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Abstract: In order to remove the strong noise with complex shapes and high density in nuclear
radiation scenes, a lightweight network composed of a Noise Learning Unit (NLU) and Texture
Learning Unit (TLU) was designed. The NLU is bilinearly composed of a Multi-scale Kernel Module
(MKM) and a Residual Module (RM), which learn non-local information and high-level features,
respectively. Both the MKM and RM have receptive field blocks and attention blocks to enlarge
receptive fields and enhance features. The TLU is at the bottom of the NLU and learns textures
through an independent loss. The entire network adopts a Mish activation function and asymmetric
convolutions to improve the overall performance. Compared with 12 denoising methods on our
nuclear radiation dataset, the proposed method has the fewest model parameters, the highest
quantitative metrics, and the best perceptual satisfaction, indicating its high denoising efficiency and
rich texture retention.

Keywords: nuclear radiation scenes; lightweight image denoising; texture retention; attention;
receptive field block; Mish; asymmetric convolution

1. Introduction

In an environment with intense ionizing radiation, energetic particles can easily dam-
age the electronic and optical components of image sensors [1], causing the captured digital
images to be highly degraded; the images are essential for the subsequent professional
analysis or other advanced computer vision tasks, e.g., image classification [2], object detec-
tion [3], and semantic segmentation [4], etc. Although shielding measures such as covering
sensors with lead boxes [5] can improve the radiation resistance level to a certain extent,
these measures will increase volumes and workloads of the perception machines sharply
or raise the costs of these alternative sensors. Therefore, it is wise to remove strong noise
quickly and retain textures as much as possible for the captured radiation scene images by
micro-chips, i.e., to focus on effective and robust denoising algorithms.

Few researchers pay attention to denoising algorithms in terms of radiation scene
images with complex shapes and dense distributions. Wang et al. [6] proposed an improved
median filtering method combining adaptive thresholds and wavelet transformations to
effectively reduce the nuclear radiation noise. Zhang et al. [7] used adaptive segmentation
and fast median filtering to denoise nuclear radiation noises. Yang et al. [8] combined the
frame difference method with interpolation algorithms to restore nuclear radiation images.
These real-time denoising methods focus on nuclear radiation noise removal, but they find
it difficult to handle very strong noises caused by extreme high radiation dosage.

Traditionally, a captured degraded digital image Y can be modeled as Y = Y′ + N [9,10].
Assuming that the degradation factor is additive noise N, a clean image Y′ can be restored
through Y′ = Y − N. We carefully analyzed nuclear radiation images and found that
the noise in the images is also additive. Therefore, in addition to the above existing
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denoising methods for radiation scenes, general denoising algorithms focused on additive
noise removal may also have good denoising performances in radiation scene images.
The existing general image denoising methods fall into two categories: image prior-based
methods [11–15] and discriminative learning methods [16–21].

Image prior-based methods use some prior information of natural images for noise
removal, e.g., local smoothness, non-local self-similarity, sparsity, etc. A Block Matching
and 3D filtering (BM3D) algorithm [11] utilized the non-local self-similarity prior to natural
images, and it was one of the state-of-the-art (SOTA) image prior-based methods. In a
different way, Dong et al. used the sparsity prior to natural images and proposed the
Nonlocally Centralized Sparse Representation (NCSR) algorithm [12] for noise removal.
Gu et al. proposed a denoising algorithm named Weighted Nuclear Norm Minimization
(WNNM) [15], combining the Non-local Means method (NLM) [13] with Low-rank Repre-
sentation (LRR) [14]. Though theoretically clear, these SOTA image prior-based methods
are time consuming due to their multiple iterations. Last but not least, the verbose hyper-
parameters of these methods, e.g., the size of sliding windows, the number of image blocks,
and the supposed noise variances, vary from one denoising scene to another. Therefore,
general image prior-based methods are not suitable for the denoising task in radiation
scenes which require high denoising efficiency.

Discriminative learning methods use hard constraints between noised-and-clean im-
age pairs to remove the complex noises without specific mathematical definitions. A land-
mark of discriminative learning methods was Denoising Convolutional Neural Networks
(DnCNN) [16], which applied Convolutional Neural Networks (CNN), residual learning
and batch normalization techniques to remove Additive White Gaussian Noise (AWGN)
for the first time. On the basis of DnCNN, Fast and Flexible Denoising Network (FFD-
Net) [17] adopted the learned noise level map as a part of the network input to improve
the denoising effect. After that, the Convolutional Blind Denoising Network (CBDNet) [18]
used 5-layer Fully Convolutional Networks (FCN) to adaptively obtain the noise level map,
which was hugely different from FFDNet and greatly enhanced the blind denoising ability.
Recently, the Batch Renormalization Denoising Network (BRDNet) [19] adopted dilated
convolutions and batch renormalizations to achieve a balance between training efficiency
and model complexity. In addition, the Attention-guided Denoising Network (ADNet) [20]
applied an attention block at the end of a lightweight backbone and obtained the best
denoising results. Benefiting from convolutional feature extractors, Graphics Processing
Unit (GPU) computing, and end-to-end training, the CNN-based denoising methods had
better performance than traditional image prior-based methods in terms of efficiency and
usability, so they are suitable for nuclear radiation scenes with complex noises.

However, the fast CNN-based denoising networks find it difficult to achieve a balance
between model complexity and the denoising effect. Moreover, these CNN-based methods
pay little attention to texture retention, so the results are prone to being smooth. To solve the
texture problem, Details Retraining CNN (DRCNN) [21] added a texture learning unit on
the basis of DnCNN and its promising qualitative results proved that the retraining strategy
was useful. Nevertheless, the network structure and optimization method of DRCNN was
so simple that its noise learning ability was limited. In short, there is still a lack of the
image restoration network with high denoising efficiency and good texture retention.

