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The physical inputs to our visual system are dictated by
the interplay between lights and surfaces; thus, for
surface color to be stably perceived, the influence of the
illuminant must be discounted. To reveal our strategy to
infer the illuminant color, we conducted three
psychophysical experiments designed to test our
optimal color hypothesis that we internalize the physical
color gamut under various illuminants and apply the
prior to estimate the illuminant color. In each
experiment, we presented 61 hexagons arranged
without spatial gaps, where the surrounding 60
hexagons were set to have a specific shape in their color
distribution. We asked participants to adjust the color of
a center test field so that it appeared to be a full-white
surface placed under a test illuminant. Results and
computational modeling suggested that, although our
proposed model is limited in accounting for estimation
of illuminant intensity by human observers, it agrees
fairly well with the estimates of illuminant chromaticity
in most tested conditions. The accuracy of estimation
generally outperformed other tested conventional color
constancy models. These results support the hypothesis
that our visual system can utilize the geometry of scene
color distribution to achieve color constancy.

Introduction

The cone excitations associated with an illuminated
surface is determined both by the spectral composition
of illuminant and by the surface spectral reflectance;
thus, when a scene illuminant changes, the associated
cone signals accordingly change. However, numerous
tests of human perception of colored surfaces indicate
a high level of perceptual constancy, in which the

appearance of the surface is relatively little changed
(Foster, 2011). The degree to which surface color is
stably perceived is often referred to as color constancy,
which enables us to identify objects by their color in
spite of the change of illumination. However, the exact
mechanisms underpinning this stability of the color
vision system are not fully understood yet.

One common way to conceptualize color constancy
is that the visual system first estimates the color of
scene illumination based on cues available in the scene
and then discounts its influence from the whole scene.
Past color constancy research has been successful
in identifying a number of mechanisms thought to
underlie color constancy (Smithson, 2005; Hurlbert,
2007). In terms of neural substrates, both local (von
Kries 1905; Smithson & Zaidi, 2004) and global (Ives,
1912; Werner, 2014) retinal adaptation is known to
be useful in the implementation of color constancy.
Identifying statistics-based cues to the illuminant has
been a primary focus in behavioral color constancy
studies. Perhaps the simplest method would be to find
the brightest surface in the scene. This is based on the
observation that a white surface with a completely flat
spectral reflectance reflects any lights in a spectrally
unmodified way, meaning that it conveys direct
information about the color of the illumination (Land,
1977). Also, Tominaga, Ebisui, and Wandell (2001)
suggested from a computational point of view that
brighter surfaces are better cues than darker surfaces.
Another simple but powerful transformation would
be to compute mean chromaticity across all surfaces
in a scene and assume that it is a good estimate
of the illuminant color (Buchsbaum, 1980). This
algorithm stands on the idea that the average color
across all objects in a scene is typically gray (gray-world
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hypothesis), and thus the deviation from gray can be
assumed to be due to the influence of the illumination.

It is also known that spatial mean cone signals, rather
than mean chromaticity, would be a good predictor
of an illuminant color (Khang & Zaidi, 2004). The
use of these simple global statistics is typically relevant
only to scenes that are uniformly illuminated and are
also particularly effective only when the scene contains
many different surface spectral reflectances. Foster and
Nascimento (1994) found that the cone ratio between
neighboring surfaces in natural scenes tends to be
constant under the change of illuminants, allowing our
visual system to discriminate illuminant color change
and surface color change by spatial comparison of cone
signals. It is worth noting that identifying cues that
are in theory useful does not guarantee that our visual
system can or does use them. It is therefore important
to experimentally verify that candidate cues are actually
used by human observers. Moreover, it is good to
remind ourselves that we may not rely on a single
specific mechanism but rather may use a combination
of various cues. Such a strategy is useful in realistic
situations, as a specific cue may not be available in every
scene (Kraft & Brainard, 1999).

Using global scene statistics (e.g., mean chromaticity)
to estimate the color of illumination has an attractive
simplicity. However, although they reasonably account
for experimental data, one of the longstanding
questions in the field of human color vision has been
how our visual system distinguishes a white scene
illuminated by a reddish illumination from a reddish
scene illuminated by a whitish illumination when both
cases produce the same reddish mean chromaticity
(Brown, 1994). If our visual system relies purely on
a chromaticity-based solution, the estimation of an
illuminant color in both cases should correspond to
the chromaticity of the spatial mean (i.e., red); thus,
a reddish scene should incorrectly appear as a white
scene. Golz and MacLeod (2002) provided a solution
to this question. First, they analyzed hyperspectral
natural images and found that L/(L+M) and luminance
are positively correlated when the illumination is
reddish. In contrast, when the illumination is white, this
chromaticity–luminance correlation is not observed.
Therefore, by looking at the correlation between
chromaticity and luminance across scene surfaces
in an individual scene, it is possible to work out the
color of the illumination lighting the scene. Second,
importantly, they showed psychophysically that human
observers are able to use this cue to solve such an
ambiguity in a biased surface color set (e.g., dominantly
reddish surfaces). We note that one study found that
this observation regarding chromaticity–luminance
correlation might be limited to scenes including foliage
(Ciurea & Funt, 2004). There is also debate about
whether the effect of the luminance–redness correlation
on color appearance is spatially local (Granzier,

Brenner, Cornelissen, & Smeets, 2005) or globally held
(Golz, 2008). In any case, it is implied that the way in
which luminances distribute over various chromaticities
seems to play a role in the implementation of color
constancy, particularly in scenes that are chromatically
biased.

