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Faint trace of a particle in a noisy 
Vaidman three‑path interferometer
Jerzy Dajka

We study weak traces of particle passing Vaidman’s nested Mach–Zehnder interferometer. We 
investigate an effect of decoherence caused by an environment coupled to internal degree of freedom 
(a spin) of a travelling particle. We consider two models: pure decoherence leading to exact results and 
weak coupling Davies approximation allowing to include dissipative effects. We show that potentially 
anomalous discontinuity of particle paths survives an effect of decoherence unless it affects internal 
part of the nested interferometer.

Quantum particle can be prepared (preselected) in a given and desired state and may also be postselected in 
another state with a known at least in principle probability. That what occurs in between, what is the particle’s 
past, remains problematic due to specific features of quantum measurements unavoidably modifying quantum 
states of measured objects. It is clearly visible for a quantum particle passing trough interferometer: the particle 
enters the device and leave it (if its outcome is measured), however, what occurs inside an interferometer is, 
as it will be shown below, disputable and even controversial. One of the  approaches1,2 is that a particle, staying 
coherent, it leaves nothing but a faint trace which—if comparable to an order of a trace potentially left by a local-
ized wave packet—can serve as a hallmark of its presence. A faint trace which is a small change of an amplitude 
of a component orthogonal to an undisturbed particle’s state (weakly) measurable only in experiments with an 
ensemble of particles having the same pre-and postselection.

Past of a quantum particle in a nested Mach–Zehnder interferometer—proposed in Ref.1 and presented in 
Fig. 1 and abbreviated here as a Vaidman interferometer—was recently studied in Ref.1 using quantum weak 
 values3,4 and the two state vector formalism (TSVF)5. The results are confounding: particles seem to follow 
anomalous discontinuous path. Such a seemingly weird conclusion leads to plethora of  controversies6,7 and since 
that time (almost) all works on that problem have came in triads: a paper, commentary inspired by the paper and 
a reply to the  comment6,7. The main reason is that the  TSVF5 applied in Ref.1 is one of few possible approaches to 
studies of quantum past. The other non-equivalent alternatives are consistent (decoherent)  histories8,9 standard 
quantum  mechanics10–12 and many other other alternative  studies13–20. Moreover, even recent experiments and 
their detailed analyses fail to resolve all the controversial  issues20–26,26–28. Despite counter-intuitive of a concep-
tion of discontinuous path there are  analyses2,29 and claims which support the faint-trace anomalous picture as 
experimentally confirmed.

Our present aim is to follow Ref.1,2 and to supplement the analysis of weak trace (based upon weak values) 
of particle by including an effect of decoherence affecting internal degree of freedom of the particle passing 
the Vaidman interferometer. Our results allow to identify natural obstructions for an effective verification of 
theoretical predictions and exclude factors seemingly but not truly responsible for experimental failures and 
limitations. Studying internal degrees of freedom e.g. spin or polarization of particles in Vaidman interferom-
eter becomes particularly reasonable for most recent experiments and models utilizing  neutrons24,26. There are 
various phenomenologic  approaches30 dedicated to particular quantum systems which usefulness and validity 
was confirmed by many repeatable experiments. However, for fragile quantum systems microscopic models are 
a least a good starting point to make predictions which are credible in a tailored and well identified conditions. 
In this paper we consider two well established microscopic models: (i) an exact model of pure  decoherence31,32 
of a solely quantum character and (ii) a weak coupling Davies  approximation33 allowing to include dissipation. 
Pure decoherence (or pure dephasing) model is limited by a choice of system–environment interaction encoded 
in a Hamiltonian by an integral of motion: in the Caldeira–Leggett30 “system + bath + interaction” Hamiltonian 
the interaction is given by an operator commuting with a system. Davies  approach33 allows for an arbitrary sys-
tem–environment coupling provided that its small enough for a perturbative treatment to hold true. We show 
that that the anomalous  discontinuity1,2 of the faint traces (given by weak values of suitable projection operators) 
left by particles are rigid with respect to decoherence affecting external arm of Vaidman interferometer while 
very fragile if a source of decoherence disturbs balance of the internal, nested arms of Vaidman interferometer. 
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Since an experiment is an only way to resolve an (interpretative) ambiguity concerning (un)presence of particles 
in the Vaidman interferometer the answer if the controversies survive also in the presence of decoherence seems 
to be crucial.

