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Post-translational modifications are difficult to visualize in living cells and are conveniently ana-
lyzed using antibodies. Single-chain antibody fragments derived from alpacas and called nanobod-
ies can be expressed and bind to the target antigenic sites in living cells. As a proof of concept, we
generated and characterized nanobodies against the commonly used biomarker for DNA double
strand breaks c-H2AX. In vitro and in vivo characterization showed the specificity of the c-H2AX
nanobody. Mammalian cells were transfected with fluorescent fusions called chromobodies and
DNA breaks induced by laser microirradiation. We found that alternative epitope recognition and
masking of the epitope in living cells compromised the chromobody function. These pitfalls should
be considered in the future development and screening of intracellular antibody biomarkers.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Damage to the DNA is a common event occurring in the life of a
cell due to exogenous factors like viruses, carcinogens, different
types of radiation, other environmental factors and endogenous
factors. These damages may lead to mutations in DNA, causing
cancer and other harmful effects to the cell. Hence, the study of cel-
lular DNA damage is very important and requires extensive data on
the modification, localization and interaction of cellular compo-
nents. Phosphorylation on serine 139 of histone H2AX (c-H2AX)
is associated with DNA double strand breaks (DSBs) [1]. Its ampli-
fication and signalling function in recruiting other repair factors to
the site of damage and its removal after damage repair is com-
pleted, makes c-H2AX the most sensitive biomarker used to study
DNA DSBs. Existing methods are based on antibody staining and
their application is not suitable for live cells. Though microinjec-
tion or bead loading of antibodies is possible for live cell analyses
[2], it is not commonly used due to antibody aggregation and tox-
icity problems as well as nuclear accessibility. Fluorescent fusion
proteins allow live cell kinetic measurements but in general cannot
be used to distinguish post-translationally modified derivatives of
ectopically expressed proteins, albeit, to a certain extent, GFP fused
53BP1 has been used as a surrogate marker for c-H2AX foci [3].
Recent reports have demonstrated the isolation of the cDNAs cod-
ing for the variable regions of the IgG heavy and light chains from
hybridoma cell lines and the feasibility of their expression in mam-
malian cells as fluorescent fusion intracellular antibodies [4]. The
need for the isolation of both matched cDNAs (light and heavy
chain variable fragments) and to select the appropriate linker
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sequence to create a functioning fusion of the heavy and light chain
variable fragments together with a fluorescent protein, makes this
a very difficult and challenging approach.

Here, we introduce a novel technology with the aim of studying
DNA double strand breaks based on recognition of post-
translational modifications of H2AX in living cells. Sera of llamas
and camels were found to have both conventional heterote-
trameric and also heavy chain only antibodies. These heavy chain
antibodies possess a single variable domain (VHH) and two con-
stant domains CH2 and CH3 [5]. The antigen binding domains of
heavy chain antibodies (VHH), known as nanobodies, are of small
size (between 12 and 15 kDa) and retain fully functional antigen-
binding capacity. These domains can be chemically conjugated to
fluorophores or genetically fused with fluorescent tags and subse-
quently expressed in living cells. Such fluorescently labeled intra-
bodies, which are called chromobodies, can be used to detect and
trace proteins as well as other cellular components in vivo [6,7].
The paratope of nanobodies often adopts a convex-shaped confor-
mation, which allows it to access differently shaped epitopes easier
than the flat paratope of conventional antibodies. Nanobodies are
very stable, monomeric and their highly soluble nature in aqueous
solutions makes them easy to purify on a large scale in heterolo-
gous expression systems [8–10]. Their antigen binding affinities
can reach subnanomolar range [11] and they possess high stability
over a wide range of temperatures and show a very good resistance
to chemical and thermal denaturation compared to their conven-
tional counterparts [12–14]. Based on the choice of the epitope,
chromobodies can be used to detect endogenous factors and
dynamic events occurring in the living cell. In principle, any anti-
genic property including post-translational modifications or non-
protein structures can be detected.

To expand our present understanding of DNA DSBs, we devel-
oped a c-H2AX nanobody/chromobody that can specifically detect
histone H2AX phosphorylated on serine 139 and characterize its
binding in vitro and in vivo.
2. Material and methods

2.1. Quick outline for the production of chromobodies

(1) An alpaca (Llama pacos) was immunized with c-H2AX pep-
tide coupled to KLH (keyhole limpet hemocyanin) (Fig. 1A).
About two months later, serum was isolated by centrifuga-
tion of blood (2000 rpm, 10 min and 4 �C).
Immunizations of alpacas for the purpose of generating anti-
bodies were approved by the Government of Upper Bavaria,
according to the animal experimentation law, permit num-
ber 55.2.-154-2532.6-9-06.

