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A B S T R A C T   

This study presents an innovative integrated approach for smart cities, aimed at promoting envi-
ronmentally sustainable economies through novel technological and socio-economic transitions. 
The proposed model determines the smart city index (SCI) by aggregating 32 distinct performance 
indicators that significantly transform the environment, economy, energy, social, governance, and 
transportation sectors. This model is inherently multidisciplinary and is methodologically processed 
using multi-criteria decision analysis, which is aggregated using four distinct weighting schemes. 
The model results reveal that based on the equal weighting scheme, Sydney emerges as the city 
with the highest SCI score of 0.72, whereas Lima is identified as the city with the lowest SCI score of 
0.26. On the other hand, based on the sustainability triad scheme, Toronto tops the list with an SCI 
score of 0.77, whereas Abuja scores the lowest with an SCI score of 0.31. Interestingly, Toronto, 
Vancouver, and Montreal continue to maintain their position among the top 5 cities across all three 
schemes: equal weighting, sustainability triad, and energy-focused schemes. Furthermore, the 
energy-focused scheme identifies Montreal as the top-performing city, scoring 0.7, followed by 
Oshawa at 0.67, and four Canadian cities top the SCI scores in this scheme. In contrast, Lima still 
remains at the bottom of the list with an SCI score of 0.27. Finally, based on a smart health-focused 
scheme, Sydney, Osaka, and Hämeenlinna rank highest in SCI scores. Overall, the proposed 
approach and model provide valuable insights and guidelines for policy-makers and urban planners 
to design and implement smart city initiatives that can significantly enhance sustainable devel-
opment and improve quality of life in urban settings.   

1. Introduction 

As expected, renewable energy solutions are now more cost effective than before. In fact, the IRENA’s report [1] emphasizes that 
unsubsidized renewable energy is the most frequent and cheapest source for energy generation. The cost of installation and main-
tenance of renewables continues towards a downward trajectory, leading to mass adoption. Their report findings show a decrease in 
the global weighted average cost of electricity by 26% for concentrated solar power (CSP), followed by 14% for bioenergy, 13% for 
photovoltaic (PV) and onshore wind, 12% for hydropower, and finally 1% for geothermal and offshore wind [1]. 

Lund et al. conducted a review study on smart energy systems published in the literature and found that the smart energy system 
concept represents a paradigm shift in energy management [2]. They also conclude that smart energy systems are those that follow an 
integrated and holistic approach by integrating the energy need of multiple sectors and treating them. For example, the energy needs 
for the industrial, residential, commercial and transportation sectors would be addressed altogether and not in silos. Therefore, a 
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notable feature of smart energy systems is the holistic and integrated approach from a sectorial perspective. Smart city frameworks 
have been applied globally throughout key areas such as infrastructure, data, services and devices, where India and China both pri-
oritize infrastructure and data, the United States and Europe both prioritize services, devices and data sequentially [3]. 

Dincer and Acar conducted research on smart energy systems and identified several key expectations for these systems, including 
being exergetically efficient [4]. They emphasized the importance of ensuring that these systems are "smart" throughout every stage of 
the energy process, from generation to conversion to distribution and usage. In a related study, Dominković et al. developed a model 
that examined the interactions between various sectors [5]. The researchers also created models for five different large-scale storage 
systems, and used linear optimization to determine the optimal share of district energy, energy efficiency, and renewable supply. In 
addition, Connolly et al. conducted research on the most effective and cost-efficient methods for integrating renewable energy into the 
energy system [6]. Their integrated energy system features multiple energy sources including bioenergy fuels, wind and solar that 
meets the basic demands of mobility, power, cooling and heating. Electrifying the transportation sector is highlighted as necessary to 
achieve the smart energy system objective. This can be done by using electro fuels or intermediate storage medium such as hydrogen. 
The authors also argue that electricity storage leads to the most expensive form of energy storage, which is 100 times more expensive 
than thermal storage. A novel IoT (internet of things)-based model for healthy development index for urban cities is proposed by 
Ref. [7], where they use a Gaussian-based approach to forecast urban cities developments. 