For a sake of completeness we re-introduce the Vaidman interferometer and review the controversial features 
of the faint traces of particles passing it. The original Vaidman interferometer presented in Fig. 1 consists of spatial 
degree of freedom given by three paths denoted by I, II, III and four beam splitters. Vaidman interferometer can 
effectively be  described10–12 as a three level quantum system with a state space spanned by a basis

In an ideal setting of a noise-less system, a passage of a particle is described by a unitary transformation composed 
of four unitaries U4U3U2U1 corresponding to subsequent beam splitters termed as BSi , i = 1, . . . , 4 in Fig. 1:

The strategy applied in Ref.1 to infer the path of a particle entering and leaving Vaidman interferometer in a state 
|III� was to investigate weak trace of a particle inside Vaidman interferometer at three instants A, B, C indicated 
in Fig. 1. According to Ref.1 the weak trace is indicated by a non-vanishing weak  value3,34 of one of the projectors

where preselected (directly prior to the measurement of �i ) and postselected (immediately after the measure-
ment) states compose a two-state vector �ψpost ||ψpre� being a fundamental object of the  TSVF5.

Let us emphasise that the physical meaning of vanishing weak values in a current context remains 
 disputable34–37. Most of controversies originate, however, from highly counter-intuitive conclusions provided in 
Ref.1 indicating possibility of discontinuous trajectories followed by a particle passing trough Vaidman interfer-
ometer. Let us review: there are three instants A, B, C where the weak trace is measured: A: just after it is injected 
to the Vaidman interferometer in a state |III� and passes BS1 , B: where the weak measurement becomes con-
ducted for all potential paths in Vaidman interferometer and C: after the BS3 beam splitter as presented in Fig. 1. 
The corresponding preselected states read as: |ψA

pre� = U1|III� , |ψB
pre� = U2U1|III� and |ψC

pre� = U3U2U1|III� . 
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Figure 1.  Vaidman interferometer consisting of two Mach–Zehnder nested devices with four beam splitters 
BSi , i = 1, . . . , 4 . Roman numbers I, II, III correspond to vectors in Eq. (1) and A, B, C denote instants where the 
weak trace is calculated.
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In the time-symmetric TSVF setting the postselected states |ψA
post� = U†

2U
†
3U

†
4 |III� , |ψB

post� = U†
3U

†
4 |III� and 

|ψC
post� = U†

4 |III� describe a hypothetical particle detected at III evolving backward in time. Results of the weak 
measurement are summarized in Table 1. According to Ref.1 a presence of a particle is defined by its non-van-
ishing weak trace. The counter-intuitive conclusion of Table 1 is the following: at A and C the particle is present 
in III , what upon Fig. 1 is intuitively acceptable, but at B it is also present in an internal loop ( I, II ) of Vaidman 
interferometer. Such confounding result needs experimental verification. One can safely assume that any poten-
tial experiment, as it was so far, will be highly subtle and sophisticated. Moreover, such an experiment will rely 
on quantum properties and it may be fragile with respect to decoherence. Our objective is to investigate if in a 
presence of omnipresent noise one can still support claims inferred from Table 1 or if they are nothing but an 
artifact absent in real noisy systems.

Pure decoherence
There are circumstances when internal degrees of freedom of particles need to be taken into account and affect 
an  interference38. An output pattern of such an interference becomes further significantly modified by external 
bath coupling to an internal degree of  freedom39. In the following for simplicity we assume that an internal 
degree of freedom of a particle in the Vaidman interferometer requires two-dimensional space Hint spanned by

