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Abstract 

Background:  Many prognostic models of diabetic microvascular complications have been developed, but their per-
formances still varies. Therefore, we conducted a systematic review and meta-analysis to summarise the performances 
of the existing models.

Methods:  Prognostic models of diabetic microvascular complications were retrieved from PubMed and Scopus up 
to 31 December 2020. Studies were selected, if they developed or internally/externally validated models of any micro-
vascular complication in type 2 diabetes (T2D).

Results:  In total, 71 studies were eligible, of which 32, 30 and 18 studies initially developed prognostic model for dia-
betic retinopathy (DR), chronic kidney disease (CKD) and end stage renal disease (ESRD) with the number of derived 
equations of 84, 96 and 51, respectively. Most models were derived-phases, some were internal and external valida-
tions. Common predictors were age, sex, HbA1c, diabetic duration, SBP and BMI. Traditional statistical models (i.e. Cox 
and logit regression) were mostly applied, otherwise machine learning. In cohorts, the discriminative performance in 
derived-logit was pooled with C statistics of 0.82 (0.73‑0.92) for DR and 0.78 (0.74‑0.83) for CKD. Pooled Cox regression 
yielded 0.75 (0.74‑0.77), 0.78 (0.74‑0.82) and 0.87 (0.84‑0.89) for DR, CKD and ESRD, respectively. External validation 
performances were sufficiently pooled with 0.81 (0.78‑0.83), 0.75 (0.67‑0.84) and 0.87 (0.85‑0.88) for DR, CKD and ESRD, 
respectively.

Conclusions:  Several prognostic models were developed, but less were externally validated. A few studies derived 
the models by using appropriate methods and were satisfactory reported. More external validations and impact 
analyses are required before applying these models in clinical practice.

Systematic review registration:  PROSPERO CRD42018105287
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Background
Type 2 diabetes (T2D) has increased rapidly over the 
past 30 years becoming worldwide public health problem 
with prevalence in adults of 463 million (9.3%) in 2019. 
It is estimated to be 700 million (10.9%) by 2045 [1], in 
which currently about 79% of people have diabetes living 
in low- and middle-income countries [1, 2]. Furthermore, 
diabetic progression due to its complications-increased 
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disability, impaired quality of life and leading cause of 
premature death, which accounted for 11.3% of the global 
mortality [1, 3].

Two life threatening microvascular complications in 
T2D are diabetic retinopathy (DR) and diabetic nephrop-
athy (DN). DN, known as chronic kidney disease (CKD), 
characterised by proteinuria and rapidly declined glo-
merular filtration rate (GFR) [2, 4], accounted for approx-
imately 20‑40% of diabetic populations [5]. DR is the 
major cause of blindness [6] through fractional retinal 
detachment, preretinal or vitreous haemorrhage and cen-
tral vision impairment, with the prevalence of 25% glob-
ally [7].

Diabetic microvascular complications commonly 
occurs in working ages [8], thus declining productiv-
ity, increasing tremendous social cost and high burden 
in healthcare [9, 10]. Therefore, early identification of 
high-risk patients to prevent occurrence of microvas-
cular complications is very important. Many prognos-
tic models have been developed (e.g. DR [11–18], CKD 
[19–25] and ESRD models [12, 26–29]) using various sta-
tistical methods. A lot of prognostic models were exter-
nally validated [12, 17, 19, 20, 22, 26, 29, 30], whilst other 
models were not [13, 15, 16, 21, 27, 28]. Nonetheless, the 
best prognostic model for each complication was still 
inconclusive. Hence, we conducted a systematic review 
to summarise all prognostic models for diabetic micro-
vascular complications (including DR, CKD and ESRD) 
that are available and their performances in prediction of 
complications.

Methods
Protocol registration
This study was conducted following Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) [31] and in accordance with CHARMS check-
list [32]. The review protocol was registered at PROS-
PERO (CRD42018105287).