(2) To test for an immune response, an ELISA test was per-
formed on the serum. 96-well plates (Maxisorp, Thermo Sci-
entific GmbH, Schwerte, North Rhine-Westphalen,
Germany) were coated with 1 lg of the antigen and the
serum was added in serial dilutions. Bound alpaca antibod-
ies were further detected with HRP-conjugated anti-alpaca
IgG antibody (Bethyl Laboratories Inc, Montgomery, Ala-
bama, USA).

(3) Upon positive ELISA test, B cells were isolated with a Ficoll
gradient using UNI-SEPMAXI (Novamed Ltd., Jerusalem,
Israel).

(4) From the B cells, RNA was extracted with the TRIzol reagent
(Life Technologies, Carlsbad, California, USA) according to
the manufacturer’s protocol.

(5) From this RNA, complementary DNA (cDNA) was generated
using the First-Strand cDNA Synthesis Kit (GE Healthcare,
Uppsala, Sweden) according to the manufacturer’s protocol.
(6) VHHs were amplified by three sequential PCR reactions.
cDNA was used as the DNA template for the first PCR. For
the PCR reactions, the following primers were used:
1st PCR:
Forward primer CALL001:
50-GTC CTG GCT GCT CTT CTA CA A GG-30

Reverse primer CALL002:
50-GGT ACG TGC TGT TGA ACT GTT CC-30;
2nd PCR:
Forward primer SM017:
50-CCA GCC GGC CAT GGC TCA GGT GCA GCT GGT GGA GTC
TGG-30

Reverse primer SM018:
50-CCA GCC GGC CAT GGC TGA TGT GCA GCT GGT GGA GTC
TGG-30;
3rd PCR:
Forward primer A4short:
50-CAT GCC ATG ACT CGC GGC CAC GCC GGC CAT GGC-30

Reverse primer 38:
50-GGA CTA GTG CGG CCG CTG GAG ACG GTG ACC TGG GT-
30.

(7) The amplified product and the plasmid vector pHEN4 were
digested with NotI and NcoI restriction enzymes, thus pro-
ducing compatible overhangs to ligate.

(8) Electro-competent TG1 cells (Agilent Technologies GmbH &
Co.KG, Waldbronn, Baden-Wuerttemberg, Germany) were
used to generate VHH libraries. They were transformed by
electroporation with the ligation preparations performed
according to the manufacturer’s protocol.

(9) The transformed TG1 cells were incubated with hyperphage
(Progen Biotechnik GmbH, Heidelberg, Baden-
Wuerttemberg, Germany). The phage particles presenting
the VHH library on their tips were collected.

(10) Solid phase panning is a conventional method to enrich for
phages containing the antibody fragments from the whole
library. Initially immunotubes were coated with 10 lg of
the antigen at 4 �C. Phage particles were added to them
and incubated for 1.5 h at room temperature.

(11) The bound phages were eluted with 0.1 M triethylamine
over four rounds of panning and used for reinfection of
TG1 cells, which were then used for the subsequent panning
round.

2.2. Phage ELISA

Phage ELISA was used to measure the binding and confirm the
specificity to the antigen of the phages selected in the panning
method described above. Initially 1 lg of antigen was coated onto
96 well plates. After blocking with 3% milk in PBS, phage particles
were added to the plates coated with antigen and incubated at
room temperature for 2 h. After washing multiple times with PBST
(PBS with 0.05% Tween20), bound phages were detected by stan-
dard ELISA procedures using a horseradish peroxidase-labeled
anti-M13 monoclonal antibody (GE Healthcare, Uppsala, Sweden).