Physically, such a qubit model can correspond to an interference of spin-half particles or any qubits. If, moreover, 
one assumes the internal degree of freedom is coupled to (affected by) an environment one arrives at a composite 
quantum system with a state space

where Hint = C
2 and Hpath = C

3 with a basis |I�, |II�, |III� in Eq. (1). As a composite system consisting of a 
particle and its environment considered in toto is closed, its evolving states undergo unitary transformations. 
Unitaries corresponding to beam splitters Eq. (2) and projectors Eq. (3) required for weak measurement become 
now tensorized with identity operators I acting on remaining parts of a composite space H and read:

where Ui and �i are given in Eqs. (2) and (3) respectively.
Let us notice that an effect of a generic interaction between particle and its environment shall result in a modi-

fication of Ui which will essentially be interaction-type-dependent. Pure decoherence (dephasing)30,31 is probably 
the simplest class of an interaction between an open quantum system and its environment. It is characterized 
by a high symmetry preventing energy exchange with a  surrounding31. Despite such an obvious simplification 
pure decoherence can effectively be applied to a broad class of  problems40–47 ranging from theoretical quantum 
information up to experiments in optics. Simplifying our model even further we assume local decoherence i.e. 
the particle remains unaffected by a dephasing environment unless it follows a particular ’noisy’ path between 
two particular beam splitters. The term ’local’ is used to distinguish circumstances when a whole Vaidmann 
interferometer, not just a part of of one its arms, is embedded in an either thermal or non-thermal bath. Ham-
iltonian describing interaction between particle (which is a qubit with a Hamiltonian given by σz Pauli matrix) 
and its environment is then given by a standard Caldeira–Leggett  form30:

Time evolution of a total (closed) system is unitary and reads

(4)|+� =
(

1
0

)

, |−� =
(

0
1

)

(5)H =Hpath ⊗Hint ⊗Henv

(6)Ui =Ui ⊗ I2 ⊗ Ienv : H → H, i = 1, . . . , 4

(7)�̃i =�i ⊗ I2 ⊗ Ienv : H → H, i = I, II, III

(8)

Hi =EI3 ⊗ σz ⊗ Ienv +�i ⊗ σz ⊗
∫ ∞

0
dω(g(ω)a(ω)+ h.c.)+ I3 ⊗ I2 ⊗

∫ ∞

0
dωh(ω)a†(ω)a(ω), i = I, II, III

(9)Ui = exp(−itHi) = |i��i| ⊗
(

U+ 0
0 U−

)

+ (I3 − |i��i|)⊗ I2 ⊗ Ienv , i = I, II, III

Table 1.  Weak traces 〈�I,II,III〉A,B,Cw  Eq. (3) of a particle in a noise-less Vaidman interferometer at different 
instants A, B, C indicated in Fig. 1 and corresponding pre-and postselections given by |ψA,B,C

pre � = UA,B,C
pre |III� 

and |ψA,B,C
post � = UA,B,C

post |III� respectively.

〈�I,II,III〉
A,B,C
w I II III U

A,B,C
pre U

A,B,C
post

A 0 0 1 U1 U
†
2U

†
3U

†
4

B − 1 1 1 U2U1 U
†
3U

†
4

C 0 0 1 U3U2U1 U
†
4
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where t denotes duration of particle–bath interaction which is assumed to be smaller that the passage between 
any pair of beam splitters. A block–diagonal structure of the first term in Eq. (9) with unitary blocks U± given 
by Eq. (10) is a hallmark of the assumed pure decoherence model with

where E denotes energy separating qubit levels, the environment is simplified to a one-dimensional bosonic 
field with bosonic operators a(ω), a†(ω) and real-valued h(ω) and g(ω) . To clarify the notation of Eq. (9) let us 
exemplify: a unitary transformation U4U3U2UIIU1 : H → H describes Vaidman interferometer with a purely 
dephasing environment coupled to a path II locally between beam splitters BS1 and BS2.

Now we are ready to analyse an impact of decoherence on particles travelling via Vaidman interferometer. 
We recognize two classes of effects: the first, quantitative when the anomalous effect of Ref.1 survives and the 
second when the pure decoherence spoils unusual features of noise-less system. The first case in presented in 
Table 2. We consider quantum particle entering Vaidman interferometer in a state

where the first, spatial, component denotes path of the particle whereas the second is a state of internal degree 
of freedom (qubit). The particle leaving the Vaidman interferometer is assumed to be in a state

i.e. it is postselected in its spatial (external) degree of freedom but with no information regarding its internal 
(here maximally mixed) state. Moreover, we assume that an environment both initially and finally is its ground 
state (vacuum) |�� and affects only these particles which, according to TSVF, travel forward in time. Working 
essentially with mixed states requires generalisation of a definition of a weak value of an  operators34. In particular 
for a faint trace one calculates

for generically mixed pre-and postselections. Depending on the instants A, B, C, cf. Fig. 1 of a weak meas-
urement, we consider three different pre-and postselection ρA,B,C

pre = U
A,B,C
pre (|ψ0��ψ0| ⊗ |����|)[UA,B,C

pre ]† and 
ρ
A,B,C
post = U

A,B,C
post (ρout ⊗ |����|)[UA,B,C

post ]† respectively with UA,B,C
pre,post given explicitly in Tables 2, 3. The results of 