Search strategy
Studies were identified from PubMed and Scopus up to 
31 December 2020. Search terms were constructed based 
on patients, interventions and outcomes, see details in 
Additional files 1 and 2.

Study selection
Studies, published in any language, were eligible if 
they studied in adult T2D, developed or validated 
any multivariable prognostic models of microvascu-
lar complications in T2D with applying any traditional 
statistical modelling (e.g. logit or Cox regression etcet-
era) or machine learning (ML), and reported model 

performance. We also included the studies from refer-
ence list of relevant publications.

Data extraction
Data extractions were performed by one reviewer (SAS) 
and checked by OP. Extracted data were characteristics 
of study and patients (i.e. country, study design, settings, 
data source, sample size and number of events, ethnicity, 
age, percent male and diabetic duration), study phase (i.e. 
derivation or validation), statistical methods, predictors, 
missing data and outcomes (i.e. DR, CKD and ESRD). In 
addition, two related properties of model performances 
(calibration and discrimination) were also extracted.

Risk of bias assessment
Risk of bias assessment was assessed by using Prediction 
Model Risk of Bias Assessment Tool (PROBAST) [32]. 
Each item was rated as low, high or unclear. The overall 
validity was low and high risk if all domains were low 
risk, and at least one domain was high risk, respectively. 
Discrepancies were solved by consensus between the 
team.

Statistical analysis
Characteristics of each prognostic model and predictive 
performances (including calibration and discrimination) 
were described. Discrimination was assessed accord-
ing to original included studies, in which C-statistic was 
mostly used. If studies reported C-statistic without vari-
ance, it was estimated using equations in the previous 
guidelines [32–34]. Calibration was assessed [35] using 
calibration plot, goodness-of-fit testing (i.e. Hosmer and 
Lemeshow χ2 test), calibration slopes or the observed/
expected (O/E) ratio.

A meta-analysis was applied for pooling C statistics 
across studies stratified by study’s design/phase, statis-
tical model and T2D complications. A random-effect 
model by DerSimonian-Laird [36, 37] was used if hetero-
geneity was present (p value < 0.10 or I2 > 25%); other-
wise, a fixed-effect model was used. A heterogeneity was 
assessed by Cochrane Q test and I2 statistic. Publication 
bias in external validation was assessed using funnel-plot 
[38] and Egger’s test [39]. All statistical analyses were 
performed using STATA 16 [40]. A p value less than 0.05 
was considered as statistically significant, except for het-
erogeneity which used 0.10.

Results
A total of 32/1009 and 44/3321 studies were eligible 
for DR and DN, respectively, see Table S1 (Figs. S1‑S2). 
Amongst them, 205 prognostic equations were deriva-
tive, some of them performed internal and external 
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validations. Most studies reported C statistics, but only a 
few-portions reported calibrations (Table S2).

Risk of bias assessment
Risk of bias assessment of all included studies was pre-
sented in Table S3. Amongst 71 studies, about 86 to 95% 
of studies were determined as low risk of bias for study 
participants, selection of predictors and outcome meas-
urement. About 23% and 40% of studies were rated as 
high risk for sample size, participant flow and statistical 
analysis, respectively. As a result, 35% of studies were 
overall low risk of bias (Fig. S3).

