
www.thelancet.com/infection   Vol 17   April 2017	 411

Articles

Lancet Infect Dis 2017; 
17: 411–21

Published Online 
January 24, 2017 
http://dx.doi.org/10.1016/
S1473-3099(16)30514-X

See Comment page 353

*Investigators listed in the 
acknowledgments

Nuffield Department of Clinical 
Medicine, Oxford University, 
Oxford, UK (K E Dingle PhD, 
T P Quan MSc, D W Eyre DPhil, 
N Stoesser MBBS, 
T Golubchik PhD, D J Wilson DPhil, 
D Griffiths BSc, A Vaughan BSc, 
J M Finney BSc, D H Wyllie PhD, 
Prof T E A Peto DPhil, 
Prof A S Walker PhD, 
Prof D W Crook MBBCh); 
National Institute for Health 
Research (NIHR) Oxford 
Biomedical Research Centre, 
John Radcliffe Hospital, Oxford, 
UK (K E Dingle, T P Quan, 
D W Eyre, N Stoesser, T Golubchik, 
R M Harding PhD, D J Wilson, 
D Griffiths, A Vaughan, 
J M Finney, D H Wyllie, 
Prof T E A Peto, Prof A S Walker, 
Prof D W Crook); NIHR Health 
Protection Research Unit in 
Healthcare Associated Infection 
and Antimicrobial Resistance at 
University of Oxford in 
partnership with Public Health 
England, Oxford, UK (K E Dingle, 
T P Quan, S Hopkins MD, 
Prof A P Johnson PhD, 
Prof T E A Peto, Prof A S Walker, 
Prof D W Crook); Department of 
Infectious Disease 
Epidemiology, and NIHR Health 
Protection Research Unit in 
Healthcare Associated Infection 
and Antimicrobial Resistance at 
Imperial College London in 
partnership with Public Health 
England, Imperial College, 
London, London, UK 
(X Didelot DPhil, A P Johnson); 
Department of Zoology, Oxford 
University, Oxford, UK 
(R M Harding); Wellcome Trust 
Centre for Human Genetics, 
University of Oxford, Oxford,  
UK (D J Wilson); 

Effects of control interventions on Clostridium difficile 
infection in England: an observational study
Kate E Dingle, Xavier Didelot, T Phuong Quan, David W Eyre, Nicole Stoesser, Tanya Golubchik, Rosalind M Harding, Daniel J Wilson, David Griffiths, 
Alison Vaughan, John M Finney, David H Wyllie, Sarah J Oakley, Warren N Fawley, Jane Freeman, Kirsti Morris, Jessica Martin, Philip Howard, 
Sherwood Gorbach, Ellie J C Goldstein, Diane M Citron, Susan Hopkins, Russell Hope, Alan P Johnson, Mark H Wilcox, Timothy E A Peto, 
A Sarah Walker, Derrick W Crook, the Modernising Medical Microbiology Informatics Group*

Summary
Background The control of Clostridium difficile infections is an international clinical challenge. The incidence of 
C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; 
we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were 
driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates 
should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection  
declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should 
decline regardless of susceptibility.

Methods Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and 
antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and 
international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were 
determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant 
and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. 
Selection and transmission were investigated with phylogenetic analyses.

Findings National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile 
infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). 
Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of 
Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate 
ratio 0·52, 95% CI 0·48–0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97–1·08). C difficile infections caused 
by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies 
containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with 
selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown 
by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or 
without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible 
isolates (p>0·2).

Interpretation Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile 
infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central 
component of C difficile infection control programmes.
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[PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health 
Innovation Challenge Fund.
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Introduction
Clostridium  difficile infection is a major clinical challenge 
worldwide.1,2 At least three antimicrobial classes are 
deemed to be high-risk C difficile infection triggers,3 
including most cephalosporins, to which C difficile is 
inherently resistant,4 and clindamycin, to which genotypes 
causing early outbreaks were resistant.5–7 Global dispersion 
of hypervirulent NAP1/PCR-ribotype-027 C difficile 

revealed an association between fluoroquinolone 
resistance and epidemic spread.8,9 Accordingly, clindamycin 
or fluoroquinolone use has been restricted, and combined 
with other measures aiming to control localised C difficile 
infection outbreaks.7,10,11

Most cases of C difficile infection are temporally 
associated with health care,2 reflecting a combination of 
health-care-associated acquisition, and health-care-related 

http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(16)30514-X&domain=pdf


Articles

412	 www.thelancet.com/infection   Vol 17   April 2017

Public Health England Academic 
Collaborating Centre, Oxford, 
UK (D H Wyllie); Microbiology 

Department, Oxford University 
Hospitals NHS Trust, Oxford, UK 
(S J Oakley MSc); Leeds Teaching 

Hospitals and University of 
Leeds, Department of 

Microbiology, Leeds General 
Infirmary, Leeds, UK 

(W N Fawley PhD, J Freeman PhD, 
K Morris PhD, J Martin MRCP, 
Prof M H Wilcox MD); Leeds 

Teaching Hospitals NHS Trust, 
Leeds, UK (P Howard FRPharmS); 

