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Background: The increase in the diagnosis of papillary thyroid carcinoma (PTC) has prompted researchers 
to establish a diagnostic model and identify functional subclusters. The Human Phenotype Ontology (HPO) 
platform is widely available for differential diagnostics and phenotype-driven investigations based on next-
generation sequence-variation data. However, a systematic and comprehensive study to identify and validate 
PTC subclusters based on HPO is lacking.
Methods: We first used the HPO platform to identify the PTC subclusters. An enrichment analysis was 
then conducted to examine the key biological processes and pathways associated with the subclusters, and 
a gene mutation analysis of the subclusters was conducted. For each subcluster, the differentially expressed 
genes (DEGs) were selected and validated. Finally, a single-cell RNA-sequencing data set was used to verify 
the DEGs.
Results: In our study, 489 PTC patients from The Cancer Genome Atlas (TCGA) were included. Our 
analysis demonstrated that distinct subclusters of PTC are associated with different survival times and have 
different functional enrichment, and that C-C motif chemokine ligand 21 (CCL21) and zinc finger CCHC-
type containing 12 (ZCCHC12) were the common down- and upregulated genes, respectively, in the 4 
subclusters. Additionally, 20 characteristic genes were identified in the 4 subclusters, some of which have 
previously been reported to have roles in PTC. Further, we found that these characteristic genes were mainly 
expressed in thyrocytes, endothelial cells, and fibroblasts, and were rarely expressed in immune cells.
Conclusions: We first identified subclusters in PTC based on HPO and found that patients with distinct 
subclusters have different prognoses. We then identified and validated the characteristic genes in the 4 
subclusters. These findings are expected to serve as a crucial reference that will improve our understanding 
of PTC heterogeneity and the use of novel targets.
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Introduction

Papillary thyroid carcinoma (PTC) is the most common 
subtype of thyroid cancer, which is the most common 
primary endocrine malignancy (1). The prognosis for PTC 
is generally excellent, with 10-year overall survival rates 
in the range of 80–95%; nevertheless, some patients will 
present advanced disease and will require targeted therapy 
(2,3). The increase in PTC diagnoses has prompted studies 
seeking to determine its pathogenesis, establish a diagnostic 
model of PTC, analyze the functional subclusters, and 
discover novel targets (4-6). Using multiple gene sets as 
sample characteristics for subtype clustering can improve 
the robustness of subtype clustering. For example, Hong  
et al. discovered four molecular subtypes of PTC, identified 
a 20-gene expression signature, which can predict the 
diagnosis of PTC (7). Li et al. found there was different 
somatic mutations and a unique transcriptomic signature 
in PTC based on multi-omics analysis (8). Another study 
explored whether alternative splicing events reflect new 
the molecular and histological subtypes of PTC, and 
found NUMA1_17515 and TUBB3_38175 were two 
alternative splicing biomarkers for PTC subclassification 

and characterization (9). The Human Phenotype Ontology 
(HPO) platform, which contains 5,142 gene sets, is 
available at http://www.gsea-msigdb.org/gsea/msigdb/
human/genesets.jsp?collection=HPO. The HPO platform 
provides well-defined phenotypes in humans (10), and 
previous study has confirmed that it can predict genes from 
phenotypes (11). Additionally, HPO annotations can be 
performed for deep phenotyping to improve whole-exome 
sequencing evaluations in some rare diseases (12). However, 
the screening and validation of functional subclusters in 
PTC based on HPO have not been reported. We first used 
this platform to identify subclusters, and then performed an 
enrichment analysis to examine the key biological processes 
and pathways associated with the subclusters. A gene 
mutation analysis of the subclusters was also conducted. For 
each subcluster, the differentially expressed genes (DEGs) 
were selected and validated. Finally, a single-cell RNA-
sequencing (scRNA-seq) data set was used to verify the 
DEGs. Our analysis demonstrated that distinct subclusters 
of PTC are associated with different survival times and have 
different functional enrichment. The DEGs identified in 
each subcluster are expected to serve as a crucial reference 
that will extend our understanding of PTC heterogeneity. 
We present this article in accordance with the STREGA 
reporting checklist (available at https://gs.amegroups.com/
article/view/10.21037/gs-23-124/rc).