Taking the rapidity and information retention into account with respect to the strong
nuclear radiation noise removal task, we design a lightweight CNN-based denoising
network composed of a Noise Learning Unit (NLU) and a Texture Learning Unit (TLU).
The NLU adopts the effective non-local idea from traditional image prior-based methods
and uses the popular residual learning technique from CNN-based methods in a novel way.
To be more specific, the backbone of NLU bilinearly consists of a Multi-scale Kernel Module
(MKM) and a Residual Module (RM), obtaining non-local information and high-level
texture information, respectively. Moreover, both the MKM and RM have few channels,
and their bottoms have Receptive Field Blocks (RFB) and Attention Blocks (AB) to expand
receptive fields and enhance convolutional features. In addition, a small sub-network



Sensors 2021, 21, 1810 3 of 21

named the Texture Learning Unit (TLU) is at the end of the NLU. It uses an independent
loss for optimization and learns detailed texture features simply and effectively. The entire
network uses the Mish activation function to obtain good nonlinearity. At the same time,
asymmetric convolutions are applied throughout the whole network to greatly reduce the
amount of model parameters. The main contributions of our work are as follows.

1. We designed an extreme lightweight denoising network that not only effectively and
efficiently removes the complex and strong nuclear radiation noises, but also carefully
retain its texture details.

2. We applied useful tricks from other computer vision tasks like multi-scale kernel
convolution, receptive field blocks, Mish activation and asymmetric convolution to
image denoising for the first time. Detailed experiments proved that these techniques
benefit image restorations.

3. The network has good generalization and performs well in other denoising tasks.
Compared with the six popular CNN-based denoising methods in removing synthetic
Gaussian noises, text noises, and impulse noises, the proposed method still has the
highest quantitative metrics.

The rest of this paper is organized as follows. Section 2 analyzes the nuclear radiation
noise. Section 3 introduces the methodology, including the overall network framework,
detailed structures of the sub-networks, and the adopted deep learning tricks. Section 4
introduces the experiments and Section 5 analyzes the results. Section 6 performs detailed
discussions and Section 7 draws the conclusion.

2. Analysis of Nuclear Radiation Noises

We analyzed the noise of the nuclear radiation scene images to guide our research
method. The studied noised images were captured by special robots in a real nuclear
emergency accident. Note that these images are all polluted by nuclear radiation noises,
and there is no original clean image without pollution.

The analysis idea comes from the studies of real noise removal [9,10,18], that the clean
ground truth image can be obtained by averaging noised photographs with the same lens.
Figure 1 shows the averaged results of multiple frames and the denoised results from the
NLM [13] of three challenging nuclear radiation scenes.

It can be seen from Figure 1a that the nuclear radiation noises have irregular shapes
and distributions, which is quite challenging. As shown in Figure 1e, the NLM which
works well for AWGN hardly removes nuclear radiation noises, indicating that the noises
should not be simply defined as a kind of Gaussian noise or impulse noise, and traditional
image prior-based methods find it difficult to handle the denoising task. It is worth noticing
that, in Figure 1b–d, averaging frames does have obvious denoising effects on the nuclear
radiation scene images, and with the increase in the averaging numbers, the mean images
are prone to being cleaner. The intuitive results demonstrate that the nuclear radiation
noise has the same properties as additive noises which means the averaging operation can
greatly reduce the noise variances [9].

In order to find more solid evidence that the nuclear radiation noise is additive, we an-
alyzed the qualitative relationship between the averaging number and the quantitative
metrics, as shown in Figure 2. The ground truth images were obtained by averaging
150 frames, and the metrics are peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM).
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Figure 1. The averaged results and the denoised results. (a) Shows the original noised images randomly selected in frame
sets. (b–d) Show the results of averaging 10, 50, 100 frames, respectively. (e) Shows the denoising results from the Non-local
Means method (NLM).
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It can be seen from Figure 2 that with the increase in the averaging number, PSNR and
SSIM metrics between the randomly selected noised frame and the averaged result are
prone to being higher; with the increase in the averaging number, the averaged result
becomes closer to the clean ground truth. Meanwhile, it can be seen in Figure 2 that, when
the averaging number is 100, the PSNR value reaches 41.08 and the SSIM value reaches
0.95. The three cues indicate that the nuclear radiation noise is almost addictive, and the
clean ground truth images obtained by averaging 150 frames are reliable. Therefore, we can
make a nuclear radiation dataset composed of noise-and-clean image pairs and handle the
difficult denoising task with general CNN-based methods.
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3. Methodology

Existing general denoising methods such as those in [11,16] do have good perfor-
mances in additive noise removal, but they are not effective enough in denoising radiation
scene images due to the complex noise shapes and high noise density. In this case, we de-
sign a lightweight CNN with robust noise learning ability and sufficient texture retention.
The proposed method can also be regarded as a general image restoration method as it has
good performances in removing synthetic Gaussian noise, text noise, and impulse noise.
The implementation details are as follows.

3.1. Overall Network Framework

The network consists of a noise learning unit (NLU) and a texture learning unit (TLU).
The NLU consists of two parallel sub-networks with different feature extraction structures,
i.e., the multi-scale kernel module (MKM) and the residual module (RM). To enlarge the
receptive field and enhance the abstract features, the bottoms of the MKM and RM are
connected with receptive field blocks (RFB) and spatial attention blocks (AB) in sequence.