2.3. Dot blot assay

Dot blot analysis was performed to validate the specificity of
the VHH (nanobody) to the phospho epitope. Firstly 2 lg of peptide
was spotted onto nitrocellulose membrane and incubated with
FITC labeled VHH. The latter was generated via N-
hydroxysuccinimide (NHS) based conjugation according to the
manufacturer’s protocol (Thermo Scientific GmbH, Schwerte,
North Rhine-Westphalen, Germany) and free fluorescent dyes sep-
arated using PD-10 desalting columns (GE Healthcare, Uppsala,
Sweden). The binding signals were obtained by scanning with a
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Fig. 1. Schematic representation of alpaca derived c-H2AX specific VHHs generation and biochemical in vitro and in vivo characterization. (A) In the top is shown the
alignment of histone H2A variants depicting the unique C-terminal peptide sequence phosphorylated upon DNA damage and used for immunization. Following it, the steps of
c-H2AX specific VHH generation are summarized. (For details, see materials and methods.) (B) In the dot blot assay, c-H2AX-chromobody (clones 3 and 4; FITC conjugated)
was allowed to bind to increasing concentrations of c-H2AX peptide-KLH and non-phosphorylated control peptide. (C) In the western blot experiments, different amounts of
HeLa cell lysates treated or not with neocarcinostatin were loaded and the blot was probed with c-H2AX-chromobody (clones 3 and 4; FITC conjugated) as well as the
commercial c-H2AX antibody. (D) Selected clones were used for immunoprecipitation experiments. Cells expressing the selected c-H2AX-chromobody (clones 3 and 4)
tagged with GFP or GFP alone were treated with neocarcinostatin. After cell lysis, the extract was incubated with the GFP-binder protein coupled to Sepharose beads [18]. The
bound fraction and equivalent input cell lysate control were analyzed by western blot with anti-GFP and anti-c-H2AX antibodies.
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Typhoon Scanner (excitation 480 ± 20 nm, emission: 520 ± 20 nm,
GE Healthcare, Uppsala, Sweden) and normalized against the
background. Quantification of the signals was performed with
the ImageQuant software.
2.4. Mammalian expression plasmids

c-H2AX-VHH (clones 3 and 4) was cloned in frame into the
pEGFP-N1 vector (Clontech Laboratories Inc, Mountain View, Cali-
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fornia, USA) using BglII/HindIII restriction sites to generate c-H2AX
chromobody mammalian expression plasmid.

To obtain the RFP-XRCC1 full-length construct, human XRCC1
was cloned by amplifying XRCC1 from cDNA using the following
primers: XRCC1 forward 50 AA ACCGGT ATGCCGGAGATCCGCCTCC
30 (HpaI), XRCC1 reverse 50 AA GCTAGC GGCTTGCGGCACCACCCC
30 (NheI), and cloned into the pmRFP-C1 backbone. To obtain the
RFP-XRCC1-NTD construct, the sequence after the BRCT1 domain
(amino acid number 357–578) was excised by XmaI digestion fol-
lowed by self ligation. The phospho-mutant RFP-XRCC1-CKM con-
struct was generated from the XRCC1 (CKM) construct described in
[15] (obtained from Keith Caldecott; University of Sussex, UK). The
CKM mutant region of the XRCC1 (CKM) was excised with XmaI
and XhoI and was used to replace the corresponding part within
the pmRFP-XRCC1 wild type.

Human MDC1-GFP plasmid was described in [16] (obtained
from Roland Kanaar; Erasmus MC University, Rotterdam, The
Netherlands).

2.5. Cell culture and transfection

HeLa, HEK293, H2AX knock out and wild-type mouse embry-
onic fibroblasts (MEFs; obtained from A. Nussenzweig, National
Cancer Institute, USA) [17] were used. Cells were cultured at
37 �C, 5% CO2 in DMEM containing 50 lg/ml gentamicin supple-
mented with 10% fetal calf serum. For passaging, cells were washed
with 2 ml PBS, and 1 ml trypsin/EDTA was added and distributed
over the cell layer. Once the cells were detached, 9 ml of DMEM
with serum were added to stop the enzymatic action of trypsin.

For live cell analysis, cells were seeded 24 h before transfection
in a l-8 well dish (ibidi GmbH, Munich, Bavaria, Germany). For
fixed cell analysis, cells were grown on glass cover slips.
Polyethylenimine (PEI, Sigma–Aldrich, Steinheim, North Rhine-
Westphalia, Germany) with pH 7 was used to transfect the MEF
and HEK293 cells and PEI with pH 10 was used for HeLa cells
and cells were irradiated, imaged or pelleted one day after trans-
fection. Hiperfect (Qiagen GmbH, Hilden, North Rhine-
Westphalia, Germany) was used for the transfection of siRNAs
according to the manufacturer’s instructions.