Cubist Pharmaceuticals, 
Lexington, MA, USA 

(Prof S Gorbach MD); Tufts 
University School of Medicine, 

Boston, MA, USA 
(Prof S Gorbach); R M Alden 

Research Laboratory, Culver 
City, CA USA 

(Prof E J C Goldstein MD, 
D M Citron BSc); 

Healthcare-Associated 
Infection, Antimicrobial 

Resistance and Stewardship 
and Healthcare-Associated 

Infections Programme, Public 
Health England, London, UK 

(S Hopkins); Royal Free London 
NHS Foundation Trust and 

Public Health England, London, 
UK (S Hopkins); and Department 

of Healthcare-Associated 
Infections and Antimicrobial 

Resistance, Centre for Infectious 
Disease Surveillance and 

Control, National Infection 
Service, Public Health England, 

London, UK (R Hope PhD, 
Prof A P Johnson)

Correspondence to: 
Dr Kate E Dingle, Nuffield 

Department of Clinical Medicine, 
Oxford University, Level 6/7 
Microbiology, John Radcliffe 

Hospital, Oxford OX3 9DU, 
Oxford UK.  

kate.dingle@ndcls.ox.ac.uk

triggers including antibiotics. Three UK studies using 
highly discriminatory whole genome sequences,12–14 and a 
US study using alternative high-resolution typing,15 found 
as few as a third of C difficile infections involved recent 
acquisition from an active case, leaving the source for 
two-thirds of infections unexplained.

By comparison with other countries,1,2 the incidence of 
C difficile infection in England decreased markedly over 
the past decade,16 after the introduction of national 
C difficile infection prevention and management policies 
from June, 2007.17,18 These included recommendations to 
avoid clindamycin and cephalosporins, minimised use of 
fluoroquinolone, carbapenem and aminopenicillin, and 
improved infection prevention and control activities 
(appendix).17 We investigated the effect of these 
interventions on C difficile evolution, selection, and 
transmission, to inform future C difficile infection control 
policies for this global challenge.

Methods
Study design
This observational study tested two hypotheses. First, if 
C difficile infection declines in England were driven by 
reductions in use of particular antibiotics, then incidence 
of C difficile infection caused by resistant isolates should 

decline faster than that caused by susceptible isolates 
across several genotypes (defined by multilocus sequence 
type). Second, if decreases in C difficile infection were 
driven by improvements in hospital infection control, 
then transmitted (secondary) cases should decline 
regardless of susceptibility.

To confirm that national policies17,18 affected antibiotic 
prescribing and C difficile infection incidence, we first 
compared national antimicrobial prescribing data for 
hospitals and the community (obtained respectively 
from IMS Health [Danbury, CT, USA] and the Health & 
Social Care Information Centre [appendix]) with national 
incidence of C difficile infection (ie, infections per 
English population per year, using data from Public 
Health England).

The primary study dataset comprised whole genome 
sequences from clinical C difficile isolates cultured from 
consecutive toxin enzyme immunoassay (EIA)-positive 
stool samples from symptomatic, unique patients 
submitted to the Oxford University Hospitals NHS Trust 
between Sept 12, 2006, and Aug 19, 2013 (n=2021; 
appendix). A further 261 isolates between Sept 1, 2006, 
and Feb 26, 2013, where only the sequence type was 
available were also included. The hospital did all C difficile 
testing in Oxfordshire, serving general practices, 

Research in context

Evidence before this study
We searched PubMed with the terms “Clostridium difficile” AND 
“sequencing” for articles published in English on or before Feb 1, 
2016. We prioritised articles including whole genome sequences. 
We also reviewed the references of papers identified by this 
strategy. In previous studies, whole-genome sequencing of C 
difficile was done to investigate its transmission and evolution. 
We identified no studies in which whole genome sequence based 
phylogenies were used to investigate the specific role of 
fluoroquinolone susceptibility or selection in the changing 
molecular epidemiology or incidence of C difficile infection. 
England is almost unique in experiencing a marked, recent decline 
in the incidence of health-care-associated C difficile infections. 
Previous reports showed the decline of one epidemic genotype 
(PCR-ribotype 027), whereas other genotypes appeared to persist. 
These changes followed the implementation of a multifaceted 
national C difficile infection control policy in 2007. However, the 
relative contributions made by the different interventions that 
were introduced simultaneously is unknown.

Added value of this study
This study is the first to investigate the contribution of specific 
public health interventions to the marked national decline in 
C difficile infection. Our novel approach involved the integrated 
analysis of multiple, large, concurrent datasets concerning 
incidence of C difficile infection, antimicrobial prescribing, and, 
crucially, the whole genome sequences of more than 
4000 human C difficile isolates. Our key finding was that the 

post-interventions decline in C difficile infections reflected the 
disappearance of fluoroquinolone-resistant isolates 
(predominantly from four genetically distinct genotypes), 
whereas the incidence of C difficile infections caused by 
fluoroquinolone-susceptible isolates (of many different 
genotypes) remained unchanged. Whole genome sequence-
based phylogenetic analyses of the entire C difficile population, 
with one phylogeny constructed for each genotype, identified 
shorter, geographically clustered branches, specific to the 
fluoroquinolone-resistant regions. This finding is consistent 
with rapid nosocomial transmission preceding the 
disappearance of fluoroquinolone-resistant isolates. Among 
the susceptible isolates, the numbers that were closely 
genetically related (and by inference transmitted, either 
directly or indirectly) did not change over time. This lack of 
change was despite the implementation of comprehensive 
infection prevention and control measures, which would have 
targeted fluoroquinolone-resistant and susceptible C difficile 
equally. These data suggest that it was the restriction of 
fluoroquinolone prescribing, above other interventions 
(including cephalosporin restriction and infection control 
precautions), that appears to explain the decline in incidence of 
C difficile infections.