Between 2010 and 2020, there have been over 150 articles published considering smart city assessment, as stated in Ref. [8]. They 
also conclude that the proposed future research agenda revolve around smart city performance measurement framework, composite 
index for smart sustainable cities, and a holistic evaluation using indicator setting. These gaps are addressed in this paper subsequently. 
The smart city concept can be very subjective and ambiguous. In fact, the researchers in Ref. [9] have explored the perceived under-
standing of 113 Belgian municipalities on their understanding of smart cities. Their results show that municipalities view the smart city 
concept from four viewpoints: technological, societal, comprehensive, and nonexistent. In fact, a comprehensive methodology for 
planning and assessing the development of smart energy systems leading to complex energy provision technology networks using both 
on-site and off-site resources is proposed by Ref. [10]. In their study, various energy sources including a solar system, coupled with an 
industrial waste heat recovery system along with grid-based resources such as district heating, natural gas and electricity are all com-
bined. In addition, this case study features centralized technologies such as large-scale combined heat and power and district heating and 
decentralized technologies such as boilers and solar collectors. Their results show that decentralized systems with low-temperature waste 
heat and decentralized heat pumps in buildings are most feasible financially and ecologically. These results can be questionable as 
centralized systems such as district heating and cooling are proven to be more environmentally benign with larger financial investments 
needed. Methods used in this study include the Process Network Synthesis (PNS), the Energy Long-term Assessment of Settlement 
Structures (ELAS), and the Sustainable Process Index (SPI). On the other hand, smart cities in future energy system architecture are 
explored by Ref. [11], where they investigate the impact of future electric power systems on production, storage, transmission, distri-
bution and consumption of electricity. In addition, MCDA is utilized to assess the sustainability of cities by Ref. [12], by integrating 
energy, environment and infrastructure parameters. The environmental problems arising from the concept of sustainability, namely from 
water, energy and environmental aspects are investigated by Ref. [13]. The balance between energy consumption, population growth and 
deforestation, desertification and other natural phenomena is discussed in Ref. [14]. 

A stand-alone smart energy system was designed and assessed for a remote hospital, by utilizing the hospital’s daily waste of 0.6 
tons, coupled with PV system, biogas cofire and diesel generators. The optimization study indicates a carbon emission and diesel 
consumption reduction by almost 84% and 81%, respectively [15]. Circular economy city concept is evaluated by Ref. [16] as a 
proposed solution to heightened rates of urbanization and climate change. The developed framework suggests that experimentation, 
knowledge development activities and strong policy strategies are critical in the development of circular economies. Moreover, 
assessment of 18 large-scale post carbon economy transition strategies is conducted by Ref. [17], who analyzed the targets, tech-
nologies, costs, equity, governance and social change aspects of the 18 strategies. Results illustrate that technology and costs are not 
key transition barriers. On the other hand, strategies do not adequately represent the pathways for rapid societal change [18]. In fact, 
technological and governance domains dominate the smart city research and continue to be integral components for smart city 
development [19]. 

The key goal of this research is to develop a practical and feasible model for a net zero energy-based smart city. The paper has four 
specific objectives to achieve this goal:  

• To develop a new methodology for characterizing smart cities and evaluating their performance across eight key domains.  
• To examine the socio-economic transitions necessary to foster an environmentally sustainable economy.  
• To conduct parametric studies to evaluate the model’s resiliency and explore the relationships between variables and domains, 

specifically within the environmental and economic domains.  
• To analyze the economic, technical, and environmental considerations relevant to smart cities. 

The strengths and hence novelties of this paper revolve around the introduction of a newly developed holistic approach for 
assessment of the world’s cities under a performance criterion of smart city index (SCI). Furthermore, the meticulous journey of data 
collection for twenty cities worldwide for each individual indicator is considered unique and innovative for this study. Since this model 
is novel, the data analyses and parametric studies between the individual variables and domains add more to the robust nature and 
reliability of the model. Despite the novelty of this research, limitations of the study include the time the data sets were collected, 
which were primarily for the year of 2020. It is important to note that most of the data sets was currently available while some data 
points were missing for some cities. 
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2. Model development and methodology 

The smart city index that is proposed in this paper is composed of eight main dimensions, each is assessed by four distinct indicators, 
totally 32 performance indicators. Data is obtained at the granular level for 20 cities across the world and computed using multi-criteria 
decision analysis (MCDA) to aggregate a final smart city index. Such aspects are described in detail in Fig. 1 and are listed as follows:  

• Smart Environment  
• Smart Economy  
• Smart Society  
• Smart Governance  
• Smart Energy  
• Smart Infrastructure  
• Smart Transportation  
• Smart Health 

For the information obtained to be reliable, the process must be meticulously methodical and quantified. Additionally, indicators must 
be thoughtfully chosen using a logical and systematic approach to accurately represent each aspect of the smart city, while also ensuring 
simplicity and reliability of the model. Indicators serve as tools that enable researchers to summarize and simplify complex, dynamic in-
formation into meaningful and useful data. To achieve optimal results, ten guiding principles are followed. Fig. 2 depicts these steps. 

Fig. 1. The aspects of smart cities including main indicators for each sub-index (adapted from [21,22]).  