In order to describe the network pipeline concisely, mathematical descriptions of the
key stages are given. The input of the NLU is noisy images marked as Y, and the output of
the NLU is the initial denoised map without texture retention marked as Y1. Meanwhile,
the input of the TLU is Y1, and its output is the ultimate denoised image with rich texture
details marked as Y2. RFB are defined as the function frfb, AB are defined as fab, and the
TLU is defined as the function FTLU. The complete mathematical description of the whole
forward network is as follows.

Y1M = Y− fab( fr f b(Y, f1(Y)))
Y1R = Y− fab( fr f b(Y, f2(Y)))
Y1 = Y− f3(Y1M , Y1R)
Y2 = Y1 + FTLU(Y1)

(1)

where Y1M and Y1R denote the outputs of the MKM and RM, respectively; f 1 and f 2 denote
their corresponding feature extractors, and f 3 denotes a feature fusing block implemented
by a concatenation and a 3 × 3 convolution. Figure 3 shows the framework in a more
intuitive way.
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Figure 3. The overall network framework. The purple pipeline represents the multi-scale kernel module (MKM), the dark
blue pipeline represents the residual module (RM); the green area is the first sub-network noise learning unit (NLU), and
the orange area is the second sub-network texture learning unit (TLU). The light blue parts represent the input or output
convolution layers, playing the role of feature fusing. The red arrows indicate element-wise subtractions, and the blue
arrow indicates an element-wise addition.

As shown in Figure 3 and Equation (1), the skip connections in the NLU are all
subtractions, as the NLU learns residual noise by N = Y1 − Y, while the skip connection
in the TLU is addition, as the TLU obtains the ultimate denoised image by Y2 = Y1 + T,
where N and T denote the latent noise and textures, respectively. Though addition and
subtraction operations can both fit the network in theory, our skip connection strategies
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make the network easy to train as they are based on the mathematical meaning of the
addictive noise and addictive textures. The whole network is end-to-end training and fully
convolutional; that is, the ultimate denoised image Y2 is directly obtained from the original
noised image Y without any intermediate operations and conversions. The following
subsections will describe the above parts in further detail.

3.2. Noise Learning Unit
3.2.1. Feature Extractors

MKM Feature Extractor. The MKM feature extractor in the NLU is to learn multi-
scale non-local information of the image. Convolutions are similar to the spatial filters
in some traditional image prior-based methods, e.g., the NLM [13], so CNN can also
latently learn self-similarity features of natural images to remove noises. In order to
enhance the denoising effect, we adopt multi-scale convolution kernels just the same as
traditional multi-scale filters. Specifically, the feature extraction part of MKM is composed
of 4 Inception-like structures [22] connected in series, and each Inception-like structure is
parallelly composed of 3 convolutions with different kernel sizes. We adopt the same data
preprocessing strategy as other CNN-based denoising methods do: feeding small image
patches sized 50 × 50 into the network rather than the full image so as to augment the
training set and make full use of GPU in the training stage. Furthermore, the sizes of the
convolution kernels we implemented are 1 × 1, 3 × 3 and 5 × 5, which would avoid the
receptive field overflowing and make the calculation parameters moderate.

RM Feature Extractor. The RM feature extractor in the NLU is to learn high-level
texture information of the image, and this part is composed of 4 small residual blocks.
The residual blocks are similar to the Bottlenecks in [23]. First, the input map of a residual
block follows a 1 × 1 convolution to reduce the channels. Next, abstract features are
obtained by a 3 × 3 convolution and an activation function. Then, a 1 × 1 convolution is
used to increase the channels to a specified dimension. Finally, a subtractive skip connection
is performed to connect the input and the output of this block. The skip connections can
solve the problems of gradient disappearance and latently learn the residual noise, so as to
improve the training efficiency.

In order to further expand the receptive field, a dilated 3 × 3 convolution is added
between each Inception-like block or residual block in the MKM and RM modules. It is
worth noting that we did not expand the receptive field through verbose dilated convolu-
tions (e.g., 14 dilated convolutions in series in [19]) but added just one dilated convolution
between the blocks. The reasons are as follows:

1. The superposition of multiple convolution kernels with the same dilation rate will
cause some pixels not to participate in feature extraction all the time, which is un-
friendly for the pixel level prediction task, i.e., image denoising.

2. We fully consider the parameters of the network and use few dilated convolution
layers to make the network lightweight. To ensure that the final receptive field is still
large, other cheap tricks are added in the MKM and RM.

Figure 4 shows the details of the feature extraction parts in the MKM and RM. Note that
we implemented a novel activation method named Mish rather than the popular Rectified
Linear Unit (ReLU). In addition, some convolutional kerels are decomposed to reduce the
parameters of the model, i.e., we adopt the asymmetric convolution strategy. The padding
methods are all the “SAME”, and the channel numbers are all 32 (rather than 64, generally
implemented in other denoising methods [16–21]). The Mish activation and asymmetric
convolution will be introduced in the following subsections.
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3.2.2. Feature Enhancements

In order to obtain a larger receptive field and learn more abstract features in a cheap
way, we added lightweight receptive field blocks (RFB) and spatial attention blocks (AB)
behind the feature extractors.

Receptive Field Block. The RFB is originated from the RFBNet [24], proposed for the
task of real-time object detection. The main idea of the RFB is to simulate the mechanism of
human vision through taking the dilated rates and the eccentricities of dilated convolutions
into consideration, so as to cheaply enlarge the receptive field with a small parameter
increase. Some recent works [9,19,20] concluded that the receptive field is essential for
image denoising, so receptive field blocks are added at the bottom of our feature extractors.