Implications of all the available evidence
The restriction of fluoroquinolone prescribing should be a 
cornerstone in the control of epidemic C difficile infections in 
the UK and worldwide.

See Online for appendix
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community hospitals, and other providers, so incidence is 
per Oxfordshire population (approximately 600 000) per 
year. This culture-positive C difficile infection incidence 
was compared with Oxfordshire’s nationally submitted 
EIA-positive incidence (incorporating changes in 
mandatory reporting requirements in 2008) to confirm 
representativeness of whole genome sequences. The latter 
was compared with English incidence of C difficile 
infection to assess generalisability.

Generalisability of Oxfordshire data was also assessed 
with similar information from Leeds Teaching Hospitals 
NHS Trust, UK. This comprised whole genome sequences 
for consecutive clinical, toxin-positive (cytotoxin assay) 
isolates from symptomatic patients (Aug 2, 2010, to 
May 1, 2013; n=1020; appendix), Leeds regional incidence 
of C difficile infection data (nationally submitted) and 
ribotype prevalence, and antibiotic prescribing data.

Additional genetic context was provided by further 
regional and international C difficile whole genome 
sequences (May 9, 2006, to July 12, 2013) of isolates from 
toxin-EIA-negative clinical samples of symptomatic 
Oxfordshire patients (n=395), toxin-positive samples 
representing two clinical trials of fidaxomicin in North 
America and Europe (n=803),19,20 and from healthy 
Oxfordshire infants (non-clinical; n=200; appendix).

Genome sequences and multilocus sequence type 
identification
Genomes were sequenced using Illumina technology. 
Velvet de novo assemblies and reference-based 
assemblies were generated, the latter mapped to 
C difficile 630 (GenBank AM180355.1; reads submitted 
to National Center for Biotechnology Information, 
BioProjectID PRJNA304087; appendix). The sequences 
of loci defining C difficile sequence types were identified 
and extracted with BIGSdb;21 sequence types were 
assigned with the C difficile PubMLST database. The 
notation ST1(027) indicates, for example, sequence-
type-1 (PCR-ribotype-027).

Whole genome sequence-derived fluoroquinolone 
susceptibility
Isolates were designated fluoroquinolone-susceptible or 
fluoroquinolone-resistant based on specific non-syn
onymous substitutions within the quinolone resistance-
determining region of gyrA/B genes22,23 extracted from 
whole genome sequences.21 gyrA C(245)T[T(82)I] and 
gyrB G(1276)A [D(426)N] confer high-level fluoroquinolone 
resistance in C difficile and other species.16,17 Susceptibility 
predictions were validated phenotypically for 387 fidaxo
micin trial isolates19,20 (n=191 Canada, n=196 USA), 
with agar dilution (moxifloxacin minimum inhibitory 
concentration; appendix).

Statistical analysis
We made univariable comparisons between English 
antimicrobial prescribing and incidence of C difficile 

infection with bivariate cross-correlations (appendix). 
Genotype (sequence type)-specific incidence rates for 
C difficile infection caused by toxin EIA-positive, culture-
positive isolates were calculated with negative binomial 
regression accounting for missing data by probability 
weights (appendix). For genotypes with more than 
10% fluoroquinolone-resistant isolates, rates were 
calculated separately for fluoroquinolone-susceptible and 
fluoroquinolone-resistant isolates. These data were 
available for isolates from April 2008 to March 2011. Rates 
were also calculated separately for infections that could 
plausibly have arisen from secondary spread (transmission) 
inferred by close genetic relationships to previous 
infections (two or fewer single nucleotide variants from 
the original case),12 and also separately for fluoroquinolone-
susceptible and fluoroquinolone-resistant isolates. 
Phylogenetic trees were constructed for each sequence 
type (or several closely related sequence types), with 
maximum likelihood, then corrected for recombination 

For PubMLST see 
http://pubmlst.org/cdifficile

Figure 1: National incidence of Clostridium difficile infections and fluoroquinolone prescribing (A) and 
national antibiotic prescribing overall (B)
(A) Mandatory incidence of C difficile infections corresponds to all infections reported for individuals older than 
2 years (from 2004 to 2007, infections were only reported for individuals older than 65 years, and are upweighted 
to provide similar estimates in individuals older than 2 years; appendix). Since mandatory reporting was only 
introduced in 2004, we have also included voluntary-reported C difficile infections to give an indication of trends 
before that date. (B) Dotted lines are estimates (appendix).
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using ClonalFrameML (version 1.0–6).24 Trees were time-
scaled and made directly comparable post-1990 (appendix). 
In each tree, the evolutionary distinctiveness (ED) score of 
each genome was calculated;25 low ED scores indicate 
closely related genomes, whereas high scores indicate 
their relative absence (appendix).