Fig. 2. Ten guiding principles to construct a composite indicator scheme.  
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Four performance indicators inform each domain and they are used to reflect the valuation of the respective domain. Indicators are 
selected on the basis of their relevance, analytical soundness, timeliness and data availability. The following functions highlight the 
functions used to obtain the smart city index: 

SCI(β,ω) =
∏m

i=n
βi

ωi (1a)  

Smart City Index = γSEnv
ωEnv × γSEco

ωEco × γSSoc
ωSoc × γSGov

ωGov × γSEn
ωEn × γInfra

ωInfra (1b)  

×γSTrans
ωTrans × γPResil

ωPResil 

Since this paper primarily focuses on the economic and environmental aspects, these domains are explored in more depth. The 
economy is a critical domain in a city and for any smart city model to materialize, this domain is of great significance. The economy 
flourishes and grows in spirit of all the automation and the system optimizations that take place throughout all domains. This allows for 
more opportunities, innovative ideas and entrepreneurial platforms to grow and expand. Imports and exports as well as the GDP per 
capital are indicators that help assess this domain. The economic aspect is then evaluated as follows: 

γSEco = βGDP
ωGDP × βRD

ωRD × βUR
ωUR × βGC

ωGC (2)  

where β represents the dimensionless normalzied value for the respective indicator and ω represents the weight associated with each 
indicator. This sub-index is composed of GDP per capita βGDP , research and development βRD, unemployment rate βUR, and the Gini 
coefficient βGC. 

The gross domestic product (GDP) per capita serves as a robust indicator of how effective an economy is for a particular population. 
Essentially, it represents the monetary value of all goods and services produced within a city or country during a specific period. Its 
value lies in providing an economic snapshot that can be used to evaluate the size and growth rate of an economy, making it a key tool 
for policymakers, investors, and businesses in making strategic decisions. Measured as GDP per person in the national population, 
cities with higher GDP per capita tend to enjoy a higher standard of living and greater income satisfaction. To promote sustainable 
economic growth and a prosperous GDP per capita, smart city must prioritize this indicator. Thus, the function used to assess it is: 

βGDP =
δGDP0

δGDP
(3)  

where δGDP is the GDP per capita for a given city, compared to the reference state GDP per capita, which could be the regional, national 
GDP per capita. 

Research and development activities play a critical role in the successes of an economy. In fact, it is a crucial component of 
innovation and a key factor in developing new competitive and alternative advantage. Furthermore, the whole concept of smart cities 
stemmed from research and development. Many of the technologies and services that have become deeply rooted and integrated in 
mankind’s lifestyles such as cellular phones, internet, or computers are as a result of research and development. The transformation of 
technology to produce novel products, processes and services is essential in a smart city that thrives on continuous growth. Therefore, 
cities that have higher expenditure in this sector have higher potential to innovate and create; thus having a smart economy and a 
smarter city index. Thus, the function used to assess this indicator is: 

βRD =

∑
R&D Expenditure

∑
GDP

(4) 

Innovation is considered a key indicator for smart cities. As new technologies constantly emerge to optimize and enhance current 
practices, this indicator covers a wide range of sectors. Commercial breakthrough and groundbreaking research are carried out by 
universities, public institutions and the commercial sector. A smart city is the one that capitalizes on all of these stakeholders to ensure 
the city prospers. This indicator assesses the level of creativity and innovatively that a city enjoins. This is assessed by evaluating the 
bond between academic institutions and industry. The surveys are designed to answer to what extent do businesses and universities 
collaborate on research and development. The following function is the employed: 

βIC =
δIC

δIC0

(5)  

where δIC is the answer to the survey question: In the country, to what extent do businesses and universities collaborate on research and 
development (R&D)? [1 = do not collaborate at all; 7 = collaborate extensively] and δIC0 is the total for the answer. In summary, βIC is 
the average answer to the survey question. 

Note that unemployment is recognized as a disastrous trend for a city. In fact, the cities that have higher unemployment rates have 
shrinking economies and therefore declining cities. On the contrary, cities with lower unemployment rates have growing economies 
and smarter cities. It is critical for a city to present its citizens with various types of opportunities, allowing for their skill and talent to 
be captured in the best of ways. Furthermore, this indicator can be used to offset unemployment rate, discussed earlier. Job creation is 
essential to ignite shared and sustainable economic growth. The job creation leads to lower interest rates and more spending on public 
works and infrastructure enhancement. Furthermore, cities that create jobs and provide opportunities for career growth to its citizens, 
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keep them engaged, motivated and productive, thus resulting in a smarter society. This indicator is apparently measured by the 
following function: 

βUR =

∑
UR

∑
LF

(6)  

where 
∑

UR is the total number of unemployed perons compared to 
∑

LF, which is the total labour force including those who work 
and those who don’t. 

