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The article by Benson et al. [1] gives me considerable cause
for concern. Overall, I would argue that the authors have
not presented an evaluation of the potential health risks of
long-term exposure to disinfection by-products (DBPs) in
this article as they claim, as the data and methods used are not
fit for purpose and the conclusions drawn are inappropriate. I
found it particularly strange that the authors cite an article my
colleagues and I wrote [2], which criticises the very methods
that they employed in their work, apparently either without
reading it or choosing to completely ignore its contents.

The authors have failed to correctly interpret the evidence
linking DBPs to health; they have not addressed the com-
plex nature of DBP occurrence and its variability in time
and through the distribution network—thereby incorrectly
characterising exposure—they have used rescinded cancer
potency data that is incongruent with the current under-
standing of how chloroform may act in carcinogenesis and,
perhaps most importantly of all, they have not balanced
the potential risks associated with exposure to DBPs against
the very real health benefits resulting from drinking water
disinfection. I elaborate on a number of these points in the
following commentary.

There are serious shortcomings in the exposure estima-
tion conducted. It is true that the concentrations of DBPs
measured at four Nigerian drinking water treatment plants
(DWTPs) presented in the article appear to be very high
relative to what is measured at the consumer tap in, for
example, European countries. However, it is important to

emphasise that samples in this study were taken exclusively
at the DWTPs and not at the consumer tap. In point 5.3.1
of the Nigerian Standard for Drinking Water, it is stated
that sampling should be done for centralized drinking water
systems in the distribution system [3], that is, not at the
DWTP; hence the comparison of measured THMs and the
limits is inappropriate. The concentrations of DBPs exhibit
considerable variability both temporally and geographically
according to the physicochemical properties of source water,
the nature of treatment and distribution systems, and climate
[4, 5]. DBP concentrations are known to vary considerably
across drinking water distribution networks [4]. When risks
based on short term or point estimates of exposure are applied
to a population in calculating lifetime cancer risks, those
exposure estimates are considered valid averages for 70 years.
It has been shown, however, that there is a considerable
degree of variability in THM concentrations both within and
between 24-hour samples [6, 7], on a seasonal basis [8], and
among year-on-year averages [9]. Given the potentially high
variability in concentrations, the number of samples on which
the risk calculations are based is incredibly small, just three
samples of treated water at each plant per month, for five
months of a single year. The authors report a remarkable
drop in TTHM during the study. Notwithstanding this huge
variation, they go on to calculate the total lifetime cancer
risk based (check this) on the very high levels found in the
first part of the experiment. Why have the authors used
what appears to be an absolute “worst case” scenario as
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the standard exposure throughout the entire lifetime of a
population, particularly since they are evidently aware of the
potential for very high variability over time from their own
measurement data.

Confusing information is presented in the article about
the species of DBP present in the water samples. The authors
claim that “...average concentrations of trihalomethanes in
primary and secondary water samples from the WTPs gener-
ally followed the sequence TCM > BDCM > TBM = DBCM,
which was consistent with similar documented reports.” It is
unclear to me what is meant by the equals sign in this order-
ing, but assuming this is a typographic error, they only report
above detection limit data on three of the four species (TCM
(trichloromethane), BDCM (bromodichloromethane), and
DBCM (dibromochloromethane)) at one site (LW). Addi-
tionally, the order of concentrations is reported as TCM >
BDCM > DBCM, which again does not correspond to the
sequence they report. In any case, a set of three measurements
from a single site is absolutely inadequate to make any general
statement about distributions of different DBPs at all of the
DWTPs that they sampled.

The authors have not sufficiently reviewed—or per-
haps misunderstood—available evidence relating exposure to
health effect in either human or animal studies. The authors
assert that epidemiological studies have reported on health
effects only among those consuming water with DBPs in
excess of the maximum contaminant level (MCL). This is
not the case and indicates to me that the authors have not
understood the epidemiological information presented to
them on the health risks associated with DBP exposure,
the levels of DBPs to which those study populations were
exposed, or the lack of evidence for causality in these studies.
The epidemiological studies typically have found associations
between various health effects and average residential DBP
concentrations. Various systematic reviews, meta-analyses,
and pooled analyses of cancer studies have been conducted
[4, 10-13], and these show no consistent evidence of associa-
tions between DBP exposure and the majority of cancers. In
terms of cancers, consistent positive associations have only
been found between average residential THM concentrations
and bladder cancer in men [10, 14, 15]; the concentrations
of THMs measured in the majority of available studies are
below MCLs. Human studies in which bladder cancer has
been linked to residential THM concentrations have not been
able to demonstrate that a particular chemical in the DBP
mixture causes these effects: measurements of THMs are used
in these studies because of the availability of monitoring data
and are used as a proxy for an unknown putative agent.

