographic breaks congregate
(Swenson ¢ Howard, 2005). This strategy aimed to maximize the recovery of haplotype
diversity, yet ascertainment bias is inevitable and likely impacted both geography
(Yang, Ma ¢ Kreft, 2013) and taxonomy (Troudet et al., 2017). While under-sampling
can exaggerate the sequence divergence between species, comprehensive knowledge of
intraspecific diversity will decrease interspecific distances and expose barcode sharing
(e.g., Wiemers ¢ Fiedler, 2007; Dasmahapatra et al., 2010). Our sample sizes were similar
(40 specimens/species) for two regions (North/alpine, Mid-latitude), but lower in the
South (16 specimens/species). However, iNEXT indicated that similar proportions of CO1
diversity were recovered from each bioregion (66%—North/alpine, 64%—Mid-latitude,
71%—South). Although iNEXT brings statistical rigor to such estimates, its accuracy
closely depends on sampling quality. For instance, under-sampling biodiversity hotspots
would give the illusion of low diversity and inflate estimates of sampling completeness.
This result suggests that the observed differences in barcode sharing are not an artefact
of varied sampling coverage. This pattern could well reflect the different exposure of
species in each bioregion to the impacts of Quaternary glaciation (Hewitt, 1996). Species
in northern regions could have experienced recurrent cycles of isolation in glacial refugia,
leading to subsequent opportunities for secondary contact and mitochondrial exchange
(Hewitt, 2000). Moreover, the small size of the populations at the leading edge of the
species distribution might aid the fixation of introgressed mitochondria (Kingman, 1982).
Another consequence of rapid expansion into deglaciated habitats would be low density at
the leading edge. This situation can create difficulties in finding a conspecific mate and can
weaken isolating mechanisms (e.g., Shelly ¢ Bailey, 1992; Alatalo et al., 1998; Willis, Ryan
& Rosenthal, 2011), leading to heterospecific mating and introgression (e.g., Wirtz, 1999;
Randler, 2002). Not only scarcity of conspecifics could favor hybrid formation, but it could
also enhance their persistence because of decreased competition with parental populations
(Arnold, 1997).

Aside from this latitudinal pattern, barcode sharing varied nearly 4-fold among butterfly
families (x2 = 25.13; p-value <0.001), from 10% in Hesperiidae to 38% in Pieridae.
Interestingly, a similar pattern was also observed at lower taxonomic rank, among genera,
where the incidence of barcode sharing showed a weak and non-significant correlation
with the number of species in a genus suggesting taxonomic localization. The genus Colias
(Pieridae) was particularly impacted as all 22 species shared at least one of their barcode
sequences with another species (Table S2), perhaps reflecting their recent radiation (Chew
& Watt, 20065 Wheat & Watt, 2008). Not only this pattern explains the introgression of
haplotypes between hybridizing species such as C. eurytheme/C. phildice in the eastern
USA (Gerould, 1946; Jahner, Shapiro & Forister, 2011), and C. eurytheme/C. eriphyle in
the west (Taylor Jr, 1972), but it also lays the foundation for operational issues such as
misidentifications reflecting the unsettled taxonomy of the genus (Wheat ¢ Watt, 2008).
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DNA barcoding combined with species delimitation methods enables rapid, cost-
effective surveys of biodiversity. While this is particularly beneficial for poorly-studied
taxonomic groups, it can also disclose overlooked diversity in well-studied taxa. BIN
analysis indicated that ~11% of North American butterfly species (6.8% Splits, 4.6%
Mixture) were split into two or more entities. The incidence of such cases mirrors values
(9-12%) reported in prior studies on Lepidoptera (Huemer et al., 2014; Zahiri et al., 2014).
GMYC analysis showed an even higher discordance with current taxonomy, showing that
about 17% of species (7.8% Splits, 9.1% Mixture) potentially involve overlooked diversity.
Interestingly, when the same approach was applied to 60% of European butterfly species,
there was even higher discordance (28%) (Dincd et al., 2015). Tt is probable that the varied
habitats in the Mediterranean basin (Blondel et al., 2010), coupled with the presence of
southern refugia during the Pleistocene (Schmitt, 2007), created more genetic structure
and/or speciation in Europe (Vodd et al., 2016; Dapporto et al., 2019; Scalercio et al., 2020).
Employing a fixed divergence threshold (2.5%), about 10% of North American butterfly
species exceeded this criterion. Similar values (8—12% with a 2% threshold) have been
reported in other studies on Lepidoptera (Huemer et al., 2014; Zahiri et al., 2014). Based on
these results, it is likely that a considerable number of cryptic species await description or
that Evolutionary Significant Units (ESUs) within species deserve protection (Avise, 1989).
Detailed studies (e.g., nuclear genetic, morphological, ecological) (DeSalle, Egan ¢~ Siddall,
2005) should be undertaken on these lineages (Polasky & Solow, 1999).

CONCLUSION

This study has generated one of the first continental-scale DNA barcode libraries for an
entire taxonomic group. Beyond providing an identification system for most (>96%) North
American butterflies, it creates the foundation needed to test the current classification. This
library also delivers an overview of large-scale patterns of genetic diversity revealing cases
of evolutionary interest such as potential hybridization and of importance to biodiversity
conservation such as cryptic diversity and evolutionary significant units. As such, this study
provides a basis for improving understanding of the mechanisms that have shaped genetic
diversity in the North American butterfly fauna.
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