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The two-species symbiotic contact process (2SCP) is a stochastic process in which each vertex of a graph
may be vacant or host at most one individual of each species. Vertices with both species have a reduced death
rate, representing a symbiotic interaction, while the dynamics evolves according to the standard (single species)
contact process rules otherwise. We investigate the role of dynamical correlations on the 2SCP on homogeneous
and heterogeneous networks using pairwise mean-field theory. This approach is compared with the ordinary one-
site theory and stochastic simulations. We show that our approach significantly outperforms the one-site theory.
In particular, the stationary state of the 2SCP model on random regular networks is very accurately reproduced
by the pairwise mean-field, even for relatively small values of vertex degree, where expressive deviations of the
standard mean-field are observed. The pairwise approach is also able to capture the transition points accurately
for heterogeneous networks and provides rich phase diagrams with transitions not predicted by the one-site
method. Our theoretical results are corroborated by extensive numerical simulations.
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I. INTRODUCTION

Discontinuous transitions [1], observed in distinct classes
of cooperative systems, have led to a renewed burst of
interest within different contexts, such as social interac-
tions [2,3], coinfections [4–6], synchronization [1,7], and
percolation [1,7], to cite only a few fundamental processes.
Many of these investigations have focused on phenomena
occurring at the top of complex networks [8], which constitute
basic substrates for describing interacting patterns of complex
systems [9–11]. While in a continuous transition the order
parameter varies continuously from zero, in the discontinuous
case it suddenly jumps to a finite value at the transition
point, involving a macroscopic portion of the system, and
this transition is commonly referred to as catastrophic or
abrupt [12].

Coinfection epidemics [4], i.e., when a host can be in-
fected simultaneously by two distinct diseases, can result
in coexisting thresholds when competitive interactions are
considered [13,14]. Nevertheless, cooperative or synergistic
interactions result in richer phase diagrams, which may in-
clude discontinuous phase transitions, and they have been
a topic of intense research [5,6,14–18]. Cooperation and
competition have been investigated in multispecies interacting
models in distinct ecological contexts [19–24]. In particu-
lar, symbiotic interactions were recently investigated in a
two-species contact process (2SCP) [24]. In the standard,
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single-species contact process (CP) [25], individuals lay on
the vertices of a graph, which was originally a lattice, but
the process was later extended to networks [26,27]. In the
standard CP model, each individual can reproduce asexually
at a rate λ, with its offspring occupying one empty near-
est neighbor randomly chosen, or it can die at a rate μ

(which can be taken as μ = 1 without loss of generality).
In the 2SCP [24], two species, A and B, inhabit the same
graph. The symbiotic interaction is modeled via a reduced
death rate, μ < 1, at sites doubly occupied (by one individ-
ual of each species). With the exception of this interaction,
the two populations evolve independently according to the
standard CP.

Apart from its interest as an elementary model of sym-
biosis, the 2SCP is fundamentally interesting for the study
of nonequilibrium phase transitions. Extinction represents
an absorbing state, i.e., a frozen state without fluctuations
of populations [28]. On regular lattices, it was found that
the 2SCP exhibits a continuous phase transition in one and
two dimensions [24]. However, the transition becomes dis-
continuous in the regime of strong symbiosis if diffusion
is introduced [29]. The 2SCP was recently investigated in
complete graphs and random regular networks [30], and it
was conjectured that the nature of its transition changes at the
upper critical dimension, from continuous to discontinuous.
The phase diagram determining the regions of the 2SCP space
parameter μ versus λ was determined in the ordinary, one-
site mean-field level [24,29,30], which neglects all dynamical
correlations with the assumption of statistical independence
among the states of individuals even if they are nearest
neighbors. This assumption is a strong approximation that
can make the theory inaccurate even for high-dimensional
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systems1 such as complex networks [32], where the small-
world property [8] resembles a mean-field (fully connected)
regime. Dynamical correlations can be introduced using pair-
wise approximations [28,33] where the mean-field equations
for pairs of connected vertices are considered. Despite be-
ing inaccurate in low dimensions [28], pairwise correlations
greatly improve the theoretical results in the case of dynamical
processes on complex networks [32,34–37].