The Gini coefficient indicator is assessed by evaluating applied tariff rate on products in addition to the intensity of local market 
competition. Local market competition is assessed through a survey [1 = not intense at all; 7 = extremely intense]. Furthermore, the 
domestic market scale is evaluated as measured by the GDP. The domestic market size is measured by gross domestic product (GDP) 
based on the purchasing-power-parity (PPP) valuation of country GDP, in current international dollars (billions). The following 
function summarizes the evaluation method for this indicator: 

βGC = δAT + δLMC + δDMS (7)  

where δAT is the rate of applied tarrifs (%), δLMC represents the average answer to the survey, and δDMS is the domestic market scale in 
(billions $ GDP). 

Note that the environmental sustainability is recognized as a critical consideration in the conceptualization and implementation of 
smart city initiatives. As highlighted in the introductory section, the anticipated growth in the global population and the associated 
increase in carbon emissions underscore the urgent need for smart city solutions that prioritize environmental conservation and 
mitigation. The subsequent section outlines the evaluation framework adopted for assessing the environmental performance of the 
proposed smart city model as follows: 

γSEnv = βAQ
ωAQ × βCC

ωCC × βWM
ωWM × βBH

ωBH (8)  

where β represents the dimensionless normalzied value for the respective indicator and ω represents the weight associated with each 
indicator. This sub-index is composed of air quality βAQ , climate change and GHG emissions βCC, waste management βWM, and 
biodiversity and habitat βBH. 

Ensuring high air quality and minimizing pollution is considered a crucial aspect of smart environments, as air pollution has 
emerged as a significant public health concern, with poor air quality linked to premature deaths. Air quality is assessed by measuring 
concentrations of various pollutants, including but not limited to greenhouse gases (GHGs), PM2.5, O3, NO2, SO2, CO, and total reduced 
sulfur compounds (TRS), and comparing them to established air quality objectives and criteria. GHGs, which are the primary pollutants 
driving climate change, are of particular importance in assessing this sub-index. Ideally, a smart city should have environmentally- 
benign processes and operations that result in a pollutant-free environment. GHGs, including water vapor, CO2, CH4, and N2O, 
absorb and emit radiant energy, and their rapid increase since the industrial revolution has contributed significantly to global 
warming. With the advent of smart cities, there is an opportunity to regulate and control GHG emissions to minimize harm to the 
environment. This indicator is computed by evaluating the GHG emissions per capita for a selected city and comparing it to the GHG 
emissions per capita in a reference state, which may be the surrounding region, provincial state, country, or continent. In Canada, the 
Environmental Protection Agency sets acceptable levels for air quality at 12–13 μg/m3. The following function summarizes the 
evaluation method for this indicator: 

βAQ =
δGHG

δGHG0

(9) 

The GHG emissions per capita (kt CO2eq per capita) of a city, denoted as δGHG, are compared to a reference state, δGHG0 using the 
following function to obtain a dimensionless number that can be incorporated into the model. Additionally, in evaluating this indi-
cator, the percentage or ratio of air and environmental protection measures implemented by various industries can also be taken into 
account. The specific data points employed in assessing this indicator are depicted in Table 1. 

Table 1 
The parameters considered to assess the air quality indicator.  

Parameters Unit 

Total CO2 Emissions kt CO2eq/B$ 
CO2 Emissions - Power Sector g CO2/kWh 
Methane kt CO2eq/B$ 
Nitrous Oxide kt CO2eq/B$ 
Black Carbon kt CO2eq/B$ 
Household solid fuels Daily Rate 
PM2.5 exposure μg/m3 

PM2.5 exceedance % Population  
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The water quality indicator encompasses water quality. A smart environment ensures that water remediation and management 
measures are incorporated in the overall city operation. Water recycling is also considered in this indicator. Reusing treated waste-
water for beneficial agricultural and landscape irrigation or industrial processes enhances a smart environment concept. Furthermore, 
water recycling and effective management allows the city to have sufficient water resources for its demand, decreasing the diversion of 
water from sensitive ecosystems and preventing pollution. The following function summarizes the evaluation method for this indi-
cator: 

βWQ =
δWQ

δWQ0

(10)  

where δWQ denotes the water conductivity level in Siemens per meter [S/m]. conductivity of substances is an indicator of water quality. 
In fact, conductivity affects the salinity and total dissolved solids (TDS) content, thus affecting the concentration of oxygen levels in the 
water. This is compared to a reference state δWQ0 , which is considered the optimal value. Moreover, percentages indicating im-
provements in this sector or percentage of wastewater treatment (%) can also be considered for this indicator. 