Statistical models such as Bayesian estimation
(Brainard & Freeman, 1997; Brainard, Longer̀e,
Delahunt, Freeman, Kraft, & Xiao, 2006) have been
reported to be good candidate models of human color
constancy. Also, Maloney and Wandell (1986) proposed
that it is possible to recover surface spectral reflectance
of objects in a scene where spectral functions of surface
reflectance and illuminant can be determined by a
linear-weighted sum of a small number of basis vectors.
Interestingly, these theoretical models make use of
statistical regularities of surface spectral reflectance
and illuminant spectra that occur in the natural
environment, implying that the human visual system
utilizes such constraints. This also makes sense from
a mathematical point of view, as in general ill-posed
problems can be solved when we put in a sufficient
number of assumptions.

Moreover, the study of computational color
constancy has been an active domain in the field of
computer vision. A vast number of methods based
on simple image statistics have been proposed (e.g.,
summarized by Barnard, Cardei, & Funt, 2002; Arjan,
Theo, & van de Weijer, 2011), including gray-world
and white-patch (“brightest is white”) algorithms,
which we introduce as candidate mechanisms in human
color constancy. Gamut mapping is a unique approach
based on the observation that only limited colors are
observed under a given illuminant (Forsyth, 1990;
Finlayson, 1996). This range of a limited colors is
termed the canonical gamut. This canonical gamut
must be learned from a training set that represents
colors that can occur in the test images. The model
aims to find the computational mapping so that the
gamut of the input image is mapped to the canonical
gamut for a given illuminant, thereby allowing the
illuminant influence to be discounted. In more recent
years, the color-by-correlation method has further
developed the gamut mapping method to a more
general framework by substituting a correlation matrix
for the canonical gamut (Finlayson, Hordley, & Hubel,
2001). Barron (2015) suggested a framework termed
convolutional color constancy (CCC) that operates based
on a histogram of chrominance (which is essentially
equivalent to chromaticity). The basic idea is to use
the observation that, in a logarithmic chrominance
space, the shape of the histogram is nearly invariant
under the change of illuminant color, and the entire
histogram shifts toward the color of illuminant.
The two-dimensional (2D) chrominance histogram
of an input image is convolved with a filter that is
optimized in a prior training process using separate
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Figure 1. Color distribution of 102,721 optimal colors and 49,667 real objects in the SOCS database. They are rendered under 6500 K
(gray distribution) and 3000 K (orange distributions) to show the effect of illuminant change. The left and right panels show L/(L+M)
versus. luminance and S/(L+M) versus luminance distributions, respectively.

training-set chrominance histograms and ground-truth
illuminations so that the optimized filter generates the
strongest response at the ground-truth illuminant when
convolved with the histogram of an input image. The
convolved 2D map provides a posterior probability for
the color of illuminant in an input image.

Fast Fourier Color Constancy, introduced later,
also works on fundamentally the same basis, but it
is a significant improvement over CCC in terms of
computation time (Barron & Tsai, 2017). A method
for illuminant estimation using a neural network was
proposed in an early study (Funt, Cardei, & Barnard,
1996), and, in more recent years, it has been rapidly
expanded due to advancements made in machine
learning tools. For example, illuminant estimation
using convolutional neural networks (CNNs) (Bianco,
Cusano, & Schettini, 2015; Choi, Kang, & Yun, 2020)
and generative adversarial network-based models has
been proposed (Das, Baslamisli, Liu, Karaoglu, &
Gevers, 2018). These neural-network-based methods
contrast with past algorithm-based approaches because
the sequence of steps to estimate the illuminant
color does not have to be explicitly defined. Instead,
networks are trained by a large number of training
image datasets, and the network automatically extracts
image features that allows the network to estimate the
illuminant color from a new test image. The training
typically requires tuning of millions of parameters,
and the trained network is often difficult to interpret.
Whether such complexity is necessary to solve color
constancy is still an open question (e.g., argued in
Finlayson, 2018), but state-of-the-art performance has
been reported for these models. Also, applying CNNs to
study human color constancy has attracted increasing
attention (Flachot & Gegenfurtner, 2018; Flachot,
Schuett, Fleming, Wichmann, & Gegenfurtner, 2019).

Natural scenes that we see in daily life appear to
contain a wide variety of color; thus, it is tempting
to think that any color can exist in a scene, but this is
a false intuition. In any scene, the possible range of
chromaticity and luminance is limited by the spectral
composition of the illuminant, in a similar way that a
digital monitor has a limited color gamut. This gamut
for surface colors under a particular illuminant can be
visualized by optimal colors or, more precisely, optimal
surfaces (MacAdam, 1935a; MacAdam, 1935b).
Optimal color is defined as a surface that has only 0%
and 100 % reflectances and has at most two abrupt
spectral transitions between them. We can think of two
types of optimal colors: one boots up at wavelength
λ1 and boots off at λ2 (band-pass type), and the other
boots off and up at λ1 and at λ2 (band-stop type),
where λ1 < λ2. To give an example how optimal colors
distribute and how that changes depending on the
color temperature of illuminants, we prepared 102,721
optimal colors by changing λ1 from 400 nm to 720 nm
with 1 nm and changing λ2 from λ1 to 720 nm with
1 nm for the two types of optimal colors (Uchikawa,
Fukuda, Kitazawa, & MacLeod, 2012).