2.6. Immunoprecipitation and western blotting

For immunoprecipitation, HEK293 cells transfected with plas-
mids coding for c-H2AX-3 chromobody or GFP alone, were treated
with 50 lg neocarcinostatin to generate DSBs. Cell pellets were
resuspended in lysis buffer (20 mM Tris/Cl pH 7.5, 150 mM NaCl,
0.5 mM EDTA, 0.5% NP-40) plus 1 mM PMSF, 1X protease inhibitor
mix (Serva Electrophoresis GmbH, Heidelberg, Baden-
Wuerttemberg, Germany), 0.5 lg/ll DNase, and 2.5 mM MgCl2
and centrifuged. Then, 50 ll slurry of NHS-activated Sepharose
beads covalently coupled with a GFP binding nanobody, as detailed
in [18], were equilibrated by washing three times with dilution
buffer (20 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA).
HEK293 cell lysate was added to the equilibrated beads and incu-
bated for four hours at 4 �C. The samples were loaded in an SDS–
PAGE followed by western blot analysis.

Proteins separated on SDS–PAGE gels were transferred to a
nitrocellulose membrane by semi-dry blotting at 240 mA. The
membrane was incubated for one hour with 3% milk powder in Tris
buffered saline with 0.075% Tween-20 (TBST) at room temperature.
Primary antibodies anti-GFP (1:1000, Roche Diagnostics, Man-
nheim, Baden-Wuerttemberg, Germany) and anti c-H2AX
(1:1000, clone JBW301, Upstate, Millipore-Merck, Darmstadt, Hes-
sen, Germany) were incubated in 3% milk-TBST at 4 �C overnight.
Secondary antibodies (1:1000) were diluted in 3% milk-TBST and
incubated for 1 h at room temperature. The membrane was
washed with TBST and treated with ECL solution and bound pro-
teins were detected with the Typhoon scanner.

2.7. Western blot

To test the usefulness of the c-H2AX chromobody compared to
the commercial c-H2AX antibody for western blotting applica-
tions, HeLa cells incubated or not with neocarcinostatin (50 ng/
ml) were harvested in PBS, snap-frozen in liquid nitrogen and
stored at�20 �C. Cell pellets were homogenized in 200 ll RIPA buf-
fer (10 mM Tris/Cl pH 7.5, 150 mMNaCl, 0.1% SDS, 1% Triton X-100,
1% deoxycholate, 5 mM EDTA, 1 lg/ml DNaseI, 2.5 mM MgCl2,
2 mM PMSF, 1X protease inhibitor mix M (Serva)) by repeated
pipetting for 40 min on ice. After centrifugation (10 min at
18,000�g) protein concentrations of the supernatants were deter-
mined by BCA Protein Assay (Pierce). Lysates were analyzed on
SDS–PAGE and transferred onto nitrocellulose membrane as
described above. For detection of c-H2AX, western blots were
incubated with FITC labeled c-H2AX nanobodies (0.2 mg/ml)
diluted in 1X PBS, 0.1% BSA for 12 h at 4 �C. Blots were washed 3
times with 1X PBS, 0.05% Tween-20 and detected with the
Typhoon scanner.

2.8. Microscopy

Live cell experiments were performed using confocal micro-
scopy. Confocal images were collected using an UltraVIEW VoX
spinning disc system (Perkin Elmer) on a Nikon Ti microscope
equipped with an oil immersion Plan-Apochromat 60x/1.49
numerical aperture (NA) objective lens (pixel size in XY
120.45 nm/pixel) in a live-cell microscopy chamber (ACU control,
Olympus) with a temperature of 37 �C, 5% CO2, and 60% humidity.

For fixed cell analysis, fluorescent images were obtained on a
Zeiss Axiovert 200 inverted microscope equipped with a Plan-
Apochromat 63x/1.4 NA oil immersion objective lens (pixel size
in XY 104 nm/pixel) and a CCD camera AxioCam MRm.
2.9. Irradiation and FRAP experiments

Microirradiation of cells was carried out with a 405 nm diode
laser set to maximum power at 100% transmission. Preselected
spots of �1 lm in diameter within the nucleus were microirradi-
ated for 1200 ms resulting in 1 mJ energy. Before and after microir-
radiation confocal image series were recorded.