The management of waste is crucial in promoting environmental sustainability in a smart city. Waste may be generated from 
various sources such as residential, commercial, institutional, industrial, and municipal activities, and it may be either hazardous or 
non-hazardous. Improper disposal of waste can have negative environmental impacts such as soil and water pollution, and methane 
emissions from landfills contribute to global warming. This indicator assesses the effectiveness of waste management by measuring the 
percentage of resources conserved through recycling. The indicator can also be evaluated by comparing the amount of local waste 
disposal to a reference state and is computed as follows: 

βWM =
δWM

δWM0

(11) 

Here, δWM represents the amount of waste generated by all sectors within a city, compared to the waste generated in a reference 
state, δWM0 . Additionally, the recycling rate, expressed as the percentage of waste being recycled in tonnes per day per year (tonnes/ 
day/yr), can be used to assess this indicator. Alternatively, the waste generated can be divided by the GDP to obtain the recycling rate 
(tonnes/B$). 

This indicator pertains to the safeguarding of biodiversity and natural habitats. Many ecosystems are experiencing significant 
changes, leading to a decline in biodiversity. Some species are becoming vulnerable, while others face the risk of extinction. The 
granular-level data points used for this indicator are outlined in the Convention on Biological Diversity’s "Aichi Targets," which is a 
collection of internationally agreed-upon objectives for ecosystem management and conservation. These data points include marine 
protected areas, national and global terrestrial biome protection, species protection index, protected area representativeness, and 
species habitat index. Turnover rates, which express the ratio of the number of species in a system to their outflow rate, are also 
considered. This relationship can be expressed using the following function: 

βET =
δET

˙δOF
(12)  

where δET represents the quantity of species within a specific ecosystem within a city with respect to their outflow rates ˙δOF, which is 
measured at (species/year). Table 2 shows these data points in further detail with their respective units. 

Therefore, the quantity of species is assessed using the following function: 

δET = δMPA + δTBP + δSPI + δPARI + δSHI (13)  

where δMPA is the marine protected area assessed through the percentage of exclusive economic zone, δTBP is the terrestial biome 
protection, which is assessed through the percentage of biomes, δSPI is the species protection index, evaluated by Ref. [20] along with 
δPARI is the protected area representativeness index and δSHI is the species habitat index, both evaluated in the Environmental Per-
formance Index aforementioned. 

This indicator evaluates a city’s ecological sustainability by analyzing three specific data points, which include the GDP per unit of 
energy use, the environmental performance index, and the number of certificates of conformity with standard ISO 14001 on envi-
ronmental management systems issued. The environmental performance index is a ranking of 180 countries on 24 performance in-
dicators across ten issue categories related to environmental health and ecosystem vitality. This index provides a measure at a national 

Table 2 
The parameters considered to assess the ecosystem turnover rate.  

Parameter Unit 

Marine protected area % of EEZ 
Terrestrial biome protection - national weights % of biomes (capped) 
Terrestrial biome protection - global weights % of biomes (capped) 
Species protection index Dimensionless 
Protected area representativeness index Dimensionless 
Species habitat index Dimensionless  
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scale of how close countries are to achieving established environmental policy goals, and serves as a scorecard highlighting leaders and 
laggards in environmental performance. The index ranges from 0 to 100, with a higher score indicating better performance. The 
following function summarizes the evaluation method for this indicator: 

βS = δGDPE + δEP + δEC (14)  

where δGDPE is the GDP per unit of energy use for a city ($ per kg of oil equivalent), δEP is the environmental performance index, which 
is dimensionless, and δEC is the level of environmental conformorance (number of issued certifications per billion $ GDP). 

The first step in creating a composite indicator involves developing a theoretical framework, which provides a foundation for 
selecting and combining variables based on their fitness for the intended purpose. Experts and stakeholders are often consulted during 
this step, along with conducting a thorough literature review. 

The process of selecting data for composite indicators is a crucial step that involves careful consideration of various factors, such as 
analytical soundness, specificity, measurability, attainability, realism, and temporal aspects. Additionally, data availability, coverage, 
and relevance to the phenomenon being measured are key considerations, and proxy variables may be used when necessary. Missing 
data is imputed, and measures are taken to ensure the reliability of each imputed value and to identify any outliers. The selection of 
indicators is based on their strengths and weaknesses, and the interrelationships between them are carefully examined to avoid any 
arbitrary choices. 

To facilitate aggregation, data normalization is performed to scale the data points to a value between 0 and 1, as the indicators may 
have different units. The selection of weights is a value judgement that can significantly impact the composite indicator and overall 
results. Therefore, it is crucial to choose the appropriate weighting scheme that reflects the relative importance of each indicator and 
domain, while accounting for the objectives and priorities of the smart city model. This approach ensures that the composite indicator 
accurately reflects the underlying construct and effectively captures the multidimensional nature of the smart city phenomenon. 