Figure 1 shows a distribution of 102,721 optimal
colors (also known as MacAdam’s limit) and 49,667
objects in the real world drawn from the standard
object color spectra database for color reproduction
evaluation (SOCS; ISO/TR 16066:2003) under the
illuminants of 3000 K and 6500 K. The left panel shows
L/(L+M) in a MacLeod–Boynton (MB) chromaticity
diagram (MacLeod & Boynton, 1979) versus luminance
distribution, and the right panel shows S/(L+M) versus
luminance distribution. For the calculation of cone
excitations, we used the Stockman and Sharpe cone
fundamentals (Stockman & Sharpe, 2000). Optimal
colors do not exist in the real world, but they are
a useful mathematical tool to allow us to see the
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Figure 2. Schematic illustration of optimal color hypothesis. Our
visual system internalizes optimal color distributions and
selects the one that gives a most likely fit to the scene
distribution. In this case, 20,000 K should be selected.

upper boundary of surface colors under a particular
illuminant. If we look at this from the other side, under
a particular illuminant any chromaticity has a unique
corresponding optimal color, and the luminance of the
optimal color gives the theoretical upper limit at the
chromaticity.

The peak of optimal color distributions always
corresponds to a full-white surface (1.0 reflectance
across all wavelengths), thus providing the chromaticity
and intensity of the illuminant itself (i.e., white
point). Optimal colors with higher purity have lower
luminance; because they have a narrower band
reflectance, the luminance distribution spreads out as
the purity increases. We also see that the distribution of
real objects is unsurprisingly fully included within the
optimal color shell, but importantly the shape looks like
the optimal color distribution under both illuminants.
To put it in another way, there is a strong association
between the illuminant color and the way a set of colors
is distributed in the real world.

This observation led to an idea: If our visual system
is aware of this imposed statistical constraint (in other
words, if our visual system internalizes the shape of
optimal color distribution under various illuminants),
then we can inversely work out from the observed
chromaticity versus luminance distribution to compute
the influence of illuminant color (Uchikawa et al.,
2012). The simplest algorithm to implement this
concept would be to find the best-fit optimal color shell
for a given color distribution of a scene. This idea is
depicted in Figure 2. For a given scene distribution,
we fit the optimal color distribution of candidate
illuminants—in this case, (a) 3000 K, (b) 6500 K, (c)

20,000 K, and (d) darker 20,000 K. For this example,
the 20,000 K illuminant fits the scene distribution
best. The 3000 K and 6500 K illuminants are not
appropriate, as some surfaces exceed the optimal color
distributions. Also, the darker 20,000 K illuminant
does not hold some surfaces because the luminance
level is too low, even though the color temperature is
the same as the 20,000 K illuminant. This highlights
the importance of selecting an appropriate illuminant
intensity, as well as color temperature, in the framework
of the optimal color model. Such an algorithm should
function perfectly when a scene contains only optimal
colors, because we can uniquely find the optimal
color distribution that fits to the scene distribution
perfectly. However, in more general situations, where
a scene does not contain optimal colors, illuminant
estimation is more challenging, as we need to find
the most appropriate optimal color distribution—for
example, by minimizing the root-mean-square
error between optimal color distribution and scene
distribution.

In summary, our hypothesis based on the optimal
color model is as follows: When the visual system
observes a scene, light sources and specular highlights
have to be rejected first. Then, based on the remaining
surface colors, our visual system seeks the most likely
optimal color distribution such that it covers all surface
colors in a scene.

It might be worth noting that our model has some
parallels with the gamut mapping method developed
for computational color constancy in terms of utilizing
an observed range of colors in a scene, but it also
differs in the following ways. The major difference is
the use of optimal colors as an internal template. Our
model assumes that the human visual system learns
the physical envelope of surface colors (i.e., optimal
colors distributions) through observation of the rich
amount of surface colors under various illuminants
in daily life and, importantly, how this distribution
changes in response to illuminant color changes. In
contrast, the gamut mapping method uses the possible
range of RGB values that can be observed only under
a canonical illuminant (i.e., canonical gamut) as an
internal template. Also, computation of our model
predictions is performed in an opponent color space
in which chromaticity and luminance are explicitly
separated and independent, instead of in RGB color
space. Thus, the way the chromaticities of scene surfaces
are associated with luminance provides a key cue to our
model, paralleling the suggestion of luminance–color
correlation mechanisms for human color constancy
(Golz & MacLeod, 2002).

In a series of previous papers, we have demonstrated
the importance of the luminance–chromaticity
association (Uchikawa et al., 2012; Morimoto, Fukuda,
& Uchikawa, 2016). It was also shown that observers
seem to ignore surfaces that appear self-luminous from
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the consideration of illuminant influence (Fukuda &
Uchikawa, 2014). We also suggested that the optimal
color model might describe bistable perception in
the #TheDress phenomenon (Uchikawa, Morimoto,
& Matsumoto, 2017). The purpose of the present
study is to test whether our optimal color hypothesis
quantitatively accounts for human observers’ behavior
in a wider variety of conditions. Our approach to
address this question was to prepare scenes having
various shapes of color distributions and to investigate
whether observers’ estimations of illuminants followed
the prediction by a computational model based on
our hypothesis. We conducted three psychophysical
experiments designed based on the following two
scenarios.

Experiments 1 and 2 used optimal colors for scenes.
We then manipulated the degree to which the scenes
contained optimal colors. As briefly mentioned above, if
a scene contains optimal colors, the optimal color model
should function perfectly, as we are able to uniquely
find the illuminant under which the optimal color
distribution perfectly matches the scene distribution.
Therefore, even if the shape of the color distribution
changes by darkening some optimal colors in the scene,
it is expected that our estimate of illuminant color
should not change.