For FRAP analysis, previously microirradiated spots were photo-
bleached with 488 nm laser set to 100% for 600 ms. Similar bleach
regions were selected either at the sites of repair or in the nucleo-
plasm (control) and the kinetics of recovery were monitored.

easyFRAP, a MatLab stand-alone application, was used to visu-
alize the data, normalize the raw recovery curves and curve fitting
[19]. Raw intensities of microirradiated area (ROI1), the whole
nucleus (ROI2), and a background area (ROI3) as well as the corre-
sponding time-points were calculated using a custommade ImageJ
macro [20]. For quantifying the accumulation kinetics, the mean
intensity of the microirradiated region was divided by mean inten-
sity of the cell and both the intensities are corrected for the back-
ground using the easyFRAP software.

The FRAP fluorescence intensity curves were normalized by set-
ting the first post-bleach value to zero. The normalized curves were
subjected to double term curve fitting. The mobile fraction and t-
half values were extracted from the double exponential fitting
using easyFRAP.

For fixed cell experiments the cells were irradiated prior to fix-
ation with a X-ray tube (GE isovolt titan) set to 90 kV and 19 mA
filtered by a 2 mm aluminum sheet. The dose rate was controlled
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by DIADOS T11003 diagnostic dosimeter and a dose of 2 Gy was
achieved by varying the distance and duration of the irradiation.

2.10. Knockdown experiments

For knockdown experiments, siRNA with the sequence of the
sense strand 50-CCAGAAATCTTTATGAATAAA-30 targeting human
MDC1 was used, and universal siRNA (Invitrogen, Karlsruhe,
Baden-Wuerttemberg, Germany) was used as a negative control.
Hiperfect (see above) was used as a cationic lipid cell transfection
reagent. Human cells (HEK 293) were seeded at a density of
4 � 104 cells/well in a l-8 well dish. 2 ll of Hiperfect transfection
reagent was added along with 20 nM MDC1 siRNA in a l-8 well
dish immediately after seeding the cells. After 24 h, the media
was removed and fresh media was added. After 48 h the transfec-
tion of c-H2AX-3 chromobody was done using PEI pH 7. After 72 h,
the cells were rinsed with fresh media and the microirradiation
experiments were performed.

2.11. Immunofluorescence

Cells were grown on glass coverslips, fixed in 3.7% formalde-
hyde for 10 min at room temperature (RT), and permeabilized for
20 min at room temperature in 0.5% Triton X-100/PBS. Immunoflu-
orescence staining was performed by diluting the antibodies in 4%
BSA/PBS for 1 h at room temperature (primary antibodies) and for
45 min at room temperature (secondary antibodies). The following
primary antibodies were used: mouse anti-c-H2AX (1:300, clone
JBW301, Millipore GmbH, Schwalbach, Hessen, Germany), anti-
MDC1 (1:100, Sigma–Aldrich Inc, Steinheim, North Rhine-
Westphalia, Germany). For detection, the cells were stained with
donkey anti-mouse IgG Alexa 488 (Jackson Immuno Research, Suf-
folk, UK) and goat anti-mouse IgG Cy3 (Jackson Immuno Research,
Suffolk, UK). Nuclear DNA was visualized with 4,6-diamidino-2-
phenylindole (DAPI) (Sigma–Aldrich GmbH, Munich, Bavaria,
Germany). Cells were mounted in Vectashield antifade (Vector
Laboratories Inc).
3. Results and discussion

3.1. Development of c-H2AX specific VHHs

The outline in Fig. 1A summarizes the main steps of the nano-
body generation process, which are explained in more detail in
the methods. Alpacas were immunized with specific peptides fol-
lowing a seven-week period, RNA from lymphocytes was extracted
and retrotranscribed to DNA, and the sequences corresponding to
the VHH domains were amplified with specific primers for cloning
into a phage display vector. This library was then subjected to
phage display using plates coated with the antigens (peptides).
Two subsequent cycles of biopanning revealed an enrichment of
three unique VHH sequences, which were positively tested for
antigen binding in a phage ELISA. The binding ability of VHH to
c-H2AX was subsequently tested by a panel of in vitro and
in vivo methods.

The selected VHHs were cloned with a C-terminal 6�His-tag,
expressed in Escherichia coli and purified using immobilized metal
ion affinity chromatography followed by size exclusion chromatog-
raphy [18]. Purified VHH domains were chemically labeled with an
organic dye (FITC) and used for dot blot and western blot assays. To
this end the peptides were spotted at different concentrations on
the membrane, and incubated with c-H2AX-3 and 4 chromobodies
(clones 3 and 4) confirming its phospho epitope specificity
(Fig. 1B). Different concentration of cell lysates extracted from
HeLa cells treated or not with neocarcinostatin (NCS) to generate
c-H2AX as well as untreated E. coli cells were used for western blot
and the membrane was subsequently probed with c-H2AX-3 and 4
chromobodies (Fig. 1C). The signals obtained with the chromobod-
ies were specific to damaged cells but showed more background
than the commercial anti-c-H2AX antibody.