Diabetic retinopathy
Thirty-two [11–18, 24, 30, 41–62] studies were identi-
fied for predictions of DR including 1,120,278 diabetic 
patients with 128,129 (11.4%) events. Of which, 26 [11, 
12, 14, 18, 24, 30, 41 50, 53, 62] and 6 [13, 15–17, 51, 52] 
studies applied traditional statistical modelling and ML, 
respectively. Twenty-eight [11–18, 24, 41, 42, 45, 47–62] 
studies derived 84 original prognostic equations with 
varied sample sizes of 18 to 254,896. Mean age was 44.6 
to 66.6 years, percent male was 27.0 to 61.9, and diabetic 
duration varied from 1.4 to 15.8 years. Most studies were 
conducted in Europe and America regions with only 11 
[17, 42, 43, 45, 47, 49, 52–55, 59] (34%) studies in Asia. 
Twenty-four [11–16, 18, 24, 30, 41–43, 45–48, 51, 52, 54, 
56, 58–60, 62] and 8 [17, 44, 49, 50, 53, 55, 57, 61] stud-
ies were hospital and community-based settings respec-
tively with confirmation of T2D diagnosis from medical 
records, laboratory tests or use of diabetic drugs. DR was 
mostly diagnosed by using fundus examination. Follow-
up time ranged varied from 1.0 [56] to 20 [11] years with 
a median of 5 years. Only 5 [18, 24, 30, 50, 58] studies 
reported percent loss to follow-up which ranged from 
2.4 to 31.3%. Eighteen [11–13, 15, 30, 41–45, 48, 50, 51, 
54, 55, 57, 59, 61] studies used various methods for deal-
ing with missing data, in which about a half of them used 
multiple imputations (Table S1). Four [45, 47, 54, 57] and 
3 [13, 18, 49] studies provided simplified scoring system 
and presented nomograms, or else only used regression 
coefficients/odds ratio to calculate the score.

As for phase of prediction, 4 [12, 17, 41, 42], 2 [11, 
45], 4 [30, 43, 44, 46], 15 [13, 15, 16, 18, 48-54, 56‑59] 
and 6 [14, 24, 55, 60, 62, 63] studies were respectively 
determined as derived-internal-external (D/I/E), 
derived-external (D/E), external (E), derived-internal 
(D/I) and only derived (D) phases (Table S2). Amongst 
8 [12, 17, 30, 41–44, 46] external-validation studies, 5 
[12, 17, 41, 42, 44] validated their own derived models 
in the same ethnicity (i.e. Asian [17, 42], mixed ethnic-
ity [12, 41, 44]), except 3 [30, 43, 46] that validated other 
author’s models that were originally in Caucasians [11] 

and Asians [45, 47]. Most studies were cohorts/RCT’s, 
and their DR incidence varied from 1.5% [48] to 42.9% 
[56] whereas it was 14.2% [43] to 57.2% [54] in cross-
sectional studies.

Seventeen [13, 14, 17, 42, 43, 45, 47, 49, 51–56, 58, 61, 
64] and 9 [11, 12, 18, 24, 41, 44, 46, 59, 60] studies used 
logit and Cox whereas 6 [13, 15–17, 51, 52] applied MLs. 
Various predictors were considered (Fig. S4), in which 
the most commonly used were diabetic duration, age, 
HbA1c, SBP and BMI, which these were mainly included 
in the models as continuous predictors. A total num-
ber of included predictors in the conventional statistical 
models and MLs were not much different with a median 
of 8 (range 2‑37). Interestingly, few studies used image/
signal analytic [56, 58] and genetic variables [42, 55, 62], 
which were incorporated with conventional clinical data. 
Two [56, 58] studies predicted specific DR site using mul-
tifocal electroretinogram incorporated with traditional 
clinical factors [56, 58].

Three [42, 55, 62] studies derived genetic risk score 
(GRS) based on different genetic polymorphisms (range 
2‑76). Traditional prognostic factors (i.e. age, sex, dia-
betic duration, HbA1c and hypertension/SBP) were also 
retained in the model with GRS.
C statistic varied from 0.50 [13] to 0.95 [58], 0.52 [17] 

to 0.92 [58] and 0.59 [12] to 0.83 [30] for derived, internal 
and external validations. Those prognostic equations had 
been externally validated with moderate to good perfor-
mance (Table S4). Discrimination performance of logit 
equations varied from moderate to high with the C sta-
tistics of 0.70 [45, 47, 49, 62] to 0.95 [58] and 0.63 [47] to 
0.92 [58] in derived and internal validation; likewise, for 
support vector ML [17] in these corresponding phases of 
0.83 and 0.81.