In contrast, we used natural objects in Experiment 3.
We implemented a computational optimal color model
that incorporated our hypothesis, which predicts an
illuminant color from a given color distribution. Guided
by this model, we manipulated the shape of the natural
color distribution so that the model prediction agreed
or disagreed with set illuminant colors (i.e., ground
truth). Under this experimental setup, we investigated
the degree to which the model predicted observers’
estimation of the illuminant.

In each experiment, we used experimental stimuli
that consisted of 61 hexagons spatially packed without a
gap, where the surrounding 60 hexagons were designed
to have a different shape of color distributions. All
experimental stimuli were presented on an experimental
monitor, but it was confirmed that they appeared in
surface color mode for all observers. The observer’s
task was to adjust the chromaticity and luminance
of the center test hexagon so that it appeared to be
a full-white surface under a test illuminant. Results
showed that observers’ estimations of illuminant
intensity were not well predicted by our model, but
other models relying on simple luminance statistics did
not predict the observers’ behavior, either. However,
estimation of illuminant chromaticity agreed well
between human observers and our model prediction. In
other words, human observers’ chromaticity settings
changed or did not change in a manner predicted by
the optimal color model. Although the applicability
of our model is limited in some conditions, just as
other models are, experimental results support the

Figure 3. An example of an experimental stimulus configuration
that consists of 61 uniformly colored hexagons—the center test
field and 60 surrounding stimuli (30 bright colors and 30 dark
colors). Each hexagon is subtended 2° diagonally. The
chromaticity and luminance of the test field were adjusted by
observers. This example is a mountain distribution under 6500 K
in Experiment 1. The spatial pattern was shuffled for each trial.

idea that our visual system can utilize the geometry of
the color distribution to estimate the influence of the
illuminant.

General method

Apparatus

All experiments were computer controlled and
conducted in a dark room. Experimental stimuli were
presented on a 19-inch cathode-ray tube (CRT) monitor
(GDM-520, 1600 × 1200 pixels; Sony Corporation,
Tokyo, Japan) controlled by ViSaGe (Cambridge
Research Systems, Rochester, UK), which allowed
14-bit intensity resolution for each phosphor. We
performed gamma correction using a ColorCAL
colorimeter (Cambridge Research Systems) and spectral
calibration with a spectroradiometer (PR-650; Photo
Research, Inc., Los Angeles, CA). Viewing distance was
kept constant by a chin rest positioned 114 cm from the
CRT monitor. Observers viewed stimuli binocularly.

Experimental stimuli

Scene geometry
We used 61 hexagons as shown in Figure 3. Each

hexagon was 2° diagonally, and the whole stimulus
subtended 15.6° width × 14.0° height. The center
hexagon was used as a test field, and its chromaticity
and luminance were adjustable. The remaining 60
hexagons were surrounding stimuli and were designed
to have a specific color distribution, as detailed in each
experimental section.
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Test illuminants
We used 3000 K, 6500 K, and 20,000 K illuminants

on the black-body locus as test illuminants for
Experiments 1 and 2. For Experiment 3, we used 4000
K, 6500 K, and 10,000 K illuminants.

Observers

Four observers (KF, KU, MS, and TK; KF, KU,
and TK are the co-author of the study) participated in
Experiments 1 and 2. Four different observers (HH, HY,
RS, and TM; TM is the first author of the study) were
recruited for Experiment 3. Observers ages ranged in
age between 22 and 63 years (mean, 31.5; SD, 13.6). All
observers had corrected visual acuity and normal color
vision as assessed by Ishihara pseudo-isochromatic
plates. RS and MS were naïve to the purpose of the
study.

Implementation of optimal color model

Human observers infer the influence of illumination
based on the shape of the chromaticity versus
luminance distribution in a scene. We implemented
this idea based on a computational model that predicts
the chromaticity and luminance of a scene illuminant
from a set of 60 surface colors. First, we normalized the
luminances of the given 60 surfaces so that maximum
luminance became 1.0. Thus, the 60 surfaces formed a
specific color distribution that peaked at 1.0, and we
searched for an optimal color distribution that matched
the formed color distribution well. We assumed that the
model fully records the optimal color distribution (i.e.,
the chromaticities and the luminances of any possible
optimal color) under 11,457 candidate illuminants:
57 color temperatures from 2000 K to 30,000 K
with 500 steps × 201 luminance levels from 1.0 to
3.0 (corresponding to the height of optimal color
distribution) with 0.01 steps. Then, the model searches
the optimal color distribution that is the best fit for
the observed color distribution, assessed by weighted
root-mean-square error (WRMSE). If we take a given
surface (Si), its luminance and the luminance of the
optimal color at the chromaticity of Si can be written
as Lsi and Loi, respectively. If we consider all surfaces
from S1 to S60 in a scene, the WRMSE for a specific
candidate illuminant can be calculated by Equation 1:

WRMSE =
√√√√

∑60
i=1 wi(Lsi − Loi)2∑60

i=1 wi

wi = Lsi

Loi

(1)

We weighted the luminance error by wi to put a
greater weighting on brighter surfaces in proportion
to the luminance of the corresponding optimal color.
This is based on the finding that brighter colors have
a greater influence on an observer’s estimation of the
illuminant than darker colors (Uchikawa et al., 2012).
Under some candidate illuminants, some surface colors
might exceed the optimal color distribution, as in the
case for illuminants (a), (b), and (d) in Figure 2. Thus,
we first need to reject any illuminants under which any
of 60 surfaces exceeds the optimal color shell (Lsi >
Loi for any i). This restriction allows us to guarantee
that we search only illuminants under which all surfaces
are physically plausible (i.e., reflectance less than 1.0
at any wavelength). We then look for the illuminant
from the remaining candidates that minimizes the value
of the WRMSE. The chromaticity and the luminance
of the best-fit illuminant give the prediction of the
optimal color model. Also note that we restricted our
search along the black-body locus in this study because
we used test illuminants on the black-body locus, and
observers’ settings were also generally found on the
locus.