As shown in Figure 5, the RFB is also an Inception-like structure, i.e., paralleling
several convolution layers with multi-scale kernels. Different from the traditional Inception
blocks, RFB adopts dilated convolutions with multi-scale kernels, and the corresponding
dilation rates are carefully designed. Moreover, a short cut is performed in RFB, and the fea-
ture fusing method is also different from vanilla Inception blocks, i.e., fusing Inception-like
features through a concatenation rather than an element-wise addition. Experimental re-
sults show that the RFB improves our denoising effect, while it keeps our model lightweight.
In addition, the number of basic channels in the RFB we set is 32 rather than 64 in RFBNet,
so as to reduce the parameters of our model.
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Net [19], ADNet [20], etc., all learn the latent noises through subtractive skip connections, 
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Figure 5. The Receptive Field Blocks (RFB) module. The inputs are the feature maps obtained by
the MKM feature extractor or the RM feature extractor. The output is the result of an element-wise
addition between the input maps followed by a 1 × 1 convolution and the concatenation from three
branches. Note that the channel number of our RFB module is 32.

Attention Block. We implemented attention blocks (AB) at the end of RFBs, so as to
further enhance the learned features and enlarge receptive fields. AB make the network pay
more attention on the noised regions, and selectively enhances the feature map. In computer
vision tasks, the attention mechanism is generally implemented in two ways: Spatial
Attention (SA) [25] and Channel Attention (CA) [26]. First, SA and CA receptively score
the feature map with activation functions in the spatial domain and channel domain. Then,
the enhanced feature maps could be obtained by element-wise productions between the
original feature maps and the score maps. We noticed that global or average pooling
operations in CA would lose plenty of image information, which is harmful for the image
restoration task, though this kind of dimensional reduction strategy is useful in other
computer version tasks [27]. Therefore, we use the SA mechanism instead of the CA to
better improve the denoising performance. The inputs of our attention block are feature
maps from an RFB and the original image patches. The mathematical description of AB is
as follows.

fab = Y× fact( fcat(Y, fr f b)) (2)

where Y is a batch of noised image patches, and frfb is the result of an RFB followed by
a 1 × 1 convolution. fcat denotes a concatenation followed by a 3 × 3 convolution, and
fact denotes the activation function Tanh with the value range of (−1, 1). The attention
block uses element-wise productions to achieve weight assignments, so their training and
inference stages can also be accelerated by a GPU or Neural-network Processing Unit
(NPU). Note that our activation function is Tanh instead of Sigmoid, as we take some
negative information into consideration. Figure 6 shows the AB in an intuitive way.
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Figure 6. The attention blocks (AB) module. The inputs are the original image patches and the feature
maps from the RFB, then they are concatenated with the help of a 1× 1 convolution. The concatenated
maps are followed by a 3× 3 convolution and a Tanh activation. After feature fusing, an element-wise
production is performed between the feature maps from the RFB branch and the Tanh branch, as the
output of this attention block.

3.3. Texture Learning Unit

The popular CNN-based denoising networks, e.g., DnCNN [16], FFDNet [17], BRD-
Net [19], ADNet [20], etc., all learn the latent noises through subtractive skip connections,
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rather than directly learning the mappings between noised images and clean images as
other image restoration tasks do, e.g., Single Image Super Resolution (SISR) [28]. It is
undeniable that the denoising methods adopting residual learning are easy to train and
have high quantitative metrics. However, these methods inevitably lose rich texture details
and may have unsatisfactory perceptual results. In this case, DRCNN [21] finds that the
denoised image with rich texture details Y2 can be modeled as Y2 = Y1 + T, where Y1 and
T are the unsatisfactory initial denoised map and the learned texture details, respectively.
We borrow this idea and add an NLU with an addictive skip connection at the end of the
TLU, but we only used 3 convolution layers for texture learning instead of the 17 layers per-
formed in DRCNN. The reason is that our loss functions in the NLU and TLU are different.
The loss in the NLU has already obtained rich feature information from back propagation,
so it is unnecessary for the NLU to extract high-level texture features through a heavy
subnetwork. The reliability of this approach has been proven in knowledge distillation
tasks [29]; that is, the loss values can make up for the gap between large models and small
models in terms of feature representation abilities. In this way, our network economically
learns rich texture details.

In denoising tasks, the choices of loss functions vary from scene to scene. Previous
works [10,30] have deduced that the expectations of the popular loss functions l0, l1, and l2
are the mode, the median and the mean value, respectively. Hence that l0 loss is suitable for
impulse noise removal in Magnetic Resonance Imaging (MRI) images [31,32], and l1 loss is
suitable for removing the text noises such as the watermarks in photographs. It is worth
noticing that l2 loss measures the distance of two pixels more accurately than other losses,
so it is beneficial for some mapping tasks such as SISR and our texture learning unit (TLU).
As for our NLU, the choice of loss functions is up to the noise type, e.g., gaussian noise,
text noise, impulse noise, and our nuclear radiation noise. In short, the whole network
uses a joint loss to optimize in the training stage:

Lj = λ1 × Ln + λ2 × Lt (3)

where Lj is the joint loss, Ln is the loss for the NLU, and Lt is the loss for the TLU; λ1 and
λ2 are two weighting coefficients for Ln and Lt, respectively.