Role of the funding source
The study sponsor had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all study data and had final responsibility for the decision 
to submit for publication.

Results
Incidence of C difficile infection in England increased 
from 1998 to 2006 (p<0·0001) then declined rapidly 
over the years that followed to 2013 (p<0·0001; figure 1A). 

C difficile infection declines occurred while total 
antibiotic prescribing was increasing (by 4·4% per year 
in the community [p<0·0001, 2006–13], but only 0·5% 
per year in hospitals [p=0·053, 2006–12]; figure 1B). 
Between 2005 and 2012 (when data were complete for 
England), the cross-correlations (CCs) between English 
incidence of C difficile infection and total English 
antibiotic prescribing were –0·57 (95% CI –0·67 to –0·41) 
for hospital and community, –0·59 (–0·68 to –0·44) for 
community, and 0·29 (–0·19 to 0·60) for hospital 
prescribing (optimum CC using a 1-year lag; appendix). 
During the same period, the strongest univariable 
associations between English incidence of C difficile 
infection and individual antimicrobials were with 
cephalosporins (CC=0·97, 95% CI 0·82–0·98 for 
hospital and community; 0·94, 0·68–0·97 for 
community; and 0·97, 0·81–0·99 for hopital prescribing; 
optimum 0-year lag) and fluoroquinolones (CC=1·00, 
0·84–1·00 for hospital and community; 0·88, 
0·48–0·95 for community; and 0·93, 0·66–0·97 for 
hospital prescribing; optimum 0-year lag; appendix), 
although hospital fluoroquinolone prescribing began to 
decline slightly earlier than community prescribing 
(p<0·0001 from 2005 to 2009 vs in the community 
p<0·0001 from 2007 to 2012; figure 1A). Other antibiotics 
were more weakly associated (appendix).

Similar to English incidence of C difficile infection, 
Oxfordshire rates also decreased from 2007 (when isolate-
level fluoroquinolone-susceptibility could be determined; 
p<0·0001; figure 2A). Fluoroquinolone prescribing in 
Oxfordshire hospitals declined from a peak in 2005 
until 2010 (p<0·0001), when use began to increase again 
(p<0·0001 from 2010 to 2013). Hospital cephalosporin and 
fluoroquinolone prescribing were also positively associated 
with incidence of C difficile infection (CC=0·73, 
0·15 to 0·86, and 0·62, –0·09 to 0·81; appendix), but 
associations were estimated much less precisely given the 
much smaller population (approximately 1% of England). 
Positive associations were also observed between C difficile 
infection decline and decline in extended spectrum 
penicillins (0·84, 0·24 to 0·90) and beta-lactamase-
resistant penicillins (0·67, –0·04 to 0·81; appendix). 
Community prescribing data were not available.

Paired fluoroquinolone susceptibility phenotype and 
gyrA/B DNA sequences were assessed for 387 isolates 
from the two clinical trials of fidaxomicin in North America 
and Europe,19,20 representing 53 sequence types. Phenotype 
and whole genome sequences were 98·7% concordant 
(appendix; sensitivity 97·8%, specificity 99·5%); only one 
of 185 isolates predicted as resistant by whole genome 
sequences22,23 lacked an elevated minimum inhibitory 
concentration (MIC). Conversely, only four of 202 isolates 
lacking resistance-associated substitutions22,23 had raised 
MICs (16 mg/L). gyrA/B sequence therefore reliably 
predicts the fluoroquinolone resistance phenotype.

The decrease in Oxfordshire C difficile infections was 
solely due to a decline in C difficile infection caused by 

Figure 2: Incidence of Clostridium difficile infections together with fluoroquinolone and cephalosporin 
prescribing for Oxfordshire (A) and incidence of C difficile infections by fluoroquinolone susceptibility for 
Oxfordshire (B)
(A) Mandatory incidence of C difficile infections corresponds to all cases reported for individuals older than 2 years 
(from 2004 to 2007, cases were only reported for individuals older than 65 years, and are upweighted to provide 
similar estimates in individuals older than 2 years; appendix). Only toxin-positive culture-positive samples were used 
in the genotype-specific and phylogenetic analyses. (B) C difficile is inherently resistant to most cephalosporins.4 
IRR=annual incidence rate ratio.
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fluoroquinolone-resistant isolates, estimated at approxi
mately 67% of all Oxfordshire C difficile infections in 
September, 2006, falling to approximately 3% by 
February, 2013 (annual incidence rate ratio [aIRR] 0·52, 
95% CI 0·48–0·56, p<0·0001; figure 2B). Most (62%) 
fluoroquinolone-resistant isolates were from genotype 
ST1(027), but the decline persisted even when excluding 
ST1(027) and pooling the remaining fluoroquinolone-
resistant isolates (aIRR 0·73, 0·66–0·81, p<0·0001 for all 
non-ST1; 0·66, 0·59–0·75, p<0·0001 for all non-ST1 with 
>10% resistant isolates; figure 3, appendix). Considering 
genotypes containing more than 10% resistant isolates 
separately, C difficile infection caused by fluoroquinolone-
resistant isolates declined significantly for four genotypes 
from three distinct chromosomal backgrounds:26 clade 1 
ST42(106) (p=0·00076), ST3(001) (p=0·0054); clade 2 
ST1(027) (p<0·0001) and clade 4 ST37(017) (p=0·0027; 
figure 3, figure 4A, B, appendix).