Perhaps the chief failing of the study is the use of an oral
slope factor (SF) for TCM. No reference has been provided
by the authors to explain where they obtained these data.
One may assume that the value given for the TCM SF was
extracted from a secondary (now outdated) source, rather
than from a review of the primary source (the US EPA);
this has been done extensively in other literature that I
have critically reviewed previously [2]. Had they used the
primary source (e.g., the USEPA IRIS database), they would
have found that the SF for TCM was rescinded in the early
2000s. TCM has not been considered by the US EPA as

Journal of Environmental and Public Health

a genotoxic carcinogen since as early as 2001 [16]. Even if
the SF for TCM were valid, there are several reasons why
predictions of cancer risks in populations using such methods
are liable to be biased. SFs are derived by modelling animal
carcinogenicity data for each applicable exposure pathway for
the most sensitive cancer endpoint. For a suspected genotoxic
carcinogen, it is assumed that exposure at any level increases
the probability of cancer. Estimates of lifetime cancer risk
based on SFs are derived from the upper 95% bound of the
linearized multistage (LMS) model. Application of LMS in
this way generates estimates of nonzero cancer potency even
when that parameter is zero [17]: as such, actual risk may
be anywhere below the quoted upper bound PF and zero
[18]. The USEPA has specifically employed this method in the
regulatory context to set guidelines at which the excess risk
of cancer is essentially too small to estimate, so that public
health is protected. Benson et al. do state that a cancer risk
calculated using SFs should be understood as an upper bound
estimate. Regrettably, however, they do not present the more
important point that the modelling methods used to calculate
SFs results in any risk estimated using SFs (even where they
are applied for appropriate chemicals) potentially being as
low as zero.

The fact that an SF for TCM does not exist on the US
EPAs website for use with the approach described in the
paper by Benson et al. completely undermines their findings,
in particular since they found only TCM in water supplies
and no brominated species (with the exception of five data
points). In any case, they present estimates of cancer risk for
TCM (Table 5 in the article). As explained above, these cancer
risk estimates have been calculated only on the basis of TCM
and using an SF that should not have been applied; as such
they are invalid. The mode of action through which TCM is
hypothesized to operate as a carcinogen is by a nongenotoxic
cytotoxic mode of action [19] wherein hepatotoxicity is a
prerequisite for carcinogenesis to occur [20, 21]. The USEPA
IRIS assessment of the cancer risk of TCM formally noted
as early as 2001 that the PF had been rescinded because
the reference dose (RfD)—based on assessment of liver
toxicity—was protective for cancer. Using linear assumptions
about dose-response of this chemical grossly overestimates
cancer risk in this study. It is worthy of note that even
application of the RfD will result in a conservative estimate
of risk and according to the US EPA should be considered
to be an overestimate by about an order of magnitude. It
is somewhat incomprehensible that the authors do explain
that when using the RfD for TCM, as recommended by the
US EPA, the threshold was not exceeded by measurements
taken in Nigeria. They unfortunately did not take this to its
logical conclusion: that cancer risks from TCM were in fact
calculated to be zero.

The authors present “lifetime incidence rates” (by which
they actually mean total lifetime cancer risks) in which
lifetime cancer risks are presented per month (Table 4 in the
article). It is hard to imagine even a theoretical member of
the population only being exposed to DBPs in January, for
example, of each year for their entire lifetime, which begs
the question: why have these been calculated in this way?
Also, it appears that the theoretical population onto which
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the authors have projected their “total cancer incidence rate”
(sic) is permanently divided into those with adult weight and
ingestion rates and those with the characteristics of children.
This misunderstanding of the lifetime risk assessment frame-
work is exemplified in the sentence, “It was observed that the
total lifetime incidence of developing cancer was relatively
higher in adults than children.” Do the authors insinuate that
one can live a lifetime only as either an adult or a child?

On the basis of their work the authors conclude that
DBP formation can be reduced by switching from chlorine
to chloramine. This recommendation is highly debatable and
absolutely unsupported by the findings presented. While such
a switch might reduce the presence of regulated THMs,
it is entirely plausible—depending on the characteristics of
the raw water and the methods employed—that an increase
in unregulated DBPs might also result. The more than six
hundred DBPs that have been identified [22, 23] represent
only a small fraction of the total organic halides present in
chlorinated drinking water [24] and relatively few of those
chemicals have been adequately characterised in terms of
occurrence. Fewer still have been assessed in terms of their
potential effects on human health [23]. Focusing on specific
DBPs in the absence of a mechanistic explanation or a true
putative agent in the DBP mixture may result in inappropriate
or expensive decisions being made in favour of alternative
disinfection treatments that may present other health risks,
a point convincingly made elsewhere [25]. It is notable,
too, that cytotoxicological and genotoxicological studies of
various unregulated DBPs have shown that many may be
considerably more toxic to humans than THMs [23, 26-28].

In addition to the abovementioned conceptual and
methodological limitations in study design and erroneous
use of available dose-response data, the conclusions of this
study are a particular cause of concern. They may cause
unwarranted alarm among the public and potentially lead
to poor decisions being made in sourcing, treatment, and
provision of drinking water in an environment where good
decisions are critical in furthering public health. The authors
describe the microbial contamination of drinking water
in sub-Saharan Africa as commonplace and presenting “a
significant threat to public health.” In the light of this very
acute threat to health from microbial contamination, it ought
to surprise the readership of this journal greatly that the
authors did not take more care to balance this with what
could be relatively marginal health risks from DBPs. While it
is true that they do not advocate a reduction in disinfection,
the authors do suggest that changes to practices at the DWTP
may have been responsible for reduced THM concentration
in their second sampling period. The real question of interest
is what impact these changes to chlorination practices had on
chlorine residuals throughout the distribution network and
on the efficacy of the disinfectants in terms of preventing
very serious risks of spreading microbial disease in the
populations supplied.
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