Methods

Patients

We used arrayExpress data containing the GSE3467, 
GSE3678, GSE6004, and GSE29265 data sets (which only 
included non-post-Chernobyl PTC data), which were 
downloaded from the Gene Expression Omnibus (GEO) 
database. GSE29265 comprising 10 tumor samples and 10 
normal samples, GSE3467 comprising 9 tumor samples 
and 9 normal samples, GSE3678 comprising 7 tumor 
samples and 7 normal samples, GSE6004 comprising 14 
tumor samples and 4 normal samples, were collected. 
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• We first identified subclusters in papillary thyroid carcinoma 

(PTC) based on the Human Phenotype Ontology (HPO) platform 
and found that patients with distinct subclusters have different 
prognoses. We then identified and validated the characteristic 
genes in the 4 subclusters.  

What is known and what is new?  
• Distinct subclusters of PTC are associated with different survival 

times and have different functional enrichment;
• Characteristic genes were identified in the 4 subclusters.

What is the implication, and what should change now? 
• These findings are expected to serve as a crucial reference that will 

improve our understanding of PTC heterogeneity and the use of 
novel targets.
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Individual age and sex of the patients are listed in  
Table S1 and Table S2. Bulk RNA-sequencing (RNA-
seq) data from the Genomic Data Commons-The Cancer 
Genome Atlas-Thyroid Carcinoma (GDC-TCGA-THCA) 
(https://xenabrowser.net/datapages/) were downloaded from 
University of Cingifornia Sisha Cruz (UCSC) Xena (13). 
Information of the normal samples in TCGA are listed in 
Table S3, information of tumor samples are listed in Table S4. 
The scRNA-seq data set GSE184362 was downloaded from 
the GEO database.

Data collection

The HPO terms were downloaded from C5 sub-collection 
HPO: Human Phenotype Ontology of the Molecular 
Signatures Database (MSigDB) (version 2022.1) (https://
hpo.jax.org/app/) (10). In the R4.0.3 software, the “affy” 
R package (version 1.68.0) and “limma” package (version 
3.46.0) were applied to integrate 4 arrayExpress data and 
for batch-effect correction (14,15). The annotation package 
“hgu133plus2.db” (version 3.2.3) was used to convert the 
probeset IDentities (IDs) into gene symbols (16). For the 
bulk RNA-seq data analysis, the read counts of the genes or 
transcripts were normalized using fragments per kilobase 
million, trans per million, and log2 transformation methods. 
The gencode.v22.annotation.gene.probeMap file was used 
for the genetic name conversion (13). The “Seurat” (version 
4.3.0) and “harmony” (version 0.1.0) packages were used 
to integrate the multiple data and batch-effect corrections 
for the scRNA-seq data (17,18), and Uniform Manifold 
Approximation and Projection (UMAP) dimension 
reduction visualization was performed for the principal 
component analysis results based on the “harmony” package 
(version 0.1.0) (19).

Calculation of HPO scores in PTC

In R4.0.3 software, the PLAGE algorithm of the “GSVA” 
package (version 1.38.2) was used to calculate the HPO 
scores of the arrayExpress and bulk RNA-seq gene 
expression matrix, respectively (20-22). The Wilcoxon test 
was used to examine differences in the HPO scores obtained 
from the arrayExpress and bulk RNA-seq data between the 
PTC and normal samples. The screening threshold was a P 
value <0.0001. Finally, the intersection of the arrayExpress 
and bulk RNA-seq results was determined.

Clustering of subclusters in PTC using HPO

The package “ConsensusClusterPlus” (version 1.54.0) was 
used to generate subclusters based on the gene set scores at 
the intersection of the HPO gene sets (23). Then, k-means 
clustering was applied to analyze the subclusters of the PTC 
samples in the bulk RNA-seq data. The “Survival” (version 
3.2.7) and “survminer” (version 0.4.9) packages were used to 
compare the prognosis between different subclusters (24-26).