Multi-criteria, geometric and arithmetic aggregatory methods can be used for composite indicators, and sensitivity analysis is 
conducted to assess the robustness of the composite indicators and the implications of methodological choices such as weighting and 
aggregation. 

3. Results and discussion 

In this section, we visualize the relationship between variables to gain a better understanding of their impacts on each other. This is 
particularly important when analyzing numerous variables at once, as plots and correlation coefficients can reveal patterns and reduce 
a large amount of data to a summarized subset of key relationships. Principal component analysis (PCA) is suitable for datasets with 
random variables that have standard deviations reflective of their relative significance in their application. PCA relies on both the 
correlations between random variables and the standard deviations of those variables. When the standard deviation changes while the 
correlation remains the same, it results in a change in the principal components. Since the data was standardized, a principal 
component with a variance of 1 indicates that it accounts for variation equivalent to one of the original variables. Additionally, the sum 
of all variances equals the number of original variables (8 sub-indexes). The first two principal components explain almost 78% of the 
variance in the original eight variables. 

Overall, the relationships between the 8 indexes are illustrated in Fig. 3, showing the degree of influence and correlation between 
each index. For instance, the environment index is more positively correlated with the society, energy, governance and infrastructure 
indexes. The eclipse circle shows the data distribution and how the values are spread out throughout the different cities in the model. 
Values that are better clustered show a stronger correlation, whereas values that are more spread out reflect more variation. On the 
other hand, the economy index is poorly correlated throughout all indexes, other than the transportation index. The 25%, 50% and 
75% averages refer to the values above the average value in each index. For instance, the 25% average of the economy index means to 
25% increase from the average economy index value as illustrated in Fig. 4. 

Thirty-two axes are aggregated in Fig. 5 using the principal component analysis to have a better visual illustration of the perfor-
mance of the indicators relative to each other. Similar to the index biplot, the clusters remain intact, however the values are a little bit 
more spread apart than the index values. The first component represents approximately 45% of the variation whereas the second 
component accounts for only 11% of the indicator variations. The biplot represents 56% of the original variation in the dataset. Each 
point on the biplot represents a city and each axis represents a performance indicator. The distance between points reflects the degree 
of similarity between them. Therefore, cities in close approximation to each other have similar profiles, whereas cities that are far from 
each other have dissimilar profiles. 

Using multi-criteria decision making (MCDA), the indicator values are summed to compose the unweighted index value γ. This 
value undergoes four different weighting schemes, through which each index has the opportunity to be weighed at 7%, 13% and the 
maximum of 22%. The four weighing schemes proposed in this model are described in detail in Fig. 6. 

The analysis of interrelationships between the environmental index and other domains reveals that the environment index has a 
strong positive correlation with the infrastructure index, followed by the energy and governance indexes. In contrast, it exhibits weak 
associations with the economy, transportation, and society indexes. It is noteworthy that the environment index has the highest 
correlation with the smart health index, suggesting that an environmentally sustainable city is likely to have a positive impact on the 
health and well-being of its citizens. These findings underscore the importance of promoting integrated and multidimensional ap-
proaches in designing smart city initiatives that prioritize environmental sustainability while considering the interrelationships be-
tween different domains. 
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Fig. 3. A correlation of the eight indexes and their relationship and impact on each other.  

Fig. 4. A correlation of the economy index and other related indexes.  
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Fig. 5. Principal component analysis biplot aggregating all performance indicators.  

Fig. 6. Weighting schemes used in this study.  
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In the model development section, it was discussed that weighting and aggregation are essential in computing a composite model. 
To account for the multi-disciplinary nature and diverse indicators used in this study, a multi-criterial decision analysis and principal 
component analysis were employed. To visualize the relationships between variables, a two-dimensional monoplot of the coefficients 
of the first two principal components was used. In the monoplot, vectors representing the original variables point away from the origin, 
with the angle between the vectors indicating the degree of correlation between the variables. A small angle suggests a positive 
correlation, while a 90-degree angle indicates no correlation. An angle of 180◦ indicates a negative correlation. 

The clustering analysis shows that the cities can be categorized into four distinct clusters based on their similarities in portfolio. The 
first cluster includes Abuja, Addis Ababa, Tunisia, Amman, Cairo and Lima, which are located in close proximity to each other on the 
plot. The second cluster, composed of Moscow, Istanbul, and Kuala Lampur, is situated in the middle of the plot. The third cluster 
consists of Western cities such as Canadian cities, London, Osaka, Sydney and Hameenlinna. The final cluster comprises outliers such as 
New York and Doha. New York stands out as an outlier due to its superior infrastructure, economy, and transportation values. On the 
other hand, Doha’s economic index value of 107% is more than double the average, which can be attributed to its small population size 
and significant GDP per capita. 