3.4. Other Tricks

Mish activation. Activation functions introduce nonlinear components into neural
networks, greatly enhancing the feature learning abilities. The most commonly used
activation function is the Rectified Linear Unit (ReLU), which alleviates the gradient
vanishing problem through a simple function, i.e., x = max(x, 0). However, in image
restoration networks, the operation that directly assigned the negative values to 0 will
lose plenty of mapping information [10]. Although some methods [24,33] used Leaky
ReLU to retain some negative information, the nonlinearity of these methods became
weaker than the vanilla ReLU, which is not beneficial for noise learning. Therefore, we
use a novel activation function named Mish [34], which retains some negative information,
and maintains the excellent performance of nonlinearity as ReLU. The mathematical
description of Mish is as follows.

fmish = x · tanh(ln(1 + ex)) (4)

Asymmetric convolution. Although the number of parameters of our network is less
than some of the popular methods due to the lightweight feature extractor, we need to
further reduce the parameters so as to denoise the nuclear radiation scene images faster in
embedded platforms. In this case, we used asymmetric convolutions [35] to further simplify
the model. Specifically, we replaced all 3 × 3 convolutions with serial combinations of
3 × 1 and 1 × 3 convolutions and replaced all 5 × 5 convolutions with serial combinations
of 5 × 1 and 1 × 5 convolutions. This strategy significantly reduced the parameters and
improved the inference speed.



Sensors 2021, 21, 1810 10 of 21

In addition, we implemented batch normalizations behind all convolution layers
except several dilated convolutions. Previous works [16,19] have shown that batch normal-
izations make the data distributions more regular, which help the network fit and improve
the denoising effects. Except for the two input layers in the NLU and TLU, all convolu-
tion layers have no bias. The purpose is to reduce the addition times and improve the
inference speed.

4. Experiments

In this section, we first introduce the experimental datasets, including our nuclear
radiation dataset and two popular public datasets for synthetic noise removal. Then train-
ing and testing details of our experiments are listed. Finally, we introduce the evaluation
strategies, including objective evaluation and subjective evaluation.

4.1. Nuclear Radiation Dataset

Our method aimed at removing strong noises in radiation scenes based on CNN, so we
made a nuclear radiation dataset composed of noise-and-clean image pairs. The original
noised images sized 640 × 480 in this dataset are all captured from the cameras on a special
robot in a nuclear emergency accident. There are 37 scenes in the datasets, and each scene
has 150 noised images and 1 clean image. Note that each clean image is obtained by
averaging the 150 noised images. Finally, 2960 image pairs are used for training, 370 image
pairs are used for validation, and 370 image pairs are used for testing, following the
commonly used dataset splitting ratio 8:1:1. Figure 7 shows four challenging scenes of our
nuclear radiation dataset.
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Figure 7. Four scenes of the nuclear radiation dataset. (a–d) Show different radiation scenes: bags, ground, wall, and cylinder.
The first row shows the original noised images, the second row shows the clean ground truth images, and the third row
shows the residual noises.

As shown in Figure 7, the residual noise maps in the third row have no obvious
regulations in term of color, shape, and distribution, while the clean images in the second
row have much better perceptual satisfaction than the original noised images in the first
row, indicating that the nuclear radiation dataset is applicable.



Sensors 2021, 21, 1810 11 of 21

4.2. Public Synthetic Noise Datasets

In order to verify the generalization ability of our network, we carried out experi-
ments on public synthetic noise datasets for three synthetic noise removal tasks, including
gaussian noise, text noise, and impulse noise.

The training set is the widely used Pristine image dataset [36], which contains 3859
color photographs. The validation set and the testing set are the widely used McMaster [13]
dataset and the Kodak [37] dataset, which contain 18 and 24 high quality images, respec-
tively.

The synthetic noises are added online, and they have the same mean value of 0.
The noise variances in the specific denoising experiments are 25, 50, 75.

4.3. Training and Testing Details

We use the same training and testing strategies in all denoising experiments to en-
sure fairness:

• The training sets are all image patches cropped from training image pairs with win-
dows size 50 × 50 and stride 40, while the validation set and the testing sets are the
images pairs with their original sizes.

• In training stages, the default batch sizes are 128, and the images patches X are
normalized by X/255 typed Float32. In addition, the optimization methods are those
adopted in Adam [38] with the initial learning rate 0.001, and the network initialization
methods are those adopted in Kaiming [2]. Validations are performed and recorded at
the end of each epoch.

• In testing stages, the batch sizes are 1, and the inference platform is TITAN XP. Note
that all networks are trained for 50 epochs, and we choose the models with the highest
PSNR on the validation set for testing.

4.4. Evaluation Metrics

We adopted three commonly used evaluation metrics for the image restoration tasks,
including peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [39], and mean
opinion scores (MOS) [28].

The unit of PSNR is decibels (dB), and its calculation formula is:
MSE(x, y) = 1

mn

m−1
∑

i=0

n−1
∑

j=0
[y(i, j)− y(i, j)]2

PSNR(x, y) = 20 log10(
MAX√

MSE(x,y)
)

(5)

where x and y are the input images; MAX is the maximum value of the images’ grayscale;
Y and Y1 are the noised image and the denoised result, respectively. Since the input data
of the network X has been normalized by X/255, we set MAX = 1. It can be seen from
the formula that the larger the PSNR value, the smaller the mean square error (MSE)
between the noised image and the denoised result, i.e., the less the distortion of the
reconstructed image.

The mean pixel value of an image denotes the estimate of brightness, while the stan-
dard deviation denotes the estimate of contrast, and covariance is a measure of structural
similarity. Therefore, the SSIM metric combines the information from the three estimators
and comprehensively evaluates the effect of image restoration. For the two given images,
their structural similarity SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
(6)

where x and y are the input images; µx, σx
2 are the mean and variance of x, respectively; µy,

σy
2 are the mean and variance of y, respectively; σxy is the covariance between x and y; c1

and c2 are two constants that maintain the stability of the calculation, and we set c1 = 0.012,
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c1 = 0.032. Unlike PSNR that calculates the entire image, SSIM calculates the image patches
with a sliding window sized m × m (we set m = 11). The ultimate global SSIM value is
the mean of local SSIM values from all patches. SSIM is also a good quantitative metric to
represent the quality of image restoration.