Functional characterization of HPO subclusters in PTC

The “Limma” package (version 3.46.0) was used to analyze 
the genetic difference between the PTC subclusters and 
normal samples. The screening threshold was as follows: 
a P value after correction <0.05, and an absolute value of 
log-fold change >1. Subsequently, the “ClusterProfiler” 
package (version 3.18.1) was used to enrich and analyze the 
DEGs in the background of HPO, and the top 5 functions 
were visualized (25,27,28). Finally, the “maftools” package 
(version 2.6.5) was used in combination with the SNV 
analysis result file of THCA to visualize the mutation 
background of each subcluster (29).

Identification and validation of characteristic genes in the 
subclusters

The top 10 differentially downregulated and upregulated 
genes were selected to determine the intersection and create 
the Venn diagrams, and the unique and common genes 
among the 4 subclusters were selected for the subsequent 
analysis. Next, the “pheatmap” package (version 1.0.12) 
was used to display the correlations between the clusters 
and clinical parameters based on bulk RNA-seq data, which 
were validated using the arrayExpress data.

Verification of characteristic genes using the scRNA-seq 
data set

First, the “Seurat” package (version 4.3.0) was used to 
annotate the cell types from the scRNA-seq data (21), and 
the annotation reference was as follows: T cell markers 
(CD3D, CD3E, CD3G, and CD247), B cell markers 
[membrane spanning 4-domains A1 (MS4A1) and CD19], 
plasma cell markers [CD79A and X-box binding protein 1 
(XBP1)], myeloid cell markers [integrin subunit alpha M 
(ITGAM), integrin subunit alpha X (ITGAX), and lysozyme 

https://cdn.amegroups.cn/static/public/GS-23-124-Supplementary.pdf
https://cdn.amegroups.cn/static/public/GS-23-124-Supplementary.pdf
https://xenabrowser.net/datapages/
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https://hpo.jax.org/app/
https://hpo.jax.org/app/
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(LYZ)], fibroblast markers [collagen type I alpha 1 chain 
(COL1A1), collagen type III alpha 1 chain (COL3A1), and 
actin alpha 2 (ACTA2)], endothelial cell markers [platelet 
and endothelial cell adhesion molecule 1 (PECAM1) 
and endoglin (ENG)], thyroid cell markers [keratin 18 
(KRT18), keratin 8 (KRT8), and keratin 7 (KRT7)], and 
cell proliferation markers [marker of proliferation Ki-
67 (MKI67) and DNA topoisomerase II alpha (TOP2A)]. 
Finally, the respective expression levels of these genes in the 
PTC cell types and normal samples were verified, and the 
“plot1cell” package was used for visualization.

Statistical analysis

All the analysis and the data visualization were performed 
using ggplot2 (version 3.4.0) in R4.0.3 software, except for 
those with special instructions used default parameters.

Overall survival prognosis was analyzed by Kaplan-Meier 
method, and difference was tested by log-rank t-test. In 
differential gene analysis, limma package lmFit was used 
for linear fitting of each gene to calculate gene difference 
multiples and standard errors, and then eBayes was used for 
empirical Bayesian smoothing of standard errors to obtain 
statistical values of differential test.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Identification of subclusters based on HPO

Firstly, we generated subclusters based on the gene set 
scores at the intersection of the HPO gene sets, via the 
package “ConsensusClusterPlus” (version 1.54.0). The 
results of the consistency cluster analysis showed that 
each cluster had a good differentiation degree when k =4  
(Figure 1A-1E). Notably, when the patients were grouped 
into 4 subclusters, there was a statistically significant 
difference in the survival times of the patients. Specifically, 
patients in Clusters 1 and 3 had better survival times, while 
those in Cluster 4 had the worst survival time (Figure 1F). 
These results suggested that we had identified 4 subclusters 
based on HPO.

Functional characterization of the 4 subclusters

The downregulated genes in Cluster 1 were associated 
with functions such as brachydactyly, aplasia hypoplasia 
involving bones of the lower limbs, aplasia hypoplasia 
involving bones of the feet, an abnormality of the upper 
respiratory tract, and abnormal larynx morphology  
(Figure 2A). The upregulated genes in Cluster 1 were 
associated with functions such as proximal muscle 
weakness in the upper limbs, neurofibrillary tangles, 
the electromyography (EMG) decremental response of 
compound muscle action potential to repetitive nerve 
stimulation, dermatological manifestations of systemic 
disorders, and jaw muscle abnormality (Figure 2B). The 
downregulated genes in Cluster 2 were associated with 
functions such as thyroid defects in the oxidation and 
organification of iodide, hypoplasia of the epiglottis, 
elevated circulating thyroid-stimulating hormone 
concentration, abnormal thyroid-stimulating hormone 
levels, and abnormal circulating thyroglobulin levels  
(Figure 2C). The upregulated genes in Cluster 2 were 
associated with functions such as pustule, pulmonary 
fibrosis, palmar hyperhidrosis, abnormal pulmonary 
interstitial morphology, and abnormal pleura morphology 
(Figure 2D).