In the present work, we investigate the role of dynamical
correlations in the 2SCP using a homogeneous pairwise mean-
field (PMF) theory. The theoretical predictions are compared
with stochastic simulations on different random networks, in-
cluding homogeneous, Poissonian, and scale-free degree dis-
tributions [38]. We observe that the PMF theory substantially
improves the ordinary mean-field in all investigated cases,
being very accurate for determining the transition points and
phase diagrams. Moreover, the PMF phase diagrams are more
complex, showing discontinuous transitions with either sym-
biosis parameter μ or rate infection λ fixed in contrast with the
ordinary mean-field where only the former one can happen.

The remainder of this paper is organized as follows. In
Sec. II we present the definitions of the model and networks
used as substrates for simulations. The mean-field theories
are developed in Sec. III and Appendix while the simulation
methods used in the present work are described in Sec. IV.
Section V is devoted to a comparison between mean-field
theories and simulation outcomes. Finally, our conclusions
and prospects are drawn in Sec. VI.

II. MODEL AND NETWORKS

We investigate the symmetric 2SCP [24], in which the
involved rates are the same for both species. The model is
defined for a networked substrate as follows. Each vertex of
the network can hold at most one individual of each species A
and B. So, the state S of a vertex i can be empty, represented by
Si = ×, occupied by only one individual of type A (Si = ◦) or
B (Si = •), or occupied by one individual of each species, rep-
resented by Si = ◦•. The reproduction of new individuals of a
given species happens independently of each other according
to the standard CP rules [25,28]. A vertex i with one individual
of type A, Si = ◦ or Si = ◦•, creates an offspring of type A at
a randomly selected nearest neighbor j at a rate λ if j does
not have an individual of type A (i.e., if S j = × or S j = •).
Same rules and rates are used for the replication of a type B.
Any individual in a vertex i spontaneously dies with rate 1 if
they are alone (Si = ◦ or •) or with rate μ otherwise (Si = ◦•).
If μ = 1, the two processes evolve independently, but for
μ < 1 they interact symbiotically since the annihilation rates
are reduced at vertices where both species are present. The
stationary 2SCP can evolve asymptotically to a fully active
state, where both species coexist, or to an inactive (absorbing)
phase in which both species are extinct. There are also two
partly active states, where only one of species A or B is
extinct, that can be reached for specific initial conditions (the

1For a regular lattice of dimension d , the typical distance scales as
� ∼ N1/d . For these random graphs we have � ∼ ln N corresponding
to d = ∞ [31].

dynamics in these partly active states is beyond our interest
since it is that of a standard single-species CP).

In this work, we use random graph models as substrates
on which the 2SCP takes place. The number of neighbors of
a vertex i, the vertex degree, is denoted by ki. We consider
both homogeneous and heterogeneous networks. In random
regular (RR) networks [39], all vertices have the same degree,
ki = k, and connections are performed at random following
the configuration model [40] avoiding both multiple and self-
connections. In the Erdös-Renyi (ER) model [8], each pair
of vertices is connected with probability p. When the size
of the graph N → ∞, its degree distribution is a Poissonian
with a finite mean 〈k〉 = pN . Both RR and ER models belong
to the class of homogeneous degree networks, where large
deviations from the average value do not occur [31], whereas
only RR has a strictly homogeneous degree distribution.
The third substrate is the Barabási-Albert (BA) model [38],
in which the networks are generated through a preferential
attachment mechanism [38] starting from a fully connected
set with m0 + 1 vertices and vertices with m edges being
added one at a time. We used m = m0 such that the average
degree 〈k〉 = m can be fixed accordingly for comparison with
the homogeneous case. The BA degree distribution follows
asymptotically a power law (PL), pk ∼ k−γ , with γ = 3 and is
representative of a highly heterogeneous network possessing
a heavy-tailed degree distribution.

III. MEAN-FIELD THEORY

We consider a homogeneous mean-field approximation
where all vertices are assumed to have the same degree ki = k.
To apply this theory to the heterogeneous cases of ER and
BA, we use the same equations of the homogeneous theory
replacing k by 〈k〉. This strategy has been used to compare the
transition points of the CP obtained in a homogeneous PMF
theory, given by λc = k/(k − 1) [28], with the simulations on
heterogeneous networks using λc = 〈k〉/(〈k〉 − 1) [27,41].

Let [S] be the probability that a vertex is in state S, and
let [S, S′] be the joint probability that a vertex is in the
state S and its nearest neighbor is in the state S′. Symme-
tries in the rates with respect to distinct species imply that
[◦] = [•] and [S, S′] = [S′, S] for any pair of states S and
S′. Also, if changing all ◦ by • does not alter the probabil-
ities, then [◦, ◦] = [•, •], [◦, •] = [•, ◦], [◦, ◦•] = [•, ◦•] =
[◦•, ◦] = [◦•, •], [×, •] = [×, ◦] = [•,×] = [◦,×].