Pooled C statistics of the derived-logit models across 
cohorts [13, 51, 56–58, 61], cross-sectional [14, 17, 45, 
47, 49, 52, 53] and case-control genetic [42, 55, 62] stud-
ies were 0.82 (0.73‑0.92; I2 = 99.47%), 0.77 (0.72‑0.82; 
I2 = 93.21%) and 0.74 (0.71‑0.77; I2 = 36.73%), respec-
tively (Fig. 1). Fixed effect model was observed on pooled 
derived-Cox [11, 18, 24] models in cohort studies which 
yielded 0.75 (0.74‑0.77; I2 = 0.0%).

Pooled C statistics of logit equations across cohorts [13, 
51, 56–58] and cross-sectional [17, 47, 49, 52–54] studies 
for internal validation were 0.83 (0.76‑0.90; I2 = 95.11%) 
and 0.74 (0.68‑0.81; I2 = 82.46%), respectively. Of those, 
the external validation for three [17, 45, 47] equations 
yielded 0.81 (0.78‑0.83; I2 = 8.05%) by cross-sectional 
studies of logit regression (Table S5). Funnel plot and 
Egger’s test (p > 0.293) suggested no publication bias by 
the absence of small study effects, no correlation between 
sample size and the magnitude of C statistics in external 
validation studies (Fig. S5).
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Model’s calibration in derived phase [11, 12, 14, 18, 49, 
54, 59, 61], internal [12, 18, 41, 49, 54, 59] and external [12, 
30, 41, 44, 46] validations mostly demonstrated perfect 
O/E. Nine studies [14–17, 24, 52, 56, 58, 61] might have 
overfitted model as the ratio of an event per variable (EPV) 
numbers ranged from 1 [58] to 9 [24, 52], whereas the 
other 2 [12, 45] models might have underfitted with a ratio 
as high as 297 [12] to 403 [45].

Diabetic nephropathy
CKD
Thirty [12, 13, 19–25, 44, 59, 65–83] studies purely 
derived 96 equations including 244,934 diabetic patients 
with 44,023 (17.9%) events of CKD. CKD incidence 
ranged from 12.1 to 37.3% for 5 RCT’s [12, 59, 70, 74, 77], 
and 0.7% to 47.6% for 22 [12, 13, 20, 22–25, 65, 66, 68, 
69, 71–73, 75, 76, 78–83] cohorts. Eleven studies [19, 22, 
25, 59, 65–67, 69, 76, 78, 82] (36.7%) were conducted in 

Fig. 1  Forest plot of C statistics in derivative phase for DR
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Asians. Sixteen [13, 21, 23, 66–69, 71, 72, 75, 76, 78, 79, 
81–83] and 16 [12, 19, 20, 22, 24, 25, 44, 59, 65, 69–71, 
73, 74, 77, 80] studies diagnosed CKD based on eGFR 
and albuminuria, respectively. Median (range) follow-
up time was 5.4 (1‑10) years and percent lost to follow 
up was 0.8% to 35.7%. Twelve [12, 13, 20, 22, 25, 44, 59, 
65, 66, 69, 73, 80] (38.7%) studies reported methods for 
dealing with missing data, 5 [12, 22, 44, 59, 80] had used 
multiple imputations and only a few reported percent 
missing data [12, 13, 20, 44].

Five [12, 19, 23, 68, 71], 2 [20, 25], 2 [44, 69], 12 [13, 22, 
59, 65–67, 70, 72–74, 78, 79] and 9 [21, 24, 75–77, 80–
83] studies were D/I/E, D/E, E, D/I and only D-phases, 
respectively. Of 9 E-phases, eight [12, 19, 20, 23, 25, 44, 
68, 71] studies validated their own models in different 
datasets, and one [69] validated others author’s model 
(i.e. QKIDNEY risk score), which developed in general 
populations. Half of the studies were validated in Asians 
[19, 20, 25, 43], and 9 [12, 20, 23, 25, 44, 68, 69, 71] used 
data from cohorts/RCTs. Their mean age ranged from 
44.0 to 67.3 years, whereas the percent of male varied 
from 32.5 to 76.0 with a median follow-up time of 4.9 
years.