The downregulated genes in Cluster 3 were associated 
with functions such as thyroid defects in oxidation and 
organification of iodide, mastoiditis, hypokalemic alkalosis, 
calf musculature abnormality, and abnormal thyroid 
hormone levels (Figure 2E). The upregulated genes in 
Cluster 3 were associated with functions such as palmar 
hyperhidrosis, nail dystrophy, blistering by anatomical 
location, alopecia, and abnormal blistering of the skin 
(Figure 2F). Further, the enrichment analysis indicated that 
the downregulated genes in Cluster 4 were mainly involved 
in recurrent bacterial infections, immunodeficiency, 
decreased circulating immunoglobin G (IgG) levels, 
humoral immunity abnormality, and abnormal circulating 
IgG levels (Figure 2G). The upregulated genes in Cluster 
4 were associated with functions such as status epilepticus 
without prominent motor symptoms, sparse body hair, non-
convulsive status epilepticus without coma, bloody diarrhea, 
and abnormal urine calcium concentration (Figure 2H).

As Figure 3 shows, the clusters differed significantly in 
gene mutations, especially with respect to Cluster 1, which 
was completely different to the other 3 clusters. Cluster 1 
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contained 35% BRAF mutations, 18% NRAS mutations, 
7% thyroglobulin (TG) mutations, 6% HRAS mutations, 
and 6% microtubule actin crosslinking factor 1 (MACF1) 
mutations. The top 5 mutated genes in the other 3 clusters 
were the BRAF, titin (TTN), adhesion G protein-coupled 
receptor V1 (ADGRV1), dynein axonemal heavy chain 
9 (DNAH9), lysine methyltransferase 2A (KMT2A), and 
BRAF mutations accounted for 87%.

Identification of the characteristic genes in the 4 subclusters

The results showed that CCL21 was the most commonly 
downregulated gene in the 4 subclusters, and ZCCHC12 
was the most commonly upregulated gene. We also found 
significant differences in the characteristic genes among 
the 4 clusters. In Cluster 1, the specific downregulated 
genes were solute carrier family 5 member 5 (SLC5A5) and 

Figure 2 Functional characterization of the 4 papillary thyroid carcinoma subclusters. Functional characterization of the downregulated 
genes in Cluster 1 (A), Cluster 2 (C), Cluster 3 (E), and Cluster 4 (G). Functional characterization of the upregulated genes in Cluster 1 (B), 
Cluster 2 (D), Cluster 3 (F), and Cluster 4 (H). HP, human phenotype; IgG, immunoglobin G; EMG, electromyography.
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Figure 3 The papillary thyroid carcinoma subclusters differed significantly in terms of the gene mutations. Mutation backgrounds of Cluster 
1 (A), Cluster 2 (B), Cluster 3 (C) and Cluster 4 (D).

semaphorin 3D (SEMA3D), while the specific upregulated 
genes were Cbp/p300-interacting transactivator with 
Glu/Asp-rich carboxy-terminal domain 1 (CITED1) and 
growth differentiation factor 15 (GDF15). In Cluster 
2, the specific downregulated gene was cellular retinoic 
acid binding protein 1 (CRABP1), while the specific 
upregulated genes were surfactant protein B (SFTPB), 
chitinase 3 like 1 (CHI3L1), UDP-GlcNAc:betaGal beta-
1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), and 
transmembrane serine protease 6 (TMPRSS6). In Cluster 3, 
the specific downregulated gene was solute carrier family 5 
member 8 (SLC5A8), while the specific upregulated genes 
were gamma-aminobutyric acid type A receptor subunit 
beta2 (GABRB2) and claudin 16 (CLDN16). In Cluster 4, the 
specific downregulated genes were scavenger receptor class 

A member 5 (SCARA5), microfibril associated protein 4 
(MFAP4), myocilin (MYOC), complement C7 (C7), secreted 
frizzled related protein 2 (SFRP2), and apolipoprotein D 
(APOD), while the specific upregulated genes were Rho 
GTPase activating protein 36 (ARHGAP36), slit guidance 
ligand 1 (SLIT1), transmembrane protein 215 (TMEM215), 
and immunoglobulin superfamily member 1 (IGSF1)  
(Figure 4A).