(10)U± = exp(−itH±) : Henv → Henv

(11)H± =
∫ ∞

0
dω

[

h(ω)a†(ω)a(ω)± (g(ω)a(ω)+ h.c)
]

± E

(12)|ψ0� =|III� ⊗ [|+� + |−�]/
√
2

(13)ρout =|III��III| ⊗
1

2
[|+��+| + |−��−|] = |III��III| ⊗

1

2
I2

(14)��I,II,III ⊗ I2�w =
Tr (ρpost [�I,II,III ⊗ I2]ρpre)

Tr (ρpreρpost)

Table 2.  Weak traces ��̃I,II,III�A,B,Cw  Eq. (7) of a particle in a noisy Vaidman interferometer at 
different instants A, B, C indicated in Fig. 1 and corresponding pre-and postselections given by 
ρ
A,B,C
pre = U

A,B,C
pre (|ψ0��ψ0| ⊗ |����|)[UA,B,C

pre ]† and ρA,B,C
post = U

A,B,C
post (ρout ⊗ |����|)[UA,B,C

post ]† respectively. 
The quantity q = ��|U+�� + ��|U−�� is given in Eq. (15) with U± given in Eq. (10). The effect of pure 
decoherence indicated by UII occurs for path II (by UIII for path III ) after beam splitter BS1.

��̃I,II,III�
A,B,C
w I II III U

A,B,C
pre U

A,B,C
post U

A,B,C
pre U

A,B,C
post

A 0 0 1 UIIU1 U
†
2U

†
3U

†
4

UIIIU1 U
†
2U

†
3U

†
4

B -q/2 q/2 1 U2UIIU1 U
†
3U

†
4

U2UIIIU1 U
†
3U

†
4

C 0 0 1 U3U2UIIU1 U
†
4

U3U2UIIIU1 U
†
4

Table 3.  Weak traces ��̃I,II,III�B,Cw  Eq. (7) of a particle in a noisy Vaidman interferometer at 
different instants B, C indicated in Fig. 1 and corresponding pre-and postselections given by 
ρ
B,C
pre = U

B,C
pre (|ψ0��ψ0| ⊗ |����|)[UA,B,C

pre ]† and ρB,C
post = U

B,C
post(ρout ⊗ |����|)[UB,C

post ]† respectively. The quantity 
q = ��|U+�� + ��|U−�� with U± given in Eq. (10). The effect of pure decoherence indicated by UI occurs 
for path I after beam splitter BS2 . The effect of pure decoherence indicated by UII occurs for path II after beam 
splitter BS2.

��̃I,II,III�
B,C
w I II III U

B,C
pre U

B,C
post U

B,C
pre U

B,C
post

B -(q+2)/4 (q+2)/4 1 UIU2U1 U
†
3U

†
4

UIIU2U1 U
†
3U

†
4

C 0 (2-q)/2 q/2 U3UIU2U1 U
†
4

U3UIIU2U1 U
†
4
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weak measurement of a particle disturbed by decoherence coupled either to II or III are summarized in Table 2. 
Let us notice that decoherence affects particle traveling forward in time after it passes the beam splitter BS1.

Modifications of weak values due to decoherence reported in Tables 2 and 3 are qualified by

which for pure decoherence has an exact  solution30–32. Since expressed in terms of displacement operators D48 
time evolution of a vacuum |�� ∈ Henv