Following this approach, one identifies three independent
one-site variables, [◦], [◦•], and [×], related by the closure
relation

[◦•] + 2[◦] + [×] = 1. (1)

The dynamical equations for these variables are readily
derived as

d[◦]

dt
= −[◦] + μ[◦•]+ λ([×, ◦] + [×, ◦•]− [◦, •]− [◦, ◦•]),

(2)

d[×]

dt
= [◦] + [•] − λ([×, ◦] + [×, •] + 2[×, ◦•])

= 2[◦] − 2λ([×, ◦] + [×, ◦•]), (3)
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and
d[◦•]

dt
= −2μ[◦•] + λ([•, ◦] + [◦, •] + [•, ◦•] + [◦, ◦•])

= −2μ[◦•] + 2λ([◦, •] + [◦, ◦•]). (4)

Equations (2)–(4) are exact but not closed since the evolu-
tion of the one-site probabilities depends on pairs. Cutting the
correlations at a vertex level with the approximation [S, S′] =
[S][S′], we obtain the ordinary mean-field equations [24]

d[◦]

dt
= −[◦] + μ[◦•] + λ[[×]([◦] + [◦•]) − [◦]([•] + [◦•])],

(5)

d[×]

dt
= 2[◦] − λ[×]([◦] + [•] + 2[◦•]), (6)

and
d[◦•]

dt
= −2μ[◦•] + 2λ[◦]([•] + [◦•]). (7)

Note that if one species is extinct, the above system reduces
to the mean-field theory for the one-species CP,

d[◦]

dt
= −[◦] + λ(1 − [◦])[◦] (8)

with a transition point at λ = 1.
The stationary solution of Eqs. (5)–(7) is given by [24]

[◦] = [•] = μ[2(1 − μ) − λ +
√

λ2 − 4μ(1 − μ)]

2λ(1 − μ)
(9)

and

[◦•] = λ[◦]2

μ − λ[◦]
. (10)

For μ � 1/2, [◦] grows continuously from zero at λ = 1,
marking the latter value as the transition point. The activity
grows linearly, [◦] 	 [μ/(2μ − 1)](λ − 1), in this regime.
For μ < 1/2, however, the expression is already positive for
λ = √

4μ(1 − μ) < 1, and there is a discontinuous transition
at this point.

Further improvement in including dynamical correlations
is given by a PMF theory, in which the system is described in
terms of pairwise variables [S, S′]. The dynamical equations
of pairs will depend on triplets [S, S′, S′′] in which a pair S, S′
of nearest neighbors is connected to a vertex in the state S′′
through the vertex in the state S′. Here, we neglect that S
and S′′ can also be connected, i.e., we assume the network
does not form triangles having thus a negligible clustering
coefficient [42], a condition obeyed by all networks consid-
ered in this work. Several symmetries such as [S, S′, S′′] =
[S′′, S′, S] and ◦ → • can be exploited to reduce the number
of independent triplets.

We now proceed with the standard pairwise approxima-
tion [33,37]

[S, S′, S′′] = [S, S′][S′, S′′]
[S′]

(11)

and apply the generic closure relation∑
S′

[S, S′] = [S] (12)

to obtain a set of seven dynamical equations for the in-
dependent pairwise variables, given by Eqs. (A8)–(A15) in
Appendix. These equations, in addition to the one-site dy-
namical equations (2)–(4), build a closed system. It is worth
mentioning that pairwise approximations have been presented
for one-dimensional chains and square lattices in Ref. [29]
while our approach is valid for generic homogeneous graphs
(conditioned to have a very low clustering coefficient).

IV. SIMULATION SCHEME

Our simulations of the 2SCP on networks were imple-
mented using an optimized Gillespie algorithm [43], in which
we maintain two lists, one of singly and another of doubly
occupied vertices. Let N1 and N2 denote, respectively, the
numbers of such nodes. The total rate of (attempted) transi-
tions is λN1 + 2λN2 + N1 + 2μN2 ≡ (�t )−1, where �t is the
average time increment associated with a given step of the
simulation.