Out of 28 studies, 96 derived models consisted of 79 
traditional statistical models (i.e. logit (n = 16) [13, 19-21, 
23, 25, 65‑68, 70, 72, 73, 78, 79, 82] and Cox (n = 11) [12, 
22, 24, 59, 74–77, 80, 81, 83]), whereas 17 models (n = 4) 
[13, 70, 71, 73] performed various MLs algorithms (Table 
S2). Three [13, 65, 66] studies provided nomograms, 
whereas 2 [25, 74] studies simplified risk score.

Ninety-two derived models reported C statistics, with 
55 (59.7%) internal and 19 (20.6%) external validations. 
Their discriminative performance varied from 0.50 [13] 
to 0.93 [21, 66], 0.50 [13] to 0.91 [73] and 0.57 [19] to 
0.85 [44] in derived, internal and external phases, respec-
tively (Table S2), which were explicitly described (Table 
S4). Common predictors were SBP, HbA1c, sex, dia-
betic duration and eGFR. Two [19, 67] studies combined 
genetic factors with clinical factors which yielded better 
discrimination of 0.78 (0.75‑0.81) relative to considered 
conventional models 0.75 (0.72‑0.78), see Table S6.

Out of twenty-eight [12, 13, 19–25, 59, 65–68, 70–83] 
derived studies, 14 [20, 22, 23, 59, 65–68, 72–74, 78–80] 
studies reported acceptable calibration model with O/E 
ratio ranged from 0.77 [79] to 1.11 [73]. Only seven [12, 
23, 67, 73, 74, 78, 79] and six [12, 20, 22, 44, 68, 69] out 
of 21 validated-studies had O/E ratio of 0.93 [78] to 1.14 
[12] and 0.97 [44] to 1.31 [12] in I and E phases (Table 
S2).

For cohorts, the pooled C statistics for logit (n = 
11) [13, 20, 23, 25, 65, 66, 68, 72, 78, 79, 82] and Cox 
(n = 7) [22, 24, 75, 76, 80, 81, 83] in D phase were 0.78 
(0.74‑0.83; I2 = 96.91%) and 0.78 (0.74‑0.82; I2 = 91.78%), 

respectively (Fig.  2). Cox regression in derived RCTs 
(n = 3) [59, 74, 77] yielded pooled C statistics of 0.73 
(0.62‑0.84; I2 = 95.53%).

Derived logit (n = 8) [13, 23, 65, 66, 68, 72, 78, 79] from 
cohorts were internally validated yielding the pooled 
C statistics of 0.79 (0.74‑0.83; I2 = 95.53%) which per-
formed closely to the D phases, but poorer in externally 
validated [20, 23, 25, 68] with pooled C statistic of 0.75 
(0.67‑0.84; I2 = 94.68%). Funnel plot and Egger’s test (p > 
0.710) showed no publication bias by the absence of small 
study effects (Fig. S6). There is no correlation between 
studies for smaller cohorts with higher C statistics.

ESRD
Eighteen studies [12, 26–29, 44, 72, 74, 84–93] originally 
derived 46 models in 366,210 diabetic patients with the 
ESRD incidence of 57,294 (15.65%). Of them, 13 [26, 28, 
29, 44, 72, 84–87, 89–92] and 5 [12, 27, 74, 88, 93] were 
cohorts and RCTs, respectively. A half of them were con-
ducted in Asia [28, 29, 84, 85, 89, 90, 92] and the USA [12, 
27, 44, 72, 86, 87, 91]. Thirteen [12, 26–29, 72, 74, 84, 88–
91, 93] and 5 [44, 85–87, 92] studies were hospital-based 
and community-based settings respectively, where ESRD 
was mostly confirmed by dialysis [12, 26–28, 44, 72, 88–
92]. Mean follow-up times ranged from 1.5 to 14 years. 
Only 9 studies (50%) reported methods for dealing with 
missing data, in which 5 [12, 27, 29, 44, 84] used multiple 
imputations. Two studies [74, 84] developed simplified 
risk score based on the Framingham Heart study [94].