Validation of the characteristic genes in 4 subclusters

First, we verified the common or unique characteristic 
genes in the 4 subclusters based on the bulk RNA-seq data. 
The results showed that ZCCHC12, CITED1, GDF15, 
SFTPB, CHI3L1, B3GNT3, TMPRSS6, GABRB2, CLDN16, 
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Figure 4 Identification and validation of the characteristic genes in the papillary thyroid carcinoma subclusters. (A) The top 10 downregulated 
and upregulated genes were selected for the intersection analysis and Venn diagrams. (B) Correlations between the subclusters and clinical 
parameters based on the expression of the characteristic genes in the bulk RNA-sequencing data. (C) Correlations between the subclusters and 
the expression of the characteristic genes in the arrayExpress data. NC, negative control; PTC, papillary thyroid carcinoma.
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ARHGAP36, SLIT1, TMEM215, and IGSF1 expression 
levels were decreased in normal tissues and upregulated 
in PTC tissues. Further, CCL21, SLC5A5, SEMA3D, 
CRABP1, SLC5A8, SCARA5, MFAP4, MYOC, C7, SFRP2, 
and APOD expression levels were downregulated in PTC 
tissues compared to normal tissues (Figure 4B). Finally, 
we used the ArrayExpress data for verification, and found 
that these results were consistent with our aforementioned 
results, except that TMEM215 was not expressed in PTC 
tissues (Figure 4C).

After the cell-type annotation of the scRNA-seq data, 

we found that the levels of thyrocytes, fibroblasts, and 
myeloid cells were increased in PTC, while those of T cells 
and B cells were decreased in PTC compared to the levels 
in normal tissues (Figure 5A-5C). Notably, we found that 
the characteristic genes in the 4 subclusters were mainly 
expressed in thyrocytes, endothelial cells, and fibroblasts, 
and were rarely expressed in immune cells (Figure 5D,5E). 
A further analysis showed that the downregulated gene 
CCL21 was mainly expressed in the endothelial cells 
and fibroblasts of the normal samples. In PTC, CCL21 
was mainly expressed in the endothelial cells. Moreover, 

Figure 5 Verification of the characteristic genes in PTC using the scRNA-sequencing data set. (A) Comparison of various cell proportions 
in the PTC and normal samples. (B) UMAP of the normal samples. (C) UMAP of the PTC samples. (D) Dot plot of the characteristic genes 
in the different cell types of the normal samples. (E) Dot plot of the characteristic genes in the different cell types of the PTC samples. (F) 
Comparison of the characteristic gene expression between the PTC and normal samples. PTC, papillary thyroid carcinoma; scRNA, single-cell 
RNA; UMAP, Uniform Manifold Approximation and Projection.
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compared to that in the PTC tissues, there was a significant 
increase in CCL21 expression in the normal tissues. In 
addition, we found that ZCCHC12 was mainly expressed in 
the thyrocytes of PTC (Figure 5D-5F).

Discussion

Previous study has noted that HPO is widely available for 
the differential diagnosis of rare diseases, phenotype-driven 
investigations based on next-generation sequence-variation 
data, and translational studies (30). To the best of our 
knowledge, no previous study had examined the association 
between HPO and PTC. In this study, we identified 
subclusters based on HPO and found statistically significant 
differences in survival among the 4 subclusters, patients 
in Clusters 1 and 3 had better survival times, while those 
in Cluster 4 had the worst survival time (P=0.028). These 
results suggest that subclusters based on HPO can be used 
to predict the clinical prognosis of PTC.