At each time step, we randomly choose among the events:
(i) creation attempt by an isolated individual, with probability
λN1�t ; (ii) creation attempt by an individual at a doubly
occupied node, with probability 2λN2�t ; (iii) death of an
isolated individual, with probability N1�t ; (iv) death of an
individual at a doubly occupied node, with probability 2μN2.

Once the event type is selected, a vertex i is chosen at
random from the respective list. The creation attempt occurs at
a vertex j randomly selected among the nearest neighbors of
i. If j is already occupied by an individual of the species to be
created, no change of state is implemented, and the simulation
continues to the next step. If node i is doubly occupied, the
species of its offspring in a creation event is chosen to be A or
B with equal probability. In the same way, in an annihilation
event at a doubly occupied node, we choose the species to be
removed at random. Time is incremented by �t .

In the simulations, we sample the quasistationary (QS)
distribution of active nodes employing the QS simulation
method [44]. This scheme consists in replacing the absorbing
state, every time the system attempts to visit it, with an active
configuration randomly taken from the history of the simu-
lation. This procedure optimizes the numerical simulations
restricting the dynamics of the process to active states, and it is
a powerful tool in analyzing continuous absorbing state phase
transitions in networks [27,37,45–47]. For a recent analysis on
such simulation methods applied to networks, see Ref. [48]. In
this work, we performed QS simulations for systems of sizes
up to N = 106 nodes, with each run lasting at least 106 time
units. Averages are taken in the QS regime, after discarding
an initial transient which depends on the system size and
symbiosis strength used.

Finally, mean-field analysis was performed via a nu-
merical integration of the respective dynamical systems us-
ing the fourth-order Runge-Kutta method with a time step
�t = 10−5. The steady state is computed after a relaxation
of t > 106.

V. RESULTS AND DISCUSSION

The quasistationary densities of sites occupied by a single
ρ1 = ρ• + ρ◦ and by two species ρ2 = ρ◦• are compared
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FIG. 1. 2SCP on RR networks of fixed degree k = 6. The QS
density of singly (circles) and doubly (squares) occupied vertices is
shown as functions of the infection rate for (a) μ = 0.1, (b) μ = 0.2,
(c) μ = 0.5, and (d) μ = 1. The dashed curves represent the one-site
while solid curves represent the pairwise mean-field theories. The
system size used in the simulations is N = 105.

with mean-field approximations in Fig. 1 for a RR network
with connectivity degree k = 6, using distinct values of the
symbiotic strength parameter μ. This dynamics can exhibit
bistability with both active and absorbing stable stationary
states [24]. So, we first analyze an initial condition having
all vertices in a doubly occupied state ρ2 = 1 such that this
threshold represents the loss of global stability of the absorb-
ing state, marking the lower spinodal point. We observe that
the ordinary mean-field theory, although qualitatively predict-
ing the discontinuous or continuous nature of the transition, is
not quantitatively accurate as indicated by the dashed curves
in Fig. 1. However, a far better result is obtained with the
PMF theory, represented by the solid curves, presenting an
excellent agreement between theory and simulations, for both
near and above the transition point regimes irrespective of the
μ values. Increasing the connectivity k reduces the transition
value of λ as can be seen in Table I. Actually, the threshold
will converge to the one-site mean-field value for k � 1 since
this limit corresponds to the fully connected graph for which
the one-site theory is exact in the thermodynamical limit.

Figure 2 compares the results from simulations and mean-
field theories for ER networks with 〈k〉 = 6 using the substi-
tution of k by the mean connectivity 〈k〉. As observed in RR
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FIG. 2. 2SCP on ER networks with average degree 〈k〉 = 6.
The QS density of singly (circles) and doubly (squares) occupied
vertices is shown as functions of the infection rate for (a) μ = 0.1,
(b) μ = 0.2, (c) μ = 0.5, and (d) μ = 1. The dashed curves represent
the one-site while solid curves represent the pairwise mean-field
theories. The system size used in simulations is N = 105.

networks, the one-site approximation reproduces qualitatively
well the nature of transition but underestimates the transition
point. The PMF accurately matches the transition point and
density of singly occupied vertices in the active phase of
simulations but underestimates the density of doubly occupied
vertices and consequently the overall density of active vertices
ρ = ρ1 + ρ2.

The role of heterogeneity is further investigated in Fig. 3
where the results on BA networks with 〈k〉 = 10 are shown.
The PMF theory outperforms the ordinary one but still under-
estimates the location of the phase transition for small values
of μ, where the phase transition is discontinuous while yields
a very good agreement for the transition point for the contin-
uous cases with μ > 0.5 despite the high heterogeneity of the
BA networks, where hubs are expected to play some important
role. This finding in the continuous case is in agreement with
one-species CP on scale-free networks [27,41].