Briefly, 1 [12], 2 [26, 29], 1 [44], 5 [28, 72, 74, 84, 85] 
and 9 [27, 86–93] studies showed D/I/E, D/E, E, D/I, and 
only D phases, respectively (Table S1). Three [12, 26, 44] 
studies have externally validated their own models within 
the same studies, whereas 1 [29] study validated other 
models’ studies [26, 74].
C statistics varied from 0.76 [89] to 0.97 [27, 85] in 

derivative phases of 17 studies (n = 51), 0.60 [12] to 
0.96 [85] in internal validations (n = 11) and 0.54 [12] 
to 0.92 [26] in external validations (n = 13), see Table 
S2. Prognostic model for ESRD was mainly derived 
by Cox equation in 16 (95%) studies [12, 26‑29, 74, 
84-93].

The pooled C statistics in cohorts using Cox were 0.87 
(0.84‑0.89; I2 = 92.15%), 0.91 (0.86‑0.96; I2 = 94.86%) for 
derived and internal validations suggesting discrimina-
tion in validations were not much different compared with 
derived phases. The pooled C statistics in derived RCTs 
were 0.88 (0.78‑0.98; I2 = 96.82%), see Fig.  3. Moreover, 
pooled C statistics in external validation demonstrated 
good performance of 0.86 (0.85‑0.88) in 3 [26, 29, 44] 
cohorts (Table S5). Funnel plot and Egger’s test (p > 0.513) 
showed no publication bias by the absence of small study 
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effects in external validation studies for predicting ESRD 
(Fig. S7).

Common predictors for ESRD were age, sex, HbA1c, 
eGFR and BMI (Table S6). Predictive models of 6 [27, 28, 
86, 87, 91] studies might have over-fitted as events/variable 
for applying Cox resulted in 6 [28] to 9 [92], whereas their 
ratios in 4 [12, 29, 89, 90] other studies observed a rule of 
thumb of 10‑20 (Fig. 3, Table S2).

Discussion
This review summarised prognostic models that were 
developed and validated for predicting microvascular 
complications (i.e. DR, CKD and ESRD) in T2D patients. 
Model performances were described prognostic models 
separately by derived, internal and external validation.

Seven predictors were commonly used in predictive 
models of DR, DN and ESRD including age, sex, BMI, 
diabetic duration, HbA1c, SBP and eGFR. The DR mod-
els showed well discriminated with pooled C statistics of 
0.82, 0.83 and 0.81 in D, I and E validations, respectively. 

Fig. 2  Forest plot of C statistics in derivative phase for CKD
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Model performance was only moderate‑good in CKD 
for all phases (i.e. the corresponding pooled C statistics 
about 0.78, 0.79 and 0.75) but quite excellence for ESRD 
models (i.e. 0.87, 0.91 and 0.86, respectively).

Only a few prognostic models were externally validated 
with moderate to good discrimination performance, 
which are applicable in clinical practice. For instance, a 
few DR-models [11, 12, 41] had good discrimination and 
calibration in external validations. Three [12, 20, 68] DN 
models had good discrimination with fair calibration. 
Other three [12, 26, 29] ESRD models with very large size 
cohorts were generalisable with good discriminations 
and were even developed in different ethnicities. Calibra-
tion performance was less reported relative to discrimi-
nation, although both parameters should be reported for 
prognostic model development [95–97]. Particularly for 
observed to expected (O/E) ratio was reported in very 
few studies, which prevented meta-analysis of calibration.

Currently many prediction models are available by 
online calculators, or differently presented simplified risk 
scores or nomograms. Some online risk-calculators have 
been developed to simplify knowledge translation in clin-
ical practice (i.e. DR [11, 12, 41, 59], CKD [12, 20] and 
ESRD [26]). However, very few of them have been applied 

due to the absence of some predictors and users’ inter-
pretations in routine health practice.