According to the results of the correlation analysis, the economy index exhibits a strong positive association with the infrastructure 
and energy indexes, with a moderate relationship observed between the economy index and the transportation, governance, and 
environment indexes. Conversely, a weak correlation is evident between the economy index and the health and society indexes. The 
findings, presented in Fig. 4, are derived from the granular level data collected for the 20 cities, which were computed to determine the 
total index value in their respective domains. 

Notably, the infrastructure index displays the highest Spearman’s Rs value with the economy index, indicating a significant cor-
relation between the two variables. Specifically, an increase in the value of the smart infrastructure index corresponds to a rise in the 
smart economy index value, thereby highlighting the crucial role of smart infrastructure in driving economic growth. 

The first scheme is the equal weighting scheme, where all eight indexes are given the same weight and degree of significance, when 
calculating the final Smart City Index score. The second scheme highlights the traditional sustainability pillars of economic, societal, 
and environmental sustainability. Thus, these three indexes combined account for two thirds of the weights, whilst the last third is 
distributed evenly among the remainder five indexes, leaving each index to be rated at 7%. Similarly, the third scheme takes an energy 
focused approach by giving two thirds of the weight to the energy, environment, and transportation indexes, leaving the remainder five 
indexes with the last third of the weight, evenly distributed among them. Lastly, the smart health focused scheme gives two thirds of 
the weight to the smart health, infrastructure, and governance indexes, leaving the last third evenly distributed among the remainder 
indexes in the model. Using this methodology, data points for indicators were collected from 20 cities worldwide. The selection of these 
cities was based on the availability and quality of data, with representation from all continents and inclusion of both developed and 
developing countries. Fig. 7 displays the map of the selected cities. Outliers that exceeded the considered range were removed to 
ensure uniformity and consistency. These outliers included the economic index of Doha. Three clusters of the environmental index are 
observed, with two below average and the third slightly above, ranging from 0.75 to 0.87. 

Fig. 7. Twenty cities across the world explored in this study.  
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The governance index ratio is 0.44 and there is variation between cities, ranging from 0.17 to 0.59. Montreal has the highest ratio, 
while Cairo has the lowest. Disparity in the economy index is evident as clusters of cities can be grouped based on the results. The value 
of Doha of 1.72 was excluded because it is considered an outlier. This significantly high value stems from the substantial GDP that Doha 
enjoys with very minimal population, making the GDP per Capita indicator considerably high. New York, Toronto, and Vancouver 
scored more than 0.9 on this index. Smart health results also show considerable variation as some are performing very poorly with 
scores that are less than 0.2, while others are hitting the average, which is 0.45. After identifying Lima, Osaka, and Sydney as outliers, 
these cities were excluded from the averaging process. Based on an equal weighting scheme, Sydney achieved the highest Smart City 
Index (SCI) of 0.72, while Lima garnered the lowest SCI of 0.26. On the other hand, when applying the sustainability triad scheme, 
Toronto attained the highest SCI of 0.77, with Abuja obtaining the lowest SCI of 0.31. It is noteworthy that Toronto, Vancouver, and 
Montreal maintained their positions in the top five cities across all three schemes, namely equal weighting, sustainability triad, and 
energy focused. Furthermore, the energy focused scheme identified four Canadian cities, with Montreal ranking highest at 0.7, and 
Oshawa following closely at 0.67. The lowest in this scheme remains Lima with a SCI score of 0.27. From a smart health focused 
scheme, Sydney, Osaka, followed by Hämeenlinna score the highest with SCI scores of 0.81, 0.79, and 0.7 respectively. While the 
energy focused scheme resulted in the most conservative and pessimistic SCI for the cities, the smart health focused scheme resulted in 
the most optimistic SCI values. The biggest difference among the highest SCI scores between the different schemes is 0.11, whereas the 
biggest difference among the lowest SCI scores is 0.12. 

The relationship between the government effectiveness ratio and the GDP per capita has been previously studied in the literature. 
Based on the model in this article, a clear exponential relationship is observed between the two indicators with a p value of less than 
0.05, suggesting a strong causative correlation between the two indicators. Furthermore, cities with higher government effectiveness 
ratios tend to have higher GDP per capita. These findings are in line with [23], who developed a composite governance index and 
concluded that increases by one unit of the governance index results in 2% increase to the GDP per capita. Furthermore [24], also 
reported significant positive effect of the government effectiveness on economic growth, after analyzing 81 countries using the System 
Generalized Method of Moments. Lastly and most recently, Lee and Whitford also show a linear positive relationship between 
perceived government effectiveness and the GDP. 