The transition points for the investigated networks (RR,
ER, and BA) with different average degrees are presented in
Table I. We observe that the PMF theory exhibits a higher
accuracy for large average connectivity, as expected, since in
the limit 〈k〉 � 1 it corresponds to the fully connected graph
where mean-field theories become exact. Another important

TABLE I. Transition points of the control parameter, λc, for different values of μ obtained from the PMF theory and simulations in RR,
ER, and BA networks using average degrees 〈k〉 = 3, 6, and 10.

〈k〉 = 3 〈k〉 = 6 〈k〉 = 10

μ PMF RR ER PMF RR ER BA PMF RR ER BA

0.1 0.785 0.795(5) 0.780(5) 0.6857 0.680(5) 0.678(2) 0.790(5) 0.6587 0.647(5) 0.645(5) 0.725(2)
0.2 1.055 1.075(5) 1.065(5) 0.9014 0.905(5) 0.905(5) 1.030(5) 0.8567 0.855(5) 0.865(5) 0.950(2)
0.5 1.445 1.535(5) 1.440(5) 1.1872 1.200(5) 1.190(5) 1.217(1) 1.1060 1.11(1) 1.105(5) 1.11(1)
1.0 1.5 1.625(5) 1.495(5) 1.2 1.220(5) 1.195(5) 1.221(1) 1.111 1.12(1) 1.13(1) 1.13(1)
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FIG. 3. 2SCP on BA networks with average degree 〈k〉 = 10.
The QS density of singly (circles) and doubly (squares) occupied
vertices is shown as functions of the infection rate for (a) μ = 0.1,
(b) μ = 0.2, (c) μ = 0.5, and (d) μ = 1. The dashed curves represent
the one-site while solid curves represent the pairwise mean-field
theories. The system size used in simulations is N = 106.

observation is that the PMF performs worst for BA networks
when μ is small while the accuracy tends to be reduced for
larger μ in RR networks. In BA networks, where hubs are
present, small μ will enhance activity localized in the neigh-
borhood of hubs, which, in turn, are not sufficiently mixed
for the regime of scale-free networks with γ = 3 [49]. More
precisely, the star subgraph containing a hub and its nearest
neighbors can stay active in isolation for long periods through
a feedback mechanism where the hub activates its neighbors,
which in turn reactivate the hub recurrently [45,50,51]. Since
localization is opposed to the homogeneous mixing hypoth-
esis of the mean-field methods, larger deviations from the
theory are indeed expected in this regime. Another intriguing
feature of the data of Table I is that the PMF thresholds
are nearer to the simulations for the slightly heterogeneous
ER than from the homogeneous RR networks, which be-
comes more evident for lower 〈k〉 and higher μ. A similar
phenomenon was also observed for the one-species CP on
networks [37] and associated with the approximation k ≈ 〈k〉,
which would not be observed in a degree-based mean-field
theory [9].

Up to this point, we have addressed the global loss of the
stability of the absorbing state that, in the case of discontinu-
ous transitions, involves the transition from an absorbing to a
bistable stationary state where both the absorbing phase and
active phases can be stable depending on the initial condition.
We now also consider the loss of global stability of the active
phase, i.e., the transition from bistable to active phases. For
this aim, we consider an initial condition very close to the
absorbing state with a very low density of doubly occupied
vertices (ρ1 = 0 and ρ◦• � 1) in conjunction with the fully
occupied state ρ◦• = 1 used previously. We can therefore
compute hysteresis curves where the phase coexistence can

active

FIG. 4. Hysteresis analysis for 2SCP on RR networks with k = 6
and μ = 0.2. Solid curves: PMF theory (arrows indicate the hys-
teresis flow). Dashed curves: Ordinary mean-field theory. Symbols:
Results from simulations for the RR network with N = 105 vertices
using different initial conditions.

be derived as in Fig. 4 where one sees absorbing, bistable, and
active regions.