We found various clinical settings and developed equa-
tions, but only few of them were externally validated with 
insufficiently reported with a wide range of CKD defini-
tions. Amongst them, there might be potentially over-
optimistic as EPV was less than ten by the rule of thumb 
in a regression model. None of the studies performed 
impact assessments by applying prognostic models into 
clinical practice.

Numerous predictors were simultaneously included 
in the prognostic models with a median of 8 (IQR, 5‑10) 
predictors. In brief, demographics, biomarkers and clini-
cal features were commonly considered for derived-mod-
els of micro-vascular complications. Medical treatment 
(including anti-hypertensive and diabetic drug control) 
and some comorbidities were included into some derived 
equations. Likewise, DR itself might be a predictor of DN 
[20, 22, 66, 74, 75]. Interestingly, nonconventional predic-
tors (i.e. genetic and image processing [56, 58]) could also 
predict DR [42, 55, 62] and DN [19, 67].

Missing data in clinical settings particularly for 
routine datasets are unavoidable. Frequently, the 
investigators only performed complete-case analysis. 
Handling missing data is vitally important to prevent 

Fig. 3  Forest plot of C statistics in derivative phase for ESRD
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biassed results and lost power in generalisations [98]. 
Additionally, categorisation of continuous predictors 
or dichotomisation may result in missing information, 
significant misleading [99], incorrect variable selection 
and may decrease prediction accuracy [100, 101].

Cohort or RCT should be the most appropriated 
design for developing prognostic model, whereas a 
cross-sectional study could be used for external vali-
dation. Exceptionally, nested case-control and case-
cohort studies were still applicable [96]. The rule of 
thumb suggested that a number of 10‑20 events should 
be available for one predictor in a multivariable logit/
Cox regression [96, 102, 103]. For instance, seven [14, 
17, 24, 52, 56, 58, 61] studies in DR had EPV ratio of 1 
[58] to 9 [24, 52], which might cause overfitted model. 
In DN, eight [21, 22, 68, 73, 76, 77, 79, 83] and seven 
[27, 28, 85–87, 91, 92] studies might be over-opti-
mistic with the EPV ratio less than 10 for CKD and 
ESRD, respectively. Overfitting may result in poorer 
performance in external validation compared with 
derived-performance. As a result, performances of the 
traditional statistical models (i.e. logit, Cox) were quite 
varied across studies. However, ML may be better par-
ticularly when predictors themselves have collinearity 
and high-dimensional interaction amongst predictors. 
With the rapid era of big data, digitalisation and mod-
ern electronic medical records may increase used of 
ML techniques in derived and validation model.

As the backbone of big data analysis, ML provides 
the new insight and valuable algorithm in which tra-
ditional statistical models are often inadequate. Like-
wise, using image/signal [56, 58] analysis for predicting 
DR, some investigators also applied classical ML (e.g. 
decision trees, random forest, Naïve Bayes and neural 
network) to predict DN [13, 70, 73]. Nonetheless, the 
results of ML are black boxes, which are often difficult 
to interpret due to its characteristics and algorithm 
complexities [104, 105].

Few other factors may also influence on external-
validation performance, e.g. availability of predictors, 
sources of data (i.e. primary data collection, survey-
data or administrative/hospital-claims data), outcome 
rate and assessment and also population characteris-
tics. However, only about 20 studies (25% of derived 
models) were externally validated. We therefore 
strongly suggest that those derived models should be 
externally validated or updated models where appro-
priate. Then, impact analysis should next be performed 
to be more confident in applying in clinical practice.

Conclusions
This study was conducted to systematically review prog-
nostic models of diabetic microvascular complications. 
Weaknesses and strengths of those prognostic models 
for each complication were described and commented. 
Some prognostic models for microvascular complica-
tions were good in discrimination in external validations, 
but in practice none of them performed clinical impact. 
The existing prognostic models for DR and CKD still 
need further external validation or update where appro-
priate. In addition, the new prognostic models should be 
derived using ML techniques to improve prognostic per-
formance where required.
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