39 reads

for a typical choice h(ω) = ω and g2(ω) = �ω1+µ exp(−ω/ωc)
30 one can calculate explicitly

where the parameter � denotes strength of a particle–environment coupling and 0 ≤ µ allows to classify 
 environment30 as Ohmic µ = 0 or super-Ohmic for µ > 0 . The sub-Ohmic regime µ < 0 suffers from  known31 
mathematical difficulties and is not considered. Let us notice that for t = 0 the integrand in Eq. (17) vanishes, 
q = 2 and the results of Ref.1 are reproduced. It holds also true for � → 0 corresponding to a particle uncoupled 
with its environment. We also conclude that even in a long time limit t → ∞ the quantity q > 0 i.e. it remains 
finite. Therefore we infer that discontinuous faint trace changes only quantitatively. However, there is a qualitative 
change if decoherence is present in an internal interferometer of Vaidman interferometer as presented in Table 3 
i.e. if an environment is coupled either to I or II after beam splitter BS2 . In both cases, still assuming that particles 
travelling forward in time are affected by decoherence, we observe that a faint trace of a particle contributes to 
II after BS3 . This observation supports claim of Ref.10 connecting the faint trace discontinuity with a perfect bal-
ance of internal interferometer leading to destructive interference on its output. If decoherence affects internal 
loop in the Vaidman interferometer it removes anomaly of a faint trace. To summarize, the faint trace, otherwise 
fragile, remains resistant with respect to decoherence present in an external arm of Vaidman interferometer.

Dissipation
Rigidity of faint traces with respect to decoherence affecting external interferometer of Vaidman interferometer 
accompanied by its fragility with respect to decoherence present in an internal loop was analysed in previous 
paragraph for a very special model of pure decoherence. Here we investigate if the above predictions survive 
also in a presence of dissipation i.e. particle–environment realistic interaction not excluding an energy exchange. 
Such a problem, contrary to exactly solvable pure decoherence, demands approximate  treatment30. We apply 
Davies  approach33, one of rigorous approaches to quantum open systems dedicated to weak coupling to an 
 environment30. Davies treatment, mathematically rigorous, can effectively be applied in various areas of quantum 
 information49–52.

Let us keep previous assumption of decoherence affecting locally an external arm of Vaidman interferometer 
only and consider particle–environment interaction encoded in one of two following Hamiltonians

Here ε is assumed to be small. The choice of coupling (via σx Pauli matrix) is complementary to the pure deco-
herence model studied in the previous Section and allows us to verify if previously predicted stability of faint 
trace holds also true disturbed by dissipation. None of two Hamiltonians in Eq. (18) allows for an exact treat-
ment similar to pure decoherence. Instead we assume vanishing temperature limit T = 0 and utilize Davies 
approximation to find time evolution of reduced (with respect to an environment) density matrix of a particle 
ρ(t) ∈ B (Hpath ⊗Hint) in terms of a Master equation

w i t h  A
(i)
kl = Pk(ε�i ⊗ σx)Pl  ,  i = II, III  ,  c(x) = 2πx exp(−x/ωc)�(x)  a n d  n u m e r i c a l l y 

2πs(x) = PV
∫∞
−∞ dy[c(y)/(y − x)] . For any initial density matrix ρ0 any solution of Eq. (19) is a one-parameter 

completely positive quantum dynamical semi-group53 ρ(t) = D [ρ0].
We investigate weak traces of a particle in Vaidman interferometer assuming that there is dissipative environ-

ment affecting particle just after BS1 and it is attached to the external interferometer in the Vaidman interfer-
ometer in Fig. 1. To calculate ��I,II,III ⊗ I2�w at instants A, B, C, cf. Fig. 1, for a particle injected to the Vaidman 
interferometer in a state |ψ0� = |III� ⊗ [|+� + |−�]/

√
2 ∈ Hpath ⊗Hint Eq. (12) we consider the following 

pre-and postselections:

(15)q =��|U+�� + ��|U−��

(16)U±|�� = exp(∓iEt)D

(

±
g(ω)

h(ω)
(1− e−ih(ω)t)

)

|��, D(f ) = exp

[∫ ∞

0
dω

(

f (ω)a†(ω)− h.c.
)

]

(17)

q =2 cos(Et) exp

(

−
∫ ∞

0
dω

g2(ω)

h2(ω)
(1− cos(h(ωt))

)

= 2 cos(Et) exp

(

−�Ŵ(µ)ωµ
c

1− cos(µ arctan(ωct))

(1+ ω2
c t

2)µ/2

)

(18)