Phase diagrams in the parameter space (λ,μ) obtained via
PMF for different connectivities are shown in Fig. 5. The
diagrams exhibit three connected regions corresponding to
globally inactive (dotted region), globally active (empty re-
gion), and bistable (hashed region). An interesting difference
with respect to the ordinary mean-field is a transition from a
globally stable active phase to a bistable dynamics obtained
either by fixing the infection rate λ and varying the symbiotic
parameter μ or using fixed μ and changing λ, whereas in an
ordinary mean-field theory such a transition occurs only for
fixed μ; see, for example, Fig. 3 of Ref. [30], which resembles
very much the limit of large degree shown in Fig. 5(c). Indeed,
the region with double transitions (inactive to bistable and
bistable to active) at fixed λ, occurring in the small μ region,
shrinks as the connectivity increases toward a fully connected
graph limit as shown in Figs. 5(b) and 5(c). Triple points
shown in the phase diagrams depend on connectivity, depart-
ing from (λt, μt ) = (1, 1/2) for the complete graph (one-site
mean-field) [24] to λt = 〈k〉

〈k〉−1 and μt = 0.501(1), 0.545(5),

and 0.595(5) for 〈k〉 = 103, 20, and 6, respectively. It is
worthwhile to comment that phase diagrams with qualitatively
similar spinoidals found in 2SCP with our PMF theory have
been reported for other models with abrupt transitions on
networks [52–54], with the difference that they were obtained
by a first-order mean-field theory, whereas in the 2SCP model
we needed to go up to a second-order pairwise theory.

Figure 5(a) also presents the phase diagram obtained via
simulations on different graphs with average degree 〈k〉 = 6.
One observes a remarkably good match between simulations
and theory for RR and ER (homogeneous) networks. The
quantitative agreement is less satisfactory for the BA model,
but it is still qualitatively correct. The dynamical correlations
in these infinite dimensional systems have proven to lead not
just to a quantitatively better theory but also to new behaviors
not predicted by the ordinary mean-field theory.
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FIG. 5. Phase diagram for the 2SCP obtained from PMF theory
for distinct average degree (a) 〈k〉 = 6, (b) 〈k〉 = 20, and (c) 〈k〉 =
103. Hashed and dotted regions represent bistable and inactive phases
respectively, while the the empty region corresponds to the active
phase of the PMF theory. Symbols are the results extracted from
numerical simulations of different network models with N = 105.

VI. CONCLUSIONS

Stochastic interacting systems with cooperative or syn-
ergistic couplings can be used for modeling different phe-
nomena, such as coinfections of pathological agents, so-
cial relations, and ecological interactions, among others.

One key issue of these models involves the nonequilib-
rium phase transitions among active and absorbing phases
that can emerge in some systems, especially the abrupt
ones, where macroscopic order parameters change discon-
tinuously. Moreover, understanding the behavior of these
transitions taking place at the top of complex networks has
become very relevant since most of these dynamical pro-
cesses indeed involve interactions mediated by networked
systems. In the present work, we investigate a simple model
in which two species lying on networks interact symbioti-
cally, i.e., the symbiotic contact process [24]. We used both
stochastic simulations and mean-field pairwise approxima-
tions, the latter reckoning dynamical correlations not consid-
ered in previous analytical (one-site mean-field) studies of this
model.

The PMF theory outperforms the ordinary one and, more
importantly, predicts features not captured by the latter, in
agreement with the simulations on distinct types of networks
with homogeneous, Poissonian, and scale-free degree dis-
tributions. In the case of homogeneous networks, the PMF
theory is accurate at describing very well both the dynamics
near and above the transitions (supercritical region). Although
it disregards the heterogeneity of the networks, our theory
also gives very good estimates of the transition points in
the case of Poissonian and scale-free networks, but it cannot
quantitatively capture the prevalence in the highly active
regime.

We also investigated the phase diagrams exhibiting glob-
ally absorbing, bistable, and globally active regions. The
PMF theory, beyond being quantitatively more accurate than
the ordinary one, provides a much richer phase diagram
where discontinuous transitions, involving bistable phases
can be obtained by either varying the infection rate λ or
the symbiosis parameter μ independently, whereas this tran-
sition happens only at fixed μ in the one-site approach.
These PMF results are confirmed by extensive numerical
simulations. Our findings provide an important example of
the role played by dynamical correlations in cooperative
processes on networked substrates, which is commonly not
considered in other theoretical approaches. Pair approxima-
tions such as the one developed in this work can be used to
improve the accuracy of phase diagrams observed in other
related works [52,55] where first-order mean-field theory
captures the qualitative behavior but analytical spinoidals
deviate from simulations when the average connectivity
is reduced. We expect that our work will stimulate fu-
ture analysis of dynamical correlations on other cooperative
processes.