In addition, we performed mean opinion scores (MOS) to quantitatively quantify the
perceptual satisfaction of the restored image. Specifically, we asked 20 volunteers with
different ages and occupations, and required them to score the images (ranged 0 to 5).
The ultimate MOS of the image is the mean value from all the volunteers.

5. Results

In this session, the proposed method is compared with other denoising methods
on our nuclear radiation dataset with respect to quantitative and qualitative evaluations.
We performed experiments on two versions of our method: the normal version with
32 channels in its backbone, and the tiny version with 16 channels in its backbone.

5.1. Quantitative Comparisons

Table 1 lists the averaged Frames per Second (FPS) and quantitative metrics on our
nuclear radiation dataset compared with six traditional image prior-based methods and
six latest CNN-based methods. The traditional image prior-based methods are tested on a
CPU (Intel Core i7-6700), and the Floating Point of Operations (FLOPs) [40] of CNN-based
methods are based on the same input tensor shape (1, 3, 480, 640).

Table 1. Quantitative results of denoising methods on nuclear radiation dataset. In each column,
compared with all methods, the best value is marked in boldface.

Row Method FLOPs (G) Parameters
(K) FPS PSNR SSIM

1 Wang [6] - - 12.29 29.21 0.875
2 Zhang [7] - - 14.43 30.14 0.880
3 Yang [8] - - 13.17 30.33 0.847

4 NLM [13] - - 0.0098 30.85 0.889
5 BM3D [11] - - 0.0058 31.52 0.895

6 WNNM
[15] - - 0.0012 31.24 0.899

7 BRDNet
[19] 343.92 1120 8.06 32.79 0.922

8 CBDNet
[18] 189.3 4370 4.97 33.11 0.927

9 DnCNN
[16] 171.86 558.4 14.57 32.87 0.927

10 FFDNet
[17] 65.72 854.69 14.43 32.03 0.915

11 ADNet
[20] 160.5 521.49 12.53 32.12 0.919

12 DRCNN
[21] 343.71 1120 12.33 33.01 0.922

13 Ours 68.15 221.76 14.57 33.81 0.934
14 Our-tiny 23.14 75.25 18.38 32.51 0.923

The existing denoising methods for nuclear radiation noise removal are shown in rows
(1)–(3) in Table 1. Though the methods achieve real-time performance (more than 12 FPS),
their quantitative metrics are not outstanding. The general image prior-based methods
in rows (4)–(6) perform better than the methods in row (1)–(3), but they are far from the
real-time FPS. The CNN-based methods in rows (7)–(8) have high PSNR and SSIM, but
their FPS are less than 12. In this case, our method achieves the highest PSNR (33.81) and
the highest SSIM (0.934), while our model still has a real-time FPS (14.57).
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It is worth noticing that our tiny version achieves the lowest FLOPs (23.14 G), the fewest
model parameters (75.25), and the highest FPS (18.38). Meanwhile, the PSNR and SSIM
metrics of our tiny version are still comparable with other CNN-based methods. The reason
is: although there are fewer parameters, the structure of our network is more complex,
which ensures its feature learning ability.

Therefore, we can use the complexity of the network structure in exchange for the
miniaturization of the model, and this strategy achieves better results.

5.2. Qualitative Comparison

We compare our intuitive results with those obtained from the popular CNN-based
methods in nuclear radiation scenes, and locally analyze their texture retention. Figure 8
shows the denoised results of a nuclear radiation scene. The red box area is the cart with
rich texture, and the green box area is the area enlarged twice.
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In Figure 8, it can be seen from the top-left noised image that the nuclear noises have
irregular aggregated shapes and different colors (blue and green), and there are burrs on the
edge of the cart in the image. Although all the CNN-based denoising methods can remove
the noises well, they still have some dissatisfied problems. Specifically, DnCNN [16],
FFDNet [17], ADNET [20] and DRCNN [21] give the restored image different degrees of
color distortion (e.g., some regions are prone to being green). BRDNet [19] and CBDNet [18]
do well in color fidelity, but the textures of the wheel in the image are a little fuzzy. However,
the result of our method has no color distortion while its edges are clear, indicating that
our method does have advantages in terms of texture retention.

All the denoised results of our dataset (with 37 scenes) from the above methods were
shown to volunteers, obtaining the MOS metrics of the denoising methods. Figure 9 shows
the results.
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As shown in Figure 9, the result of our method is the same as the results of DRCNN
and CBDNet that in the scores are more than four. However, our MOS is the highest (4.5),
while our model is much more lightweight, so the overall performance of our method is
the best.

6. Discussion

In this session, we carried out more detailed discussions about our network. First,
a series of ablation experiments was performed to find the best hyperparameters and verify
the superiority of the components. Then, we evaluate other performances of our network,
including the trainability and the generalization ability.

6.1. Ablation Experiments for Hyperparameters
6.1.1. Choice of Loss Function

As mentioned in Section 3.3, the selection of loss functions is related to the noise type
of the denoising task. We visualized the two synthetic noise types and compared them
with our nuclear radiation noise. Figure 10 shows the visualizations.
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Figure 10. Visualization of different noise types. (a,b) Are synthetic impulse noise and text noise with the variance of 50
and 25, respectively; (c) is the real noise in our nuclear radiation dataset.