3.2. c-H2AX chromobody interacts with and precipitates the
phosphorylated histone

To test the binding specificity in cellulo, we generated a mam-
malian expression construct comprising the antigen-binding
domain of the c-H2AX-VHH (clones 3 and 4) in fusion with GFP
(c-H2AX-3 and 4 chromobodies). Human HEK293 cells were trans-
fected with the c-H2AX-3 and 4 chromobodies or GFP alone as
negative control. To induce DNA damage, cells were treated with
neocarcinostatin to generate DSBs and ensuing c-H2AX formation.
Subsequently, the cellular interaction of c-H2AX and the c-H2AX-3
and 4 chromobodies was analyzed by immunoprecipitation exper-
iments. To this end, the respective cell lysates were incubated with
the GFP-binding nanobody coupled to Sepharose [18] and the input
as well the bound fractions were analyzed by SDS–PAGE followed
by immunoblotting. The results showed substantial binding of the
c-H2AX-3 and 4 chromobodies to c-H2AX, while no c-H2AX was
detectable in the bound fraction of GFP (Fig. 1D).

From the in vitro and in vivo results, the c-H2AX-3 chromobody
showed better binding. Hence, we decided to use this clone for all
the subsequent live cell experiments.

3.3. In situ live cell characterization of c-H2AX chromobody

The c-H2AX-3 chromobody was next tested for its ability to
mark DNA double strand breaks in living cells (Fig. 2). Here, we
wanted to mark the phosphorylation event that occurs on the his-
tone H2AX upon DSBs. Initially, cells expressing the c-H2AX-3
chromobody were irradiated with the 405 nm laser, which has
been shown to induce different types of DNA damage including
DSBs [21]. No recruitment of c-H2AX-3 chromobody was observed
at the sites of DNA damage (Fig. 2B and D). Hence, XRCC1 (X-ray
cross complementing protein 1), a loading protein [22] involved
in base excision and single strand break repair in mammalian cells,
was co-transfected with the c-H2AX-3 chromobody to confirm the
induction of DNA damage. Recruitment of c-H2AX-3 chromobody
was observed in the presence of the XRCC1 at the microirradiated
sites (Fig. 2C and D).

To check if XRCC1 overexpression aids the binding of c-H2AX-3
chromobody to the target or provides additional binding sites, we
next used H2AX knock out and wildtype MEF cells. Unexpectedly,
we observed the recruitment of the chromobody in the presence of
XRCC1 in the mutant cells (Fig. 2E–G). The latter suggested either
lack of specificity in vivo, which is not corroborated by the
immunoprecipitation results (Fig. 1D) or alternative epitope recog-
nition by the chromobody.

Based on these live-cell findings two important questions arose.
Why is the c-H2AX-3 chromobody exclusively recruited when co-
expressed with the XRCC1? Why is the c-H2AX-3 chromobody not
recruited to sites of double strand breaks in living cells?

To measure whether XRCC1 influences binding affinity of the c-
H2AX-3 chromobody, we performed FRAP experiments in the pres-
ence or absence of XRCC1 (Fig. 2H–J). From the fluorescence inten-
sity recovery curves, the half time (t-half) of the c-H2AX-3
chromobody at DNA damage sites was calculated. Whereas there
was no difference between the mobility of c-H2AX-3 chromobody
at microirradiated sites versus the nucleoplasmic pool, the overex-
pression of XRCC1 lead to a 1.5–1.7 times slower recovery and cor-
respondingly higher t-half values. This implies that XRCC1 directly
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or indirectly increases the binding of the c-H2AX-3 chromobody to
microirradiated sites.