The theories presented in this paper do not include the
network heterogeneity and, especially, the degree distribu-
tion. As a prospect for forthcoming analysis, one could use
degree-based [9] or individual-based [56] mean-field theories
to tackle the role of heterogeneity.
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APPENDIX: PAIR MEAN-FIELD THEORY

In the pair approximation, the seven two-site variables to be considered are [◦, •], [◦, ◦], [×, ◦], [◦, ◦•], [◦•, ◦•], [×, ◦•],
and [×,×]. All other combinations are equivalent to some of them, due to symmetry. Considering that every vertex has k
nearest-neighbors, after some algebra we obtain the following set of dynamical equations

d[◦, •]

dt
= −2(1 + λ/k)[◦, •] + 2μ[◦, ◦•] + 2λ

k − 1

k
([◦,×, •] + [◦,×, ◦•] − [◦, •, ◦] − [◦, •, ◦•]), (A1)

d[◦, ◦•]

dt
= −(1 + 2μ + λ/k)[◦, ◦•] + μ[◦•, ◦•] + λ

k
([◦, •] + [×, ◦•])

+ λ
k − 1

k
([◦,×, ◦•] + [◦•,×, ◦•] + [◦, ◦, •] + [◦, ◦, ◦•] + [◦, •, ◦] − [◦•, ◦, ◦•]), (A2)

d[×,×]

dt
= 4[◦,×] − 4λ

k − 1

k
([×,×, ◦] + [×,×, ◦•]), (A3)

d[◦, ◦]

dt
= 2

(
−[◦, ◦] + μ[◦, ◦•] + λ

k
[◦,×]

)
+ 2λ

k − 1

k
([◦,×, ◦] + [◦,×, ◦•] − [◦, ◦, •] − [◦, ◦, ◦•]), (A4)

d[◦•, ◦•]

dt
= −4[◦•, ◦•] + 4

λ

k
[◦, ◦•] + 4λ

k − 1

k
([◦•, ◦, ◦•] + [◦•, ◦, •]), (A5)

d[◦,×]

dt
= −[◦,×] − λ

k
[◦,×] + μ[◦•,×] + [◦, ◦] + [◦, •]

+ λ
k − 1

k
([◦,×,×] + [◦•,×,×] − [◦,×, ◦] − 2[◦,×, ◦•] − [◦,×, •] − [•, ◦,×] − [◦•, ◦,×]), (A6)

d[◦•,×]

dt
= −2(μ + λ/k)[◦•,×] + 2[◦•, ◦] + 2λ

k − 1

k
([◦, •,×] + [◦•, ◦,×] − [◦•,×, ◦] − [◦•,×, ◦•]). (A7)

Let us explain in detail the terms in Eq. (A1). The derivation of the remaining equations follows from a similar reasoning.
Thus, in Eq. (A1), the term proportional to [◦, •] represents two contributions. The one proportional to −2 is the spontaneous
annihilation of each individual (◦ → × and • → ×). The term proportional to 2λ/k represents the creation of each individual
of this pair into the other (◦, • → ◦•, • and ◦, • → ◦, ◦•). The term proportional to [◦, ◦•] is due to the annihilation with rate
μ of each individual in the doubly occupied vertex (◦• → ◦ and ◦• → •). Finally, the triplet terms represent the creation of
outsiders into the pair. For example, the first triplet term represents the transition ◦,× → ◦, • due to A (◦) individuals in each
remaining k − 1 neighbors of the empty vertex (×), while the factor 2 comes from the transition ×, • → ◦, • of B (•) individuals
neighboring the empty vertex. The remaining triplets terms can be rationalized in the same way.

We now proceed with the pair approximations, [S, S′, S′′] = [S,S′][S′,S′′]
[S′] in Eqs. (A1) to (A7), and find that they can be

approximated as

d[◦, •]

dt
= −2(1 + λ/k)[◦, •] + 2μ[◦, ◦•] + 2λ

k − 1

k

(
[◦,×]2 + [◦,×][×, ◦•]

[×]
− [◦, •]2 + [◦, •][•, ◦•]

[•]

)
, (A8)

d[◦, ◦•]

dt
= −(1 + 2μ + λ/k)[◦, ◦•] + μ[◦•, ◦•] + λ

k
([◦, •] + [×, ◦•]) (A9)

+ λ
k − 1

k

(
[◦,×] + [×, ◦•]