The results of the enrichment analysis of these 
subclusters revealed that some of the subclusters were 
closely related to thyroid functions; for example, the 
downregulated genes in Cluster 3 were determined to 
be involved in thyroid defects in the oxidation and the 
organification of iodide, and abnormal thyroid hormone 
levels.

The present study also investigated whether CCL21 and 
ZCCHC12 were common down- or upregulated genes, 
respectively, in the 4 subclusters. The results supported evidence 
from previous observations, including those of Liu et al., who 
found that the expression of CCL21 is lower in PTC tissues 
than in Hashimoto’s thyroiditis tissues (31), and Smallridge  
et al. ,  who reported that CCL21  is associated with 
lymphocyte infiltration and is differentially overexpressed 
in BRAF-wild-type tumors compared to BRAF V600E-
mutation-harboring tumors (32).

A previous study revealed that ZCCHC12 expression 
is significantly upregulated in PTC, but no significant 
relationships were found between the expression of 
ZCCHC12 and the biochemical and clinicopathological 
features of PTC (33). Another important finding was that the 
expression of ZCCHC12 was upregulated and related to lymph 
node metastasis in primary PTC tumors, and PTC could 
be inhibited by downregulating ZCCHC12 (34). As patients 
in Clusters 1 and 3 had better survival, and SLC5A5, 
SEMA3D, and SLC5A8 expression levels were specifically 
downregulated in both clusters, the effect of these 3 genes 
in PTC is an important issue for future research.

Among the 22 characteristic genes in the 4 subclusters, 
the roles of SLC5A5, SEMA3D, CITED1, GDF15, CRABP1, 
SFTPB, CHI3L1, SLC5A8, GABRB2, SCARA5, SFRP2, 
and ARHGAP36 in PTC have been reported. For example, 
previous study has reported that SLC5A5 is expressed at a 
lower level in PTC, and the lower expression of SLC5A5 
is correlated with aggressiveness and BRAF, NRAS, and 
TERTp mutations (35). The present study found that 
SLC5A5 was a specific downregulated gene in Cluster 1, 
which had a low percentage of BRAF mutations but a high 
percentage of NRAS mutations. Thus, the downregulation 
of SLC5A5 might be more closely related to NRAS 
mutations than to BRAF and TERTp mutations. Further, 
CITED1 and SFTPB are more highly expressed in PTC 
tissues than in follicular thyroid carcinoma and normal 
thyroid tissues (36), while the diagnostic utility of SFTPB 
and CITED1 was found to be poor in PTC (37). A recent 
study confirmed that CITED1 promotes PTC (38). SLC5A8 
codes for a transporter belonging to the Na(+)/glucose co-
transporter gene family, and the protein coded by SLC5A8 
can transport iodide and regulate the Na(+)-coupled and 
electrogenic transport of many monocarboxylates (39). 
Our results support our earlier observations, which showed 
that SEMA3D (40), CRABP1 (41), SLC5A8 (42), and  
SCARA5 (43) are tumor suppressor genes in PTC, 
while GDF15 (44), CHI3L1 (45,46), GABRB2 (47), and 
ARHGAP36 (48) are oncogenic genes in PTC. However, 
very little research has been conducted on the roles of 
B3GNT3, TMPRSS6, CLDN16, MFAP4, MYOC, C7, 
APOD, SLIT1, TMEM215, and IGSF1 in PTC.

Notably, the characteristic genes in the 4 subclusters 
were mainly expressed in thyrocytes, endothelial cells, and 
fibroblasts. However, these genes were rarely expressed in 
immune cells. This finding suggests that patients with PTC 
would not benefit from immunotherapy.

Despite the promising results, a number of questions 
remain. For example, more experimental studies need to be 
conducted to establish predictive models based on HPO. 
Additionally, further research should be undertaken to 
investigate why the patients in Clusters 1 and 3 had better 
prognoses and to explore the unreported function of such 
characteristic genes in PTC.

Conclusions

We first used the HPO platform to identify the subclusters 
in PTC and demonstrated that patients with distinct 
subclusters of disease exhibit different prognoses, which 
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enabled us to construct predictive models of patient 
prognosis. Additionally, we identified and validated the 
characteristic genes in the 4 subclusters that might play 
important roles in PTC. Our findings provide a crucial 
reference that will improve understandings of PTC 
heterogeneity.
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