3.4. Alternative epitope recognition of c-H2AX chromobody

To determine why the chromobody is recruited to sites of DNA
damage in the presence of the overexpressed XRCC1, mutants of
XRCC1 were developed (Fig. 3). XRCC1 has been found to have mul-
tiple phosphorylation sites containing serine residues (Fig. 3A),
which are modified by casein kinase 2, a highly conserved protein
serine/threonine kinase. Hence, we used multi-phospho site point
mutants as well as a deletion mutant containing only the N-
terminal domain excluding most of the phosphorylation sites.
These mutants were compared with the full length XRCC1
(Fig. 3) to test for alternative phospho epitope recognition. The
XRCC1 CKM mutant retaining some of the phosphorylation sites
showed only a mild difference in the recruitment kinetics of the
c-H2AX-3 chromobody, when compared to XRCC1 full length.
The XRCC1-NTD mutant, on the other hand, could no longer sup-
port c-H2AX-3 chromobody recruitment. This was further sub-
stantiated by comparing the maximal accumulation of both
proteins (Fig. 3F). Hence, it could be concluded that the chromo-
body’s recruitment is proportional to the XRCC1 accumulation
and XRCC1 recruitment is slightly affected by the phosphosite
mutation and completely affected by the deletion mutation. This
indicates that either alternative XRCC1 phospho-epitope recogni-
tion allows the chromobody to accumulate at damage sites or a
phospho-protein whose accumulation is dependent on XRCC1.
P

MDCMDC1  

Epitope mas

Epitope unmasking
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Fig. 5. Model for c-H2AX chromobody recruitment upon e
3.5. Unmasking c-H2AX epitope in living cells

As the immunoprecipitation experiments demonstrated that
the c-H2AX-3 chromobody recognized the c-H2AX in cell lysates,
the question was how this was apparently not the case in living
cells. We hypothesized that cellular proteins may mask the epi-
tope. The most likely candidate is MDC1 (mediator of DNA damage
checkpoint protein 1). MDC1 recognizes and binds the tyrosine 142
residue of the phosphorylated histone H2AX (Fig. 4A–D) [23].
MDC1 being a �250 kDa large protein could, by binding to tyrosine
142, mask the serine at position 139. The binding of MDC1 is
known to facilitate the loading of repair proteins and initiate the
DNA repair process [24]. Hence MDC1 knock down experiments
were performed to check if this allows for epitope recognition by
the c-H2AX-3 chromobody. HEK 293 cells were transfected with
MDC1 siRNA and the knockdown of MDC1 was controlled by
immunostaining the cells. At 72 h, the siRNA treated cells were
microirradiated with a 405 nm laser as before. Mild recruitment
of the c-H2AX-3 chromobody could be observed at the irradiated
sites in MDC1 siRNA treated cells but not in the control siRNA cells
(Fig. 4E-I). Notably, this occurs in the absence of ectopically
expressed XRCC1. This confirms that MDC1 binding in living cells
competitively inhibits likely by steric hindrance the binding of
the c-H2AX specific nanobody. Additionally, MDC1 knock down
lead also to a mild decrease in the c-H2AX foci numbers per se,
which indicates that MDC1 reinforces c-H2AX formation [25],
maybe by facilitating spreading of the H2AX phosphorylation along
the chromatin surrounding the DSB [2]. The lower amount of c-
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H2AX upon MDC1 knock down explains the modest maximum
amount of c-H2AX-3 chromobody accumulation by contributing
to the reduction of its epitope.

To further test the effect of MDC1 on c-H2AX-3 chromobody
binding, we performed FRAP experiments (Fig. 4J–M) in the pres-
ence or absence of MDC1 (siRNA knockdown). MDC1mobility itself
at microirradiated sites was 2.3 times slower than within the
unbound nucleoplasmic pool (Fig. 4K and L). The absence of
MDC1 lead to a 1.2 times increase in the t-half of the c-H2AX-3
chromobody at microirradiated sites (Fig. 4K and M). The latter
agrees with the hypothesis that MDC1 presence blocks the access
of the c-H2AX-3 chromobody to its phospho-histone binding site.

4. Conclusions

The main objective of this work was the generation and charac-
terization of c-H2AX specific VHHs to be used in vitro and in living
cells. The generated VHHs were found to be functional in vitro as
well as in vivo. In addition, the functionality in living cells
was assessed by the localization of the fluorescently tagged
c-H2AX-VHH-3 (chromobody) at sites of DNA damage. The ability
to identify native proteins within the intact cellular context is the
ultimate test for the application of VHHs in living cells. However,
during in vivo characterization we found that alternative epitope
recognition and epitope masking limit their in vivo applications.
These two pitfalls must be considered in the future development
and screening of live-cell biomarkers and are summarized in Fig. 5.
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