Sustainability traditionally revolves around the social, economic and environmental perspectives. Does a smart environment result 
in a smart economy? This is a critical question for both governments and societies alike. After all, economic growth is most sensible and 
has direct impacts on those stakeholders, whereas the environmental aspects are more long term and not physically experienced. Based 
on this model, environment has an exponential positive relationship with economy. In other words, increases in the smart environment 
index ratio, results in exponential increases to the smart economy index with p value lower than 0.05, indicating significance between 
the two indexes. 

This is in line with the European Environment Agency who reported that our consumption and production systems are unsus-
tainable. Similarly [25], suggested that while environmental impacts of economic growth may include pollution, global warming and 
disruption of environmental habitats, some forms of economic growth can mitigate that such as clean energy technology and 
renewables. 

Furthermore, since the GDP per capita is considered one of the main and important indicators that enhance the smart economy 
index, a parametric assessment is conducted to show how enhancements to the GDP per capita impact the overall smart economy 
index. Fig. 8 shows the predicted smart economy indexes after 25% and 50% enhancement to the GDP per capita from the current 

Fig. 8. Impact of GDP per capita on the overall economic index.  
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values. It is important to note that for this model, considerable enhancements to the GDP per capita results in very modest increases in 
the overall smart economy index. This could be due to the impact of the other economic indicators such as percentage of expenditure 
on research and development. Finally, Fig. 9 shows the results of these cities against each unweighted index. According to the average 
results, the energy index has the lowest ratio, followed by governance and smart health. On the other hand, infrastructure has the 
highest ratio, followed by the environment, economy, and transportation indexes 

For Doha, the Sustainability Triad scheme makes it the fourth highest, as it factors in its strongest suite, the economy index. 
However, equal weighting brings it to the 9th place with 0.619. The other schemes do not take the economy index into consideration, 
bringing Doha to 0.546 and 0.549 based on the Smart Health Focused and Energy Focused schemes, respectively. 

An exponential relationship exists between the energy environment indexes. This is also proven as smarter energy index perfor-
mance by utilizing more clean energy, enhancing energy storage and improving energy efficiency all contribute to lower GHG 
emissions, better air quality and waste management, consequently preserving of habitat. Fig. 10 illustrates the relationship between 
these two indexes. 

Fig. 9. Cities performance on various indexes along with the calculated average for each index.  

Fig. 10. Relationship between society and economy indexes.  
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Another important domain is the infrastructure index. Does investment and enhancement in the energy index result in better and 
more resilient infrastructure? According to the results in this model, there is a significant positive linear relationship between the 
energy and infrastructure indexes, suggesting that higher energy index ratio is associated with higher infrastructure index ratio. This is 
clear as the p value is much less than 0.05, as illustrated in Fig. 11. Clean energy utilization and energy efficiency both correlate with 
the infrastructure’s indicators of sustainable infrastructure and smart device penetration. Similarly, lower energy cost, allows for 
infrastructure investment to be enhanced. In fact, Fig. 11 shows the smart environment and its respective smart energy index for the 
different cities. 

The average SCI is relatively remarkably similar among the four different weighting schemes, which reflects the accuracy and 
resiliency of the model. The Energy Focused scheme results in a more compacted results set with pessimistic results, whereas the Smart 
Health Focused scheme results in the most optimistic results for all cities except for the City of Lima. 

4. Conclusions 

This paper presents an innovative and expansive conceptual model for the development of smart cities, incorporating eight main 
domains and 32 performance indicators, synthesized via multi-criteria decision analysis (MCDA) to form a composite Smart City Index. 
The framework introduces a Smart Health factor to evaluate a city’s pandemic response, such as COVID-19, while emphasizing so-
cioeconomic transformations and innovations to enhance and promote sustainable economies. The model is applied to 20 selected 
cities worldwide, revealing Sydney, Osaka, Toronto, Montreal, and Vancouver as leading cities toward smart and innovative urbanism, 
scoring the highest among the 20 cities. The environment index ratio exhibits a tri-modal distribution, with two clusters below average 
and the last cluster slightly above average, ranging between 0.75 and 0.87. A clear positive correlation between the smart environment 
index ratio and the smart economy ratio is apparent across all 20 cities, with a p-value of less than 0.05. A strong correlation is observed 
between the society and economy indexes, with a noteworthy R value of 0.84. Additionally, the interdependence of the society, 
governance, and economy indexes suggests mutual influence and interaction. Notably, climate change and energy aspects can be 
significantly enhanced via the incorporation of clean energy, integrated and efficient energy systems, and various storage solutions. 
According to the equal weighting scheme, Sydney attains the highest SCI of 0.72, while Lima achieves the lowest SCI of 0.26. 
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