The incidence of C difficile infection caused by 
fluoroquinolone-susceptible isolates remained unchanged 
(aIRR 1·02, 95% CI 0·97–1·08, p=0·45; figure 2B; 
heterogeneity p<0·0001 vs fluoroquinolone-resistant), and 
actually increased in three of the five genotypes with more 
than 10% but less than 99% resistant isolates (figure 3, 
figure 4B, appendix). More limited data for Leeds, 
representing a geographically independent region, were 
broadly similar (aIRR0·55, 0·49–0·61, p<0·0001 pooling 

predominantly fluoroquinolone-resistant ribotypes versus 
1·03, 1·01–1·05, p=0·0031 pooling fluoroquinolone-
susceptible ribotypes; appendix), as were national 
ribotyping data,27 supporting generalisability.

19 phylogenies were constructed representing the 
22 most common C difficile genotypes in Oxfordshire and 
Leeds (figure 4D–F, appendix). The phylogeny of each 
genotype containing more than 10% fluoroquinolone-
resistant isolates (figure 4D, E, appendix) showed rapid, 
geographically structured clonal expansions associated 
with resistance. This observation was reproduced 
internationally in parts of the phylogenies representing 
Calgary, Canada (figure 4D, E) and in isolates from three 
cities in northern Italy: Modena, Turin, and Arsizio 
(appendix). We recorded significantly lower ED scores for 
resistant versus susceptible areas of phylogenies 
containing both fluoroquinolone-resistant and fluoro
quinolone-susceptible isolates (eg, ST3 p<0·0001, figure 
4E; ST37 p<0·0001, appendix). By contrast, the phylogenies 
of genotypes consisting primarily of susceptible isolates 
(figure 4F, appendix) were geographically unstructured 
and had longer branches. This was also seen internationally 
in susceptible isolates from Calgary and Montreal, Canada 
(figure 4E, appendix). In fluoroquinolone-susceptible 
genotypes, the ED scores (and, by inference, transmission) 
did not differ significantly between Oxfordshire and Leeds 
clinical isolates (p>0·1; appendix).

Figure 3: Oxfordshire Clostridium difficile IRR by fluoroquinolone resistance and genotype
For genotypes with more than 10% resistant isolates (denoted FQR), rates were calculated separately for C difficile infections caused by fluoroquinolone-susceptible and 
resistant isolates. To show that the difference in IRR for resistant and susceptible isolates is not driven solely by the decline in ST1(027), rates were also calculated for all 
non-ST1(027) genotypes together, as well as for all genotypes with more than 10% resistant isolates (excluding ST1(027)) and for all genotypes with 10% or less resistant 
isolates (FQS). Heterogeneity between IRRs in C difficile infections caused by fluoroquinolone-resistant versus fluoroquinolone-susceptible isolates: all p<0·0001, 
non-ST1 p<0·0001, non-ST1 FQR p<0·0001, ST42 p<0·0001, ST37 p=0·00015, ST3 p=0·00070, ST35 p=0·92, ST11 p=0·0053. The dotted vertical lines separate out the 
different ways the isolates were divided for the different analyses. The horizontal dotted line represents an IRR of 1. IRR=annual incidence rate ratio.

23
06

52
6

17
80

52
6

32
9

14
51

52
6

87 38 94 25 85 35 65
26 18

1
17

8
86 10

7
14

1
97 36 36 35 34 33 30 25 20 19 19 16 16 13 13 11 10

number of isolates

0·5

1

2

4

IRR per year

0

0·2

0·4

0·6

0·8

1·0

Pr
op

or
tio

n 
of

 is
ol

at
es

 w
ith

 fl
uo

ro
qu

in
ol

on
e 

re
sis

ta
nc

e

All
ST1

Non-ST1
ST1

Non-ST1 FQR
FQS 1 42 37 3 35 11 17 14 54 8 2 5 44 6 10 7 49 9 13 16 58 36 55 33 45 18 46 43 12 22 53

FQR FQS
Genotype

Fluoroquinolone resistance
Overall change
IRR of resistant isolates
IRR of susceptible isolates



Articles

416	 www.thelancet.com/infection   Vol 17   April 2017

Additional phylogenies for three prevalent fluoro
quinolone-susceptible genotypes revealed similar branch 
lengths irrespective of sampling region size (appendix). 
Oxfordshire phylogenies (appendix), containing genomes 
from toxin EIA-positive and EIA-negative samples, plus 

genomes from healthy, asymptomatic, community 
infants, showed a lack of structure by source, even within 
a single region. ED scores were generally lower for clinical 
toxin EIA-positive genomes than for infant and EIA-
negative genomes, especially in ST8(002) (p=0·0033) and 