Procedure

Before the first trial in each experiment, following
1-minute dark adaptation, an observer first adapted for
1 minute to a white screen (2.85 cd/m2 equal energy
white) covering the whole displayable area of the CRT
monitor. Each experiment consisted of nine conditions
(three test illuminants × three distributions); thus,
nine blocks formed one session. One block had five
consecutive repetitions without an intertrial interval.
The task of observers was to adjust the chromaticity
and the luminance of the test field so that the test
surface appeared as a full-white paper placed under
a test illuminant. This is the so-called paper-match
criterion introduced by Arend and Reeves (1986), and
its nature is further argued by Reeves, Amano, and
Foster (2008). In a conventional achromatic setting
(e.g., Brainard, 1998), only the chromaticity of a test
field is adjusted while the luminance is held constant.
Our methodology differs in that one response allows
us to simultaneously measure the estimated illuminant
chromaticity and intensity. Observers used a wired
track ball (M570; Logitech, Newark, CA) for 2D
adjustment of chromaticity in the MB chromaticity
diagram and a number pad for the adjustment of
luminance. For each trial, the initial chromaticity was
randomly selected from a possible range—L/(L+M),
0.65 ± 0.03; S/(L+M), 1.4 ± 0.33—and the initial
luminance was chosen from three possible values (2.86,
5.71, and 14.3 cd/m2). There was no time limitation. For
each session, one distribution condition was randomly
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chosen first and fixed. Three illuminant conditions
were tested for the distribution condition one after
another in a random order. At the beginning of each
block, observers adapted to the presented stimulus for
10 seconds (to be briefly adapted to a new illuminant)
and then started the adjustment. They re-adapted to
the full-white screen for 30 seconds between blocks.
For each trial, the spatial arrangement of the 60
surrounding hexagons was shuffled. The observers in
total performed two sessions in Experiments 1 and
2 and four sessions in Experiment 3. As a result, we
collected 10 white-point settings for each condition in
Experiments 1 and 2 and 20 settings in Experiment 3.

Experiment 1

The purpose of Experiment 1 was to investigate the
effect of changing the shape of the chromaticity versus
luminance distribution on the estimated illuminant
color. We used optimal colors for the surrounding
stimuli and manipulated the degree to which a scene
contained optimal colors.

Color distribution of surrounding stimuli

The choice of color combination is important in
the framework of the optimal color model. Color
distributions for Experiment 1 were designed based
on the following considerations. In general, the color
distribution of a natural scene with enough reflectance
samples typically forms a mountain-like shape (an
extreme case is shown in Figure 1). Following this
observation, we created a “mountain” condition
in which the scene contained a wide range of
chromaticities, and their luminance profiles were set
to the luminances of optimal colors. Our optimal
color models can perfectly predict the ground-truth
illuminants for this scene. Then, we lowered the
luminances of some colors to generate “reverse” and
“flat” shapes, but importantly our model still perfectly
predicted the illuminant colors for these two scenes
because other optimal colors remained in the scene
that allowed our model to predict illuminant colors
correctly. The intention behind this manipulation was
to determine whether observers’ estimates of illuminant
color do not change when the model predictions do not
change, even when the apparent shapes of the color
distribution change.

Specifically, colors were selected as follows. First, we
chose three sets of 60 surfaces (30 bright colors and 30
dark colors) that produce the aforementioned different
chromaticity–luminance distributions: mountain,
reverse, and flat. The dark colors always had the same
chromaticity and 20% of the luminance of the bright

colors. Figure 4 helps us to see how 30 chromaticities
were chosen and how luminance values were assigned
to each chromaticity. We first picked the chromaticities
of three colors (labeled Red, Green, and Blue in Figure
4a). The criteria to set these colors were that (a) they did
not exceed the chromatic gamut of the CRT monitor
under any test illuminant (3000 K, 6500 K, or 20,000
K) and that (b) they had the highest purity possible.
We then connected the three colors by straight lines,
forming the magenta triangle.

We picked three colors on each side so that the
gaps between colors were of equal distance. Next, we
drew cyan and yellow triangles that were similar to
the magenta triangle (2:3 and 1:3, respectively) and
again picked colors on each side in the same way. As
shown by the white circles on the yellow triangle, we
excluded some colors simply to adjust the number of
chromaticities to 30. As a result of this selection, we
obtained three purity levels, as shown by the magenta,
cyan, and yellow triangles, and each level had 12, 12,
and six colors, respectively. Here we note that higher
purity colors are more informative regarding the
illuminant color according to the framework of the
optimal color hypothesis. For example, when a scene
had a saturated bright reddish surface, the illuminant
was unlikely to be bluish as it could not cover the
surface.

Next, we assigned luminance values for each of
the 30 chromaticities by defining the surface spectral
reflectance for each chromaticity. An inserted table at
the top-right corner in Figure 4a shows how luminances
were chosen for each distribution condition (mountain,
reverse, and flat). The resultant distributions for
each distribution condition under 6500 K are shown
in Figure 4b, c, and d, where the symbol size indicates
the luminance for each chromaticity.