Hi =EI3 ⊗ σz ⊗ Ienv + ε�i ⊗ σx ⊗
∫ ∞

0
dω(g(ω)a(ω)+ h.c.)+ I3 ⊗ I2 ⊗

∫ ∞

0
dωh(ω)a†(ω)a(ω), i = II, III

(19)

d

dt
ρ(t) =− i







EI3 ⊗ σz +
6

�

k,l=1

s(�kl)A
(i)†
kl A

(i)
kl



, ρ(t)



+
1

2

6
�

k,l=1

c(�kl)([A(i)
kl ρ(t),A

(i)†
kl ] + [Akl , ρ(t)A

(i)†
kl ])
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(20)ρA
pre =D [U1 ⊗ I2|ψ0��ψ0|U†

1 ⊗ I2], ρA
post = U†

2 ⊗ I2ρ
B
postU2 ⊗ I2

(21)ρB
pre =U2 ⊗ I2ρ

A
preU

†
2 ⊗ I2, ρB

post = U†
3 ⊗ I2ρ

C
postU3 ⊗ I2

Figure 2.  Weak values of ��I,II,III ⊗ I2�w Eq. (14) upper panel at instants A and C, cf. Fig. 1, for a pre-and a 
postselection given in Eqs. (20) and (22) respectively and, lower panel, at B for a pre-and postselection given in 
Eq. (21) as a function of duration of particle-environment interaction. Time is given in 1/ωc and we set ε = 0.05.
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with ρout given in Eq. (13) and hence we avoid discussing decohering states evolving backward in time needed 
for  TSVF34. Weak values Eq. (14) indicating faint trace of a particle in Vaidman interferometer at A, B, C in Fig. 1 
are calculated numerically and presented in Fig. 2 as a function of duration (time) of interaction between the 
particle and its environment which is coupled to lower ( III ) arm of the external interferometer in the Vaidman 
interferometer in Fig. 1 after BS1 . Let us notice that none of the calculated weak values has a non-vanishing 
imaginary part requiring careful physical  interpretation4. Weak trace calculated at A, C (B) is presented in the 
upper (lower) panel of Fig. 2 respectively. The weak trace indicating particle at A and C is present for the path 
III and absent otherwise. At B the particle leaves weak trace in all the three paths provided that the duration 
(time) of dissipation is short with respect to a passage time. If it is not the case one obtains oscillations which, for 
certain value of duration time lead to decreasing of weak traces at I and II to a level which may be undetectable 
and, effectively but not factually, the particle remains ’visible’ in III only. For an environment weakly disturbing 
path II after BS1 one obtains qualitatively similar results.

Discussion
Decoherence is a trespasser of failure of many experiments attempting to predict or confirm quantum properties 
of Nature. Recent predictions of discontinuous path of particle in a nested Mach–Zehnder interferometer can 
serve as a particular example of a deeply quantum effect requiring further experimental verification. One could 
have doubt in precise measureability of the controversial and to some extent exotic properties of Ref.1 and in 
particular Ref.2 due to omnipresent noise blurring results of measurements. To dispel such doubts we investigated 
how decoherence can affect theoretical predictions of noise-less models and if it can obscure or even definitely 
indisposed theoretically predicted anomalies. Since recent  experiments24,26 utilized neutrons which are parti-
cles with internal, spin degree of freedom we consider interference of qubits and decoherence affecting its spin. 
From a wide spectrum of different models describing quantum open systems we select two limiting cases: (i) an 
exact, non-Markov but specific pure dephasing model and (ii) a very general but approximate weak coupling 
Davies approximation. Pure decoherence, being exact, does not take into account dissipation of energy how the 
Davies approach does but at a cost of applied approximations. However, the results obtained for this seemingly 
far models were confluent: qualitative properties of weak traces (and their discontinuity) of a particle in the 
Vaidman interferometer are rigid with respect to decoherence affecting external interferometer but at the same 
time extraordinarily fragile if decoherence is present in an internal loop of Vaidman interferometer provided 
that duration of decoherence remain short with respect to overall time scales of particle motion in the Vaidman 
interferometer. We hope that our results, although only qualitative, can serve as a guidelines for experiments 
and support further investigations concerning past of quantum particles.

Methods
For analytical calculation of pure decoherence model we utilized coherent state techniques. Numerical calcula-
tion for dissipative environment in Davies approximation we performed with Python-based toolbox  QuTip54,55 
using mesolve for Master Equation Eq. (19).
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