Figure 4: Contrasting incidence of Clostridium difficile infections (Oxfordshire) and whole-genome sequence phylogenies representing the fluoroquinolone-resistant genotype ST1(027), the 
mixed resistant and susceptible genotype ST3(001), and the almost entirely fluoroquinolone-susceptible genotype ST8(002)
(A) Incidence of C difficile infections by fluoroquinolone susceptibility for genotype ST1(027) in Oxfordshire. Red bars indicate fluoroquinolone-resistant isolates, blue bars indicate 
fluoroquinolone-susceptible isolates, grey bars indicate resistance not determined. (B) Incidence of C difficile infections by fluoroquinolone susceptibility for genotype ST3(001) in Oxfordshire. 
(C) Incidence of C difficile infections by fluoroquinolone susceptibility for genotype ST8(002) in Oxfordshire. (D) Time-scaled phylogeny for ST1(027) generated with ClonalFrameML.24 Every third 
Oxfordshire isolate (by date) is shown. Phylogenies were scaled to be directly similar post-1990; the grey shaded regions before 1990 represent the regions of the phylogenies that should not be 
compared because they are not scaled identically. Background colour indicates fluoroquinolone susceptibility; branch colour indicates geographic location. (E) Time-scaled phylogeny for the mixed 
fluoroquinolone resistant or susceptible genotype, ST3(001), generated using ClonalFrameML.24 Two fluoroquinolone-resistant areas of the phylogeny are indicated by red shading within the blue 
susceptible region. Rapid clonal expansion after resistance emergence is supported by significantly lower ED scores for resistant versus susceptible areas. (F) Time-scaled phylogeny for ST8(002) 
generated using ClonalFrameML.24 Every second Oxfordshire isolate (by date) is shown. Two fluoroquinolone-resistant isolates are indicated at the bottom of the panel. IRR=annual incidence rate ratio. 
ED=evolutionary distinctiveness.25 R=fluoroquinolone resistant. S=fluoroquinolone susceptible.
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ST2(014/020) (p=0·0014; appendix), consistent with 
greater transmission in the former.

Fluoroquinolone restriction and multiple enhanced 
infection control measures were introduced simultaneously 
in England in 2007.17 Therefore, we investigated the 
hypothesis that infection control, not antimicrobial 
stewardship, reduced incidence of C difficile infection by 
reducing transmission (eg, that fluoroquinolone-resistant 
isolates were simply more prevalent in hospitals where 
infection control efforts were concentrated). Secondary 
spread (transmission) was inferred when subsequent 
infections had closely genetically related isolates. We 
estimated the Oxfordshire incidence of inferred secondary 
cases separately for fluoroquinolone-resistance versus 
fluoroquinolone-susceptibility, and also for infections 
where hospital-based contact occurred between primary 
and secondary cases.12 There was strong evidence for 
declines in secondary C difficile infections caused by 
fluoroquinolone-resistant isolates, both with hospital 
contact with a previous case (aIRR 0·21, 95% CI 0·13–0·34, 
p<0·0001) and without (0·45, 0·29–0·71, p<0·0001; 
figure 5). Declines occurred in secondary cases caused by 
fluoroquinolone-resistant isolates of ST1(027) and non-
ST1(027) genotypes (p≤0·012, appendix). By contrast, there 
was no evidence of declines in secondary cases caused by 
fluoroquinolone-susceptible isolates, either with hospital 
contact with a previous infection (0·87, 0·67–1·13, p=0·29) 
or without (1·14, 0·92–1·42, p=0·23), supporting the 
importance of fluoroquinolone restriction over infection 
control interventions.

Discussion
Our analysis of multiple whole genome sequence datasets 
shows that reductions in the incidence of C difficile 
infections caused by fluoroquinolone-resistant isolates (of 
multiple genotypes) plausibly has driven the decline in 
C difficile infections in Oxfordshire and Leeds, England, 
from 2007. Declines occurred alongside significant 
reductions in fluoroquinolone use in hospitals and the 
community. Extensive whole genome sequence 
phylogenies show that acquisition of fluoroquinolone 
resistance preceded the emergence of multiple, prevalent 
genotypes (figure 4, appendix); after fluoroquinolone 
prescribing was controlled, incidence declines were 
specific to C difficile infections caused by fluoroquinolone-
resistant isolates of these same genotypes (figure 3, 
figure 4, appendix). By contrast, the incidence of C difficile 
infections from multiple fluoroquinolone-susceptible 
genotypes remained constant (figure 3, figure 4C, 
appendix), unaffected by changes in fluoroquinolone use 
or other national policy measures, such as restricted 
cephalosporin prescribing and enhanced infection control 
interventions, irrespective of genotype (figure 5, 
appendix).17 Crucially, there was no evidence of a decline in 
plausibly nosocomially transmitted secondary cases 
caused by fluoroquinolone-susceptible C difficile, which 
would be expected if improved infection control had made 

a major contribution to C difficile infection declines, 
whereas secondary cases caused by fluoroquinolone-
resistant C difficile decreased markedly (figure 5, appendix).