[×]
[×, ◦•] + [◦, ◦]([◦, •] + [◦, ◦•]) + [◦, •]2 − [◦, ◦•]2

[◦]

)
, (A10)

d[×,×]

dt
= 4[◦,×] − 4λ

k − 1

k

[×,×]

[×]
([×, ◦] + [×, ◦•]), (A11)

d[◦, ◦]

dt
= 2

(
−[◦, ◦] + μ[◦, ◦•] + λ

k
[◦,×]

)
+ 2λ

k − 1

k

(
[◦,×] + [×, ◦•]

[×]
[◦,×] − [◦, •] + [◦, ◦•]

[◦]
[◦, ◦]

)
, (A12)

d[◦•, ◦•]

dt
= −4[◦•, ◦•] + 4

λ

k
[◦, ◦•] + 4λ

k − 1

k

[◦•, ◦]

[◦]
([◦, ◦•] + [◦, •]), (A13)

d[◦,×]

dt
= −

(
1 + λ

k

)
[◦,×] + μ[◦•,×] + [◦, ◦] + [◦, •] + λ

k − 1

k

×
(

([◦,×] + [◦•,×])([×,×] + 2[◦,×]

[×]
− [•, ◦] + [◦•, ◦]

[◦]
[◦,×]

)
, (A14)

d[◦•,×]

dt
= −2(μ + λ/k)[◦•,×] + 2[◦•, ◦] + 2λ

k − 1

k

(
[◦, •] + [◦•, ◦]

[◦]
[◦,×] − [×, ◦] + [×, ◦•]

[×]
[◦•,×]

)
. (A15)
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[55] L. Böttcher, M. Luković, J. Nagler, S. Havlin, and H. J.
Herrmann, Failure and recovery in dynamical networks, Sci.
Rep. 7, 41729 (2017).

[56] P. Van Mieghem, Epidemic phase transition of the SIS type in
networks, Europhys. Lett. 97, 48004 (2012).

052302-9

https://doi.org/10.1016/j.cpc.2017.06.007
https://doi.org/10.1016/j.cpc.2017.06.007
https://doi.org/10.1016/j.cpc.2017.06.007
https://doi.org/10.1016/j.cpc.2017.06.007
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1103/PhysRevE.71.016129
https://doi.org/10.1103/PhysRevE.93.032314
https://doi.org/10.1103/PhysRevE.93.032314
https://doi.org/10.1103/PhysRevE.93.032314
https://doi.org/10.1103/PhysRevE.93.032314
https://doi.org/10.1103/PhysRevX.7.011014
https://doi.org/10.1103/PhysRevX.7.011014
https://doi.org/10.1103/PhysRevX.7.011014
https://doi.org/10.1103/PhysRevX.7.011014
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1103/PhysRevE.94.042308
https://doi.org/10.1103/PhysRevE.94.042308
https://doi.org/10.1103/PhysRevE.94.042308
https://doi.org/10.1103/PhysRevE.94.042308
https://doi.org/10.1103/PhysRevE.72.026108
https://doi.org/10.1103/PhysRevE.72.026108
https://doi.org/10.1103/PhysRevE.72.026108
https://doi.org/10.1103/PhysRevE.72.026108
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1103/PhysRevLett.111.068701
https://doi.org/10.1103/PhysRevLett.111.068701
https://doi.org/10.1103/PhysRevLett.111.068701
https://doi.org/10.1103/PhysRevLett.111.068701
https://doi.org/10.1038/nphys2819
https://doi.org/10.1038/nphys2819
https://doi.org/10.1038/nphys2819
https://doi.org/10.1038/nphys2819
https://doi.org/10.1103/PhysRevLett.118.088301
https://doi.org/10.1103/PhysRevLett.118.088301
https://doi.org/10.1103/PhysRevLett.118.088301
https://doi.org/10.1103/PhysRevLett.118.088301
https://doi.org/10.1088/1742-5468/2016/09/093402
https://doi.org/10.1088/1742-5468/2016/09/093402
https://doi.org/10.1088/1742-5468/2016/09/093402
https://doi.org/10.1038/srep41729
https://doi.org/10.1038/srep41729
https://doi.org/10.1038/srep41729
https://doi.org/10.1038/srep41729
https://doi.org/10.1209/0295-5075/97/48004
https://doi.org/10.1209/0295-5075/97/48004
https://doi.org/10.1209/0295-5075/97/48004
https://doi.org/10.1209/0295-5075/97/48004