For the mountain distribution, all colors were
set to optimal colors. Note that the optimal color
distribution peaks at the chromaticity of an illuminant,
and the luminance decreases as it gets away from
the white point. Thus, for the mountain condition,
luminance values were always highest at the yellow
symbols and decreased toward the magenta symbols,
as shown in Figure 4b. We also note that it is generally
not possible to uniquely convert a chromaticity to a
surface spectral reflectance simply because there are
myriad potential reflectances that could produce the
desired chromaticity. However, here we only considered
optimal surfaces, allowing us to uniquely find a
surface spectral reflectance that produces a desired
chromaticity under equal-energy white. In this way, 30
chromaticities were converted to spectral reflectances
of optimal colors, with which we simulated the effect
of an illuminant change to 3000 K, 6500 K, and
20,000 K.

The reverse and flat conditions were prepared by
manipulating the spectral reflectance functions of
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Figure 4. (a) How we selected 30 chromaticities and their luminance values for each distribution condition in Experiment 1; see the
main text for details. (b–d) Color distributions for each distribution condition. The symbol size expresses the luminance value at each
chromaticity. The highest luminance color is marked by a black edge. The black cross indicates the chromaticity of 6500 K illuminant.
Note only the 6500 K condition is shown. Also, only the 30 bright colors are presented here.

the mountain distribution. For both the reverse and
flat distributions, stimuli with chromaticities on the
magenta triangle were again set to optimal surfaces.
However, for the reverse distribution, stimuli with
chromaticities on the cyan triangle were set to have
three-fourths of the reflectance of optimal surfaces
at the corresponding cyan chromaticities (i.e., 0.75
and 0.00 reflectance across wavelengths), and stimuli
with chromaticities on the yellow triangle were set
to have half of the reflectance of optimal surfaces
at the corresponding yellow chromaticities (i.e., 0.50
and 0.00 reflectance across wavelengths). As a result,

unlike the mountain distribution, luminance values
in the reverse condition were highest at the magenta
symbols and decreased toward the white point (black
cross) as shown in Figure 4c. For the flat distribution,
the bottom-right subpanel in Figure 4a helps us to
understand our manipulation. The luminance values at
the cyan and yellow chromaticities were determined so
that they fell on the straight line between the luminance
of the optimal color of the magenta triangle and
half of the illuminant intensity. As shown in Figure
4d, the resultant distribution appears somewhere
between the mountain and reverse conditions,
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Figure 5. (a) Observer’s settings plotted on a MB chromaticity diagram for each condition in Experiment 1. The shape of each symbol
indicates distribution condition, and the color indicates the illuminant condition. The colored cross symbols show the chromaticities
of the test illuminants. Different subpanels correspond to different observers. (b) Model prediction by the optimal color model, mean
LMS model, and mean chromaticity model. Note that the optimal color model and mean chromaticity predict the same chromaticity
for any distribution condition by experimental design; thus, only the prediction for the mountain condition is shown for the sake of
clarity.

showing relatively flat luminance values over all
chromaticities.

We emphasize that chromaticity values for each
surface did not change at all depending on the
distribution condition; thus, any chromaticity-based
illuminant estimation algorithm, such as the mean
chromaticity model, predicts exactly the same
illuminant color for each distribution. This held for all
illuminant conditions. After the selection of surface
reflectances, we adjusted the intensity of test illuminants
so that mean luminance across the 60 colors became
1.2 cd/m2 for all conditions. As a result, illuminant
intensities were set to 2.96 cd/m2, 2.97 cd/m2, and 2.97
cd/m2 for mountain, reverse, and flat distributions in the
3000 K condition, respectively. For 6500 K, they were
4.14 cd/m2, 4.16 cd/m2, and 4.14 cd/m2, respectively.
Finally, for 20,000 K, we used 3.48 cd/m2, 3.49 cd/m2,

and 3.48 cd/m2, respectively. The mean luminance of
the surrounding stimuli in Experiment 1 was low. We
made the decision to use chromaticities with the highest
purity possible and to make sure that participants could
find a satisfactory luminance level at which the test field
appeared as a white surface (i.e., the upper limit of
surface color appearance). Regarding the second point,
if the overall light level was too high, the test field might
not have appeared white even when the luminance of
the test field reached the maximum luminance allowed
by our monitor.

Results and discussion

Figure 5a shows the averaged observers’ settings
across 10 trials in a MB chromaticity diagram. Error
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bars are not shown to increase the visibility. The shape
of each symbol indicates the distribution condition
(mountain, reverse, or flat), and the colors indicate
the illuminant conditions (3000 K, 6500 K, or 20,000
K). Different subpanels show the results for different
observers. Each colored cross symbol indicates the
chromaticity of the test illuminant, thus indicating the
ground truth in each illuminant condition.

Figure 5b shows the predictions from the optimal
color model, mean LMS model, and mean chromaticity
model. Note that in this experiment the optimal color
model provided a perfect estimation of illuminant
chromaticity regardless of the distribution condition
due to the experimental design. For this reason, we
plotted only predictions for the mountain condition.
This is self-evident, as we used optimal colors for
stimuli in this experiment, but we also applied
fitting procedures to each of nine conditions based
on Equation 1 for a sanity check. This confirmed that
predicted chromaticity and intensity for each condition
indeed matched the chromaticity and the intensity of a
test illuminant.