It can be seen from Figure 10c that our nuclear radiation scene image is much different
from the impulse noise in Figure 10a and the text noise in Figure 10b. However, the nuclear
radiation noise is a bit similar to the combination of the two synthetic noises. On the
one hand, the independent noise points in the nuclear radiation images are similar to the
impulse noise shown in Figure 10a; on the other hand, the noise blocks in the nuclear
radiation images are similar to the text noise shown in Figure 10b, as they are all aggregated
with irregular shapes and colors. Therefore, we believe that l1 loss is more conducive to
optimization than l2 loss in the task of nuclear radiation noise removal due to the same
properties in the tasks of impulse noise removal and text noise removal [10]. To prove
this point, we carried out ablation experiments between l1 and l2 losses. Respectively,
the formulas of the two losses are:{

l1(x, y) = | x− y |
l2(x, y) = (x− y)2 (7)

where x is the noised input and y is the denoised output. Their performances in the training
stages are shown in Figure 11.
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Figure 11. Quantitative metrics of different loss functions in the training stages. (a,b) Respectively, show the change of
PSNR and SSIM with the increase in epoch. The blue curves in (a,b) denote that the model is optimized by l1 loss, and the
red curves are for l2 loss.

As shown in Figure 11, the metrics of l1 loss are almost above that of l2 loss, indicating
that l1 loss is easier to optimize. It is worth noticing that l1 loss converges faster as shown
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in epochs 0–10, and its training curve is more stable (as shown in epoch 20 that the metric
of l2 loss has an obvious jitter). This result demonstrates that the nuclear radiation noise is
similar to the combination of impulse noise and text noise, and our choice to use l1 loss
instead of the commonly used l2 loss is correct.

6.1.2. Tricks of the NLU

The proposed noise learning unit NLU is composed of three important parts: Fea-
ture Extractors (FE), Receptive Field Blocks (RFB), and Attention Blocks (AB). FE contain
two different backbones: Multi-kernel Modules (MKM) and Residual Modules (RM).
The whole network adopted Mish activation function to enhance the feature learning
ability and used asymmetric convolutions to reduce the number of parameters.

For the feature extractors (MKM and RM), Table 2 shows the comparisons in terms
of PSNR, SSIM, and FLOPs. In this experiment, MKM and RM adopted Mish activation
and asymmetric convolutions, while the structure of vanilla layers is the same as the
structure of DnCNN [16], i.e., the input and output are connected by a subtractive skip
connection, and each convolution layer is followed by a batch normalization BN and an
activation function ReLU. Note that no dilated convolutions and asymmetric convolutions
in vanilla layers, and their convolutional kernel sizes are all 3 × 3. In addition, the FLOPs
are calculated with the input tensor shape (1, 3, 480, 640).

Table 2. Denoising effects of different feature extraction networks. The best quantitative results are
marked in boldface.

Backbone Channels Layers FLOPs (G) PSNR SSIM

Vanilla 64 15 171.84 33.35 0.935
MKM only 32 15 30.66 33.33 0.938

RM only 32 15 31.92 33.37 0.936
MKM–RM 32 30 62.04 34.56 0.951

It can be seen from Table 2 that the PSNR and SSIM metrics of the MKM or RM are
all close to that of vanilla layers, but the FLOPs of our model are much fewer than those
of vanilla layers due to the fewer channels and the asymmetric convolutions. It is worth
noticing that, when we parallelly combined the MKM and RM, the PSNR and SSIM metrics
became much higher than that of the previous methods. This huge gain shows that we can
learn more image information from our special feature extractor. Though the convolution
layers become twice those of vanilla layers, the model is more lightweight.

In order to verify the effectiveness of other techniques, i.e., RFB, AB, and Mish,
we conducted ablation experiments through a grid search. Table 3 shows the results of
the experiments.

Table 3. Grid search results for multiple techniques. The best quantitative results are marked
in boldface.

Experiment FE RFB AB Mish PSNR SSIM

1 X 33.56 0.938
2 X X 33.58 0.941
3 X X 33.64 0.939
4 X X 33.75 0.940

5 X X X 33.29 0.942
6 X X X 33.07 0.941
7 X X X 33.62 0.940

8 X X X X 33.98 0.944

In Table 3, FE represents our feature extractor, i.e., the parallelly combined MKM
and RM. If the Mish activation function is not selected, we use ReLU instead. It can be
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seen from experiments (1)–(4) of the table that RFB, AB, and Mish can individually bring
certain improvements for PSNR and SSIM, indicating that the three extra techniques are
effective. Although the pairwise combination between RFB and other tricks in experiments
(5)–(7) has a decrease in PSNR compared with experiments (1)–(4), its SSIM metric has
been improved slightly. More importantly, it can be seen from the last experiment that the
improvement from using all the three techniques together is huge, especially for the PSNR
that improved by 0.42 compared to the FE-only in experiment (1).

6.1.3. Effectiveness of the TLU

Unlike other popular CNN-based denoising methods such as [16–20], we considered
the learning of textures through adding a lightweight TLU at the bottom of the NLU, so as
to make the final denoising results more perceptually satisfactory. Note that our method is
different from the noise learning part and the texture learning part in the previous work [21]
in that the TLU is identical to the NLU, and the two parts share the same loss function MSE
to optimize. We use l1 loss to optimize the NLU and use l2 loss to optimize a tiny TLU
composed of three convolution layers. Figure 12 shows the results in 3 challenging nuclear
radiation scenes.