The phylogenetically estimated date of fluoroquinolone 
resistance emergence preceded the clinical emergence of 
several problematic C difficile genotypes of different 
phylogenetic clades:26 ST1(027),9 ST42(106), ST3(001), and 
ST37(017) (figure 4, appendix).28,29 The recent emergence of 
fluoroquinolone-resistant ST17(018) in Italy (appendix) 
also followed high fluoroquinolone use.30 Our greater 
sampling density9 revealed short-branched, geographically 
structured phylogenies of fluoroquinolone-resistant 
C difficile consistent with rapid spread within hospitals, 
and occasional transmission between them (figure 4D–F, 
appendix). Inclusion of international isolates allowed us to 
show generalisability of our findings outside of the UK. 
Although fluoroquinolone-susceptible, limited ST8(002) 
and ST2(014/020) transmission plausibly occurred, as 
indicated by small, short-branched clusters, and lower ED 
scores for clinical-toxin EIA-positive isolates than for 
infant/EIA-negative isolates (appendix). However, the 
absence of large-scale geographic structure in the long-
branched phylogenies of all fluoroquinolone-susceptible 

Figure 5: Incidence trends of inferred secondary Clostridium difficile cases in 
Oxfordshire from April 2008 to March 2011
Inferred secondary cases are those caused by C difficile isolates that are genetically 
closely related (≤two single nucleotide variants) to isolates recovered from a 
previous case, and therefore potentially transmitted. Incidence trends were 
calculated separately for inferred secondary cases caused by fluoroquinolone-
resistant ST1(027), fluoroquinolone-resistant non-ST1(027), and 
fluoroquinolone-susceptible isolates, stratified by with versus without hospital-
based contact. Horizontal dotted line shows an IRR per year of 1 (ie, no change 
over time) against which the 95% CI bars are compared to determine statistical 
significance of any change. The p values are a test of the IRR against the null 
hypothesis of no change over time (IRR=1). IRR=annual incidence rate ratio.
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genotypes (appendix) suggests that most were introduced 
independently into the clinical environment from 
alternative potential reservoirs.31,32 Fluoroquinolone-
susceptible C difficile might therefore represent a 
population lacking large-scale adaptation to antimicrobial 
selection pressures of clinical environments.

The decline in incidence of C difficile infection after 
national restriction of high-risk antimicrobials is consistent 
with previously successful small-scale interventions 
restricting high-risk antimicrobials as part of control 
packages.7,10,11 However, our study showed conclusively that 
Oxfordshire declines of C difficile infection were due to 
the parallel disappearance of fluoroquinolone-resistant 
isolates of multiple genotypes (figure 2, figure 3), 
suggesting that any selective advantage specific to resistant 
isolates might be lost when the antimicrobial is withdrawn. 
In England, additional antimicrobials were also targeted 
for restriction.17 However, only cephalosporin use also fell 
(figure 2A, appendix). Because all C difficile is inherently 
resistant to most cephalosporins,4 their restriction cannot 
explain the fluoroquinolone-susceptibility-specific declines 
in incidence observed. Similarly, if an ST1(027)-specific 
factor had led to its decline, there would be no reason for 
C difficile infection caused by fluoroquinolone-resistant 
isolates of several other genotypes—ST42(106), ST3(001), 
and ST37(017)—in two other C difficile clades (1 and 3)26 
to decline concurrently (figure 3, figure 5). Although 
univariate cross-correlations between decline of C difficile 
infection and hospital-prescribed extended-spectrum 
penicillins (mostly amoxicillin alone) and beta-lactamase 
resistant penicillins (mostly flucloxacillin alone) were 
stronger than for fluoroquinolones in Oxfordshire, the use 
of many antibiotics in these groups actually rose because 
they were instead used in combinations, such as co-
amoxiclav. Penicillins generally have a lesser risk of 
provoking C difficile infections than other classes of 
antibiotics,8,33 and when taking community prescribing 
into account, (which forms a larger proportion of overall 
antimicrobial use than hospital prescribing) the correlation 
between these penicillin groups and incidence of C difficile 
infection in England disappears. Unfortunately, 
community prescribing data were not available for 
Oxfordshire for comparison. Finally, the much smaller 
population size meant that these univariate cross-
correlations were estimated imprecisely compared with 
those for England as a whole. Our study therefore clarifies 
the issue of whether fluoroquinolone or cephalosporin 
restriction alone or in combination is key to C difficile 
infection control.34–36 However, changes in dominant 
genotypes over time have been reported in a single centre 
in the absence of antimicrobial restriction policies.37 
ST1(027) outbreak control has also been achieved when 
total antimicrobial (not only fluoroquinolone) use was 
reduced,38 although this change could still predominantly 
reflect the effect of fluoroquinolones.

Similar to cephalosporin restriction, enhanced infection 
control measures17 such as isolation, contact precautions, 

and enhanced environmental cleaning do not target 
specific C difficile genotypes and should therefore reduce 
numbers of symptomatic patients infected with transmitted 
strains, irrespective of fluoroquinolone susceptibility. 
Analysis of closely related C difficile genomes from different 
patients (ie, representing possible transmissions12 
potentially preventable by infection control measures) 
clearly showed that incidence only fell for secondary cases 
caused by fluoroquinolone-resistant C difficile, irrespective 
of hospital contact with a previous closely genetically 
related case, with no change in secondary cases caused by 
fluoroquinolone-susceptible isolates (figure 5, appendix). 
This finding is consistent with previous work38 finding no 
change in incidence of C difficile infection after infection 
control procedures were strengthened. This finding 
supports the greater importance of fluoroquinolone 
restriction in both hospitals and the community over 
enhanced infection control in recent reductions in English 
incidence of C difficile infection.