To calculate the prediction of the mean LMS
model, we first averaged cone responses across the
60 surrounding hexagons, and then we converted
the averaged cone responses to MB chromaticity
coordinates. Note that this manipulation is equivalent
to calculating the luminance-weighted average of MB
chromaticity coordinates. Here, it can be seen that the
chromaticities estimated by mean LMS are positioned
very close to the chromaticity of the test illuminants,
and there is little difference across distribution
conditions under any illuminant condition. The mean
chromaticity model provides a prediction based on
the average chromaticity across the 60 surrounding
hexagons. The predictions are deviated mainly toward
a higher S/(L+M) direction from the illuminant
chromaticities and do not change depending on the
distribution condition. Thus, only predictions for the
mountain condition are provided in the figure. In this
study, we compared prediction performance between
our model and illuminant estimation based on mean
chromaticity or mean LMS. This was not intended
to rule out more complex color constancy models
but rather to evaluate the extent to which simplistic
strategies can account for observers’ behaviors.

If an observer is perfectly color constant, the
observers’ settings in Figure 5a should superimpose on
the chromaticity of the corresponding test illuminant
shown by cross symbols; however, that was never the
case in this experiment. Instead, all settings showed
some deviation from the ground-truth points, and
some systematic trends were observed as follows.
First, for all observers, we see that the observers’
settings for the three distribution conditions are rather
closely clustered. This trend also roughly held for any
illuminant condition, suggesting that the shape of

Figure 6. Observer’s luminance settings for each condition in
Experiment 1. The distribution condition is labeled by the
lightness of the bars. The red cross symbols indicate the mean
luminance across the 60 surrounding surfaces, and the cyan
symbol shows the highest luminance of the 60 surfaces. The
blue cross symbols show the intensity of the set test illuminant
and therefore indicate the prediction by the optimal color
model. The error bars indicate ±SE across four observers.
Asterisks show a significant difference (α < 0.05, Bonferroni’s
correction).

the chromaticity–luminance distribution had little
impact on the observers’ estimation of the illuminant
chromaticity in this experiment, as predicted by the
optimal color model, mean LMS model, and mean
chromaticity model as shown in Figure 5b.

Second, as predicted, the observers’ settings were
separated depending on the illuminant condition.
Thus, unsurprisingly, the color temperature of the
test illuminant had a strong effect on the observers’
settings. The degree of separation across the illuminant
condition appears to depend on the observers; for
example, settings for observer MS were closely gathered
across test illuminants whereas those for observer KU
showed a greater separation.

Our methodology allowed observers to simultane-
ously adjust luminance in addition to chromaticity,
which provided an indication of each observer’s
estimation of illuminant intensity. Figure 6 shows the
luminance setting for each condition, averaged across
four observers. To determine whether the observers’
settings showed agreement with simple luminance
statistics, red and cyan crosses indicate the mean
luminance and the highest luminance across the 60
surrounding surfaces, respectively. Blue crosses show
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the intensities of test illuminants (i.e., ground truth);
thus, if an observer’s setting matches the blue crosses,
that indicates that the observer perfectly estimated the
intensity of the illuminant. Note that in this experiment
the optimal color model provided the perfect estimation
of illuminant intensity for all conditions by design, so
the blue cross symbols also indicate the prediction of
the optimal color model. The observers’ estimations
of intensity were never perfect, however. Instead, their
settings generally exceeded the set illuminant intensity,
showing that the observers assumed the illuminants
were much more intense than they actually were.

To quantitatively evaluate whether the pattern
of luminance settings can be explained by simple
luminance statistics, we calculated correlation
coefficient between the observers’ average settings
and each luminance statistic across nine conditions.
Correlation coefficients were 0.0788 (p > 0.05),
0.710 (p = 0.0320), and 0.700 (p = 0.0359) for mean
luminance, highest luminance, and illuminant intensity,
respectively. Thus, the highest luminance model and
illuminant intensity (i.e., prediction from the optimal
color model) showed a significant correlation. It is
possible that observers used different statistics or a
more complicated strategy, but the findings suggest that
their behaviors can be explained reasonably well by
the optimal color model or simple luminance statistics
(highest luminance in this case).

Next, a two-way, repeated-measures analysis of
variance (ANOVA) was performed with distribution
condition (mountain, reverse, or flat) and illuminant
condition (3000 K, 6500 K, or 20,000 K) as the
within-subject factors for the luminance settings. The
main effects of distribution condition and illuminant
condition were not significant: F(2, 6) = 3.48, p > 0.05;
F(2, 6) = 3.88, p > 0.05, respectively. However, the
interaction between the two factors was significant:
F(4, 12) = 5.45, p = 0.00975. Further analysis of the
interaction revealed that the simple main effect of
distribution condition was significant at 6500 K and
20,000 K, F(2, 6) = 9.71, p = 0.0132; F(2, 6) = 7.80,
p = 0.0214, respectively, but not at 3000 K, F(2, 6) =
0.15, p > 0.05. Furthermore, the simple main effect of
illuminant condition was significant for the mountain
condition, F(2, 6) = 5.48, p = 0.0443, but was not
significant for the reverse and flat conditions, F(2, 6) =
1.39, p > 0.05; F(2, 6) = 3.76, p > 0.05, respectively.

To further clarify the relation across levels regarding
the simple main effects of distribution and illuminant,
the results of multiple comparisons with Bonferroni’s
correction (significance level α = 0.05) where significant
differences were found are indicated by asterisks in
Figure 6. Overall, the results of these statistical analyses
suggest that the luminance settings were higher for
the reverse condition than for the mountain and
flat conditions at 6500 K, and they were higher for

Figure 7. How to define the CI. Vectors �a and�b show the shift in
physical illuminant chromaticity and the shift in the perceptual
white point, respectively, and θ is the angle between the two
vectors. Note that each axis was divided by the average of
standard deviations across four observers for the mountain
6500 K condition to compensate for the scale difference along
L/(L+M) and S/(L+M). The CI is defined by |�b|cosθ/|�a| in this
scaled MB chromaticity diagram.

the reverse condition than for the flat condition at
20,000 K.