As shown in Figure 12, the results with the TLU have better perceptual effects than the
results without the NLU in all scenes, i.e., the dark scene, bright scene, and regular scene.
Meanwhile, for the quantitative metrics, the results with the TLU are also higher in terms
of PSNR and SSIM than the results without the TLU. Therefore, the TLU can obviously
improve the overall performance of our image restoration network.
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6.2. Evaluations of Other Performance
Trainability

As conducted in Section 5.1, our network achieves the balance of denoising effect
and model complexity, especially for our tiny version that achieves the best real-time
performance. In this case, we evaluate the trainability of our model compared with six
latest CNN-based denoising methods. Specifically, we test the denoising models with the
same training times (6 h), and the occupied GPU memories are recorded, as shown in
Table 4.

Table 4. Training and testing details of different denoising methods on the nuclear radiation dataset. The best quantitative
results are marked in boldface.

Row Methods Training Time
(hour) Batch Size Occupied GPU

Memory (M) PSNR SSIM

1 DnCNN [16] 6 128 5818 30.74 0.861
2 FFDNet [17] 6 128 5214 30.93 0.865
3 CBDNet [18] 6 128 6412 31.10 0.879
4 ADNet [20] 6 128 4172 31.02 0.874
5 BRDNet [19] 6 128 6374 31.45 0.877
6 DRCNN [21] 6 128 6512 30.97 0.880
7 Our-tiny 6 128 2906 31.07 0.883
8 Our-tiny 6 256 5214 31.79 0.894

As shown in rows (1)–(7) in Table 4, with the same batch sizes and training times,
our model obtained comparable PSNR and SSIM with other big models. The reason is that
our tiny model optimizes more iterations in the same training times. More importantly,
as shown in row (8), when we double the batch size, the PSNR and SSIM of our model
become much higher than those of other models with the same training times. The reason
is that the doubled batch size improves the utilization rate of GPU, and the model has more
iterations for optimization in the same training time. Therefore, our method has better
trainability compared with other popular CNN-based denoising methods, benefiting from
its much smaller model size.
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6.3. Generalization Ability

To examine the generalization ability of our network, we performed experiments
on the Kodak dataset for denoising synthetic noises compared with five fast CNN-based
methods. Tables 5 and 6 show the comparison of the PSNR and SSIM metrics, respectively.

Table 5. Comparison of PSNR metrics of 6 latest CNN -based methods on the Kodak dataset. For each
noise type, the highest PSNRs are marked in boldface.

Noise Types Gaussian Text Impulse
Noise Levels 25/50/75 25/50/75 25/50/75

1 DnCNN 31.93/29.98/25.46 29.33/28.80/25.77 36.70/32.93/28.58
2 FFDNet 31.01/29.56/25.62 30.40/29.01/26.58 36.62/34.68/28.96
3 CBDNet 32.12/29.96/25.74 31.61/29.25/26.96 38.75/35.08/29.92
4 ADNet 31.11/28.66/25.62 30.43/28.01/25.57 36.62/34.68/28.66
5 BRDNet 32.23/30.52/25.77 31.18/29.35/26.17 38.97/35.71/29.94
6 DRCNN 31.11/29.66/25.62 30.40/28.01/26.57 36.62/34.68/28.81
7 Ours-tiny 32.31/30.44/25.71 31.57/29.01/27.01 39.04/35.51/29.82
8 Ours 32.41/30.54/25.78 32.74/29.86/27.36 41.21/35.74/30.86

Table 6. Comparison of SSIM metrics of 6 latest CNN-based methods on the Kodak dataset. For each
noise type, the highest SSIMs are marked in boldface.

Noise Types Gaussian Text Impulse
Noise Levels 25/50/75 25/50/75 25/50/75

1 DnCNN 0.925/0.859/0.666 0.901/0.801/0.703 0.922/0.924/0.808
2 FFDNet 0.929/0.860/0.672 0.902/0.792/0.717 0.932/0.938/0.806
3 CBDNet 0.938/0.862/0.702 0.920/0.789/0.737 0.972/0.959/0.880
4 ADNet 0.929/0.856/0.701 0.914/0.765/0.672 0.937/0.935/0.836
5 BRDNet 0.932/0.855/0.703 0.926/0.828/0.729 0.913/0.951/0.854
6 DRCNN 0.938/0.854/0.701 0.922/0.811/0.737 0.962/0.953/0.826
7 Ours-tiny 0.938/0.860/0.704 0.921/0.833/0.749 0.978/0.955/0.879
8 Ours 0.940/0.866/0.713 0.936/0.838/0.755 0.983/0.960/0.882

As shown in Tables 5 and 6, our method achieves the highest PSNR and SSIM com-
pared with other popular CNN-based denoising methods, while our tiny version also has
comparable results though its model size is the smallest. The results indicates that our net-
work not only performs well in nuclear radiation scenes, but also has good generalization
ability in terms of other denoising tasks.

7. Conclusions

In order to remove the complex and strong-level noise in radiation scene images, we
designed a lightweight network composed of a noise learning unit (NLU) and a texture
learning unit (TLU). The proposed network applied multi-scale kernel convolution, recep-
tive field blocks, Mish activation, and asymmetric convolution to denoising tasks for the
first time, and these tricks provided substantive improvements.

Compared with 12 denoising methods including 6 traditional image prior-based
methods and 6 latest CNN-based methods on our nuclear radiation dataset, the proposed
method has the real-time FPS with the highest PSNR and SSIM metrics.

In addition, compared with the six CNN-based methods, our network had the highest
MOS score and the best perceptual effects on our nuclear radiation dataset, and obtained the
highest quantitative metrics on the public Kodak dataset for removing synthetic Gaussian
noise, text noise, and impulse noise.

Therefore, the strategy of using the complexity of the network structure in exchange
for the miniaturization of the model is effective, and the proposed method commendably
solves the problem of strong noise removal in nuclear radiation scenes.
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