Antimicrobial stewardship targeted all patients in 
hospitals and the community,17 so clinically adapted 
resistant C difficile might conceivably have been eliminated 
from asymptomatic carriers and cases. If fluoroquinolone-
resistant C difficile persisted in carriers, outbreak 
conditions should have returned rapidly once fluoro
quinolone prescribing increased. This did not occur even 
after post-2010 increases in hospital fluoroquinolone 
prescribing in Oxford and Leeds (figure 2A, appendix). 
However, whereas before 2007 fluoroquinolones were 
prescribed widely, including in elderly people, increases 
after 2010 do not necessarily equate to increased exposure 
of patients with high risk of C difficile infection. Instead, 
these increases might reflect new, specific indications 
such as neutropenic prophylaxis (see appendix for Leeds; 
equivalent data not available in Oxford), consistent with 
observations that fluoroquinolone use is not a risk factor 
under non-outbreak conditions.39 The lack of national rise 
in fluoroquinolone-resistant C difficile infections also 
supports their almost complete eradication from both 
symptomatic patients and asymptomatic carriers in 
England, consistent with regional (Oxfordshire) findings 
that by late 2011, fluoroquinolone-resistant isolates of 
the commonest incidence genotype (ST1(027)) had 
disappeared from asymptomatic colonisation as well 
as infection.31

The genotypes ST1(027), ST42(106), ST3(001), and 
ST37(017), accounting for most fluoroquinolone-resistant 
isolates, represent three divergent C difficile clades,26 each 
with a genetically distinct, toxin-encoding pathogenicity 
locus.26 These genotypes could therefore differ in 
virulence or transmissibility due to varying gene content. 
ST1(027), for example, is almost four times likelier than 
other genotypes to cause symptomatic infection40 
(although this could reflect its fluoroquinolone-resistant 
phenotype in settings with high fluoroquinolone 
prescribing). It seems unlikely that other gene content 
should be completely confounded with fluoroquinolone 
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resistance, particularly within the large clade 126 
(containing ST42(106), ST3(001), and Italian ST17(018)). 
However, even if additional virulence factors are 
associated with ST1(027), the overall diversity of outbreak-
associated genetic backgrounds in which fluoroquinolone 
resistance is found suggests that this phenotype alone 
might be sufficient to confer outbreak potential.

A few sporadic fluoroquinolone-resistant isolates were 
identified in otherwise susceptible genotypes (appendix), 
suggesting that chance, combined with regional 
antibiotic prescribing policies, could trigger localised 
spread. ST11(078) was unusual, in that fluoroquinolone 
resistance occurred in 24 (13%) of 182 isolates, distributed 
throughout the phylogeny (appendix). ST11(078) can be 
transmitted zoonotically,32 and the unstructured pattern 
of fluoroquinolone resistance within this phylogeny 
could reflect the sporadic emergence of resistance either 
during agricultural fluoroquinolone use, or after human 
colonisation and antibiotic exposure.

The main study limitation was being primarily based in 
one, albeit large (population of approximately 
600 000 people) region, where 7 years of individual-isolate 
whole genome sequences enabled us to predict 
fluoroquinolone susceptibility. Whole genome sequence 
data from Leeds were available for less than 3 years, 
precluding a similar analysis to figure 2 in another region. 
Different datasets from different sources were used for 
incidence of C difficile infections and antibiotic use because 
no one dataset was collected consistently across the entire 
period from a single source. Comparisons of incidence of 
C difficile infections and antibiotic use are ecological, and 
therefore prone to unmeasured confounding. English 
hospital-level antibiotic data are not available before 2013 
(only subsequently),41 so we were unable to investigate 
associations between fluoroquinolone use and C difficile 
infections across Trusts in a broader ecological analysis. 
However, our key characteristics, fluoroquinolone 
susceptibility and genotype, were unknown when the 
C difficile infections occurred and were not part of the 
inclusion or exclusion criteria. Therefore, the phylogenetic 
analyses are representative of the genotypes circulating in 
the locations studied when sampled.

In summary, fluoroquinolone resistance occurs in 
several genetically divergent C difficile genotypes.26 The 
contrasting phylogenies of fluoroquinolone-resistant and 
fluoroquinolone-susceptible C difficile probably reflect 
increased potential for health-care-associated selection 
and epidemic spread of fluoroquinolone-resistant 
bacteria. Thus, the C difficile genotypes causing infections 
at any given time and location, and the relative 
importance of different transmission routes (nosocomial 
person-to-person versus multiple introductions) might 
be a direct consequence of antimicrobial prescribing 
policies. The multifaceted approach to C difficile infection 
control adopted by England successfully curtailed 
transmission. Whole genome sequence data suggest that 
fluoroquinolone restriction plausibly played the most 

important part in this success. Appropriate antimicrobial 
stewardship therefore is, and will likely remain, central 
to the control of C difficile infections.
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