Next, to examine the extent to which color constancy
held for each condition, it would be helpful to quantify
the degree of constancy. Several metrices have been
used in past studies (summarized in Foster, 2011), but a
fundamental idea is to capture how much the observers’
subjective white points shifted in relation to physical
changes of illuminant chromaticity. In this study, we
used an index that considers both the direction and the
amount of the observers’ settings shift.

As shown in Figure 7, we first defined two vectors,
�a and �b, where �a is a vector originating from the
chromaticity of the 6500 K illuminant to the illuminant
chromaticity of 3000 K or 20,000 K. The vector �b
extends from the observers’ settings under 6500 K to
settings under the test illuminant (3000 K or 20,000
K). We defined θ as indicating the angle that two
vectors create, as shown in right panel in Figure 7. The
constancy index (CI) is calculated by Equation 2:

CI =
∣∣∣�b

∣∣∣ cosθ/
∣∣�a∣∣ (2)

If the shift of an observer’s setting caused by
illuminant change is the same as the shift of illuminant
chromaticity in terms of both distance and direction,
then the CI becomes 1.0. Any deviation in distance or
direction would lower the CI. In theory, the CI can take
a value more than 1.0, but we did not find such a case
in this study. If the direction of shift perfectly matches
between �a and �b (i.e., θ = 0), then cosθ becomes 1.0 and
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Figure 8. The CI averaged across four observers in Experiment 1.
Note that the CIs closer to 1.0 indicate better color constancy.
Error bars indicate ±SE across four observers.

thus does not lower the CI value. In this sense, cosθ
serves as a loss factor due to the directional deviation.

Also note that a problem with calculating a
distance-based metric in an MB chromaticity diagram
is that scales for L/(L+M) and S/(L+M) are different
and arbitrary. Thus, to give approximately equal
consideration to both directions, we divided each axis
by the average of standard deviations across four
observers of the settings under the mountain 6500 K
condition (which was considered to be the standard
condition). All CIs were calculated in this scaled MB
chromaticity diagram. Our metric is not the only way
to quantify color constancy, but we confirmed that
other common constancy indices agreed well with our
implementation (see Supplementary Material).

The bar chart in Figure 8 shows averaged CIs across
four observers for each condition. First it was shown
that the CIs were roughly around 0.5 for the mountain
and reverse conditions at 3000 K, and the CIs were
slightly lower for 20,000 K. The flat condition had a
slightly higher CI, especially for 3000 K.

We performed two-way, repeated-measures ANOVAs
with distribution condition (mountain, reverse, or flat)
and illuminant condition (3000 K or 20,000 K) as the
within-subject factors for the CIs. The main effect of
distribution condition was significant, F(2, 6) = 8.40,
p = 0.0182, whereas the main effect of the illuminant
conditions and the interaction between two factors
were not significant, F(1, 3) = 7.63, p > 0.05; F(2, 6) =
0.59, p > 0.05, respectively.

Multiple comparisons with Bonferroni’s correction
(significance level α = 0.05) for the distribution
condition found that the flat condition showed higher
CIs than the mountain and reverse conditions, but there

was no significant difference between the mountain and
reverse conditions.

Overall, the statistical analyses indicated that color
constancy worked equally well under 3000 K and 20,000
K, and it also worked better for the flat distribution
than for the other distributions in Experiment 1.
We note that the use of a low luminance level for
the surrounding stimuli might have introduced rod
intrusion on the color appearance of the surrounding
stimuli and test field. However, the CI is a relative
measure and thus partially suppresses the influence of
rod intrusion.

We have so far discussed the degree to which human
observers achieved color constancy; however, the main
purpose of the present study was to quantify how well
our optimal color models accounts for the pattern
of human observers’ settings, ideally in comparison
with other candidate color constancy models. The
CI calculates how much an observer’s setting shifted
in relation to a shift of the physical illuminant
chromaticity. Thus, it becomes higher when shifts in the
perceptual white point and physical illuminant are close
to each other in distance and direction, and it becomes
1.0 when the two shifts perfectly match. Although
the CI was originally designed to reflect the degree of
color constancy, we can also consider a metric that
indicates the degree to which the shift of illuminant
chromaticities predicted from computational models
agrees with that of the observers’ white-point settings.
Based on this idea, we quantified the degree to which
our optimal color model and other computational
models (mean LMS and mean chromaticity) predicted
human observers’ settings. We introduced the model
index (MI) as defined by Equation 3, which replaces
the × symbols in Figure 7 with + symbols, indicating
predictions from a model as shown in Figure 9:

MI =
∣∣∣�b

∣∣∣ cosϕ/
∣∣�c∣∣ (3)

Higher values indicate better model prediction, and
1.0 indicates perfect prediction. Figure 10 shows the
MIs in each condition. Note that in this experiment the
optimal color model predicted illuminant chromaticity
perfectly; therefore, the MI values match those of the
CIs. The mean LMS model first averaged cone signals
across 60 surfaces, and the average cone signal was
transformed to MB chromaticity coordinates. The
mean chromaticity estimates illuminant color based on
the average chromaticity across 60 surfaces.

We can see that the MI values are high in the order
of optimal color, mean LMS, and mean chromaticity
models for all conditions. We ran the following
analysis to confirm if our model prediction was
statistically better than that of the mean LMS and
mean chromaticity models. We performed a three-way,
repeated-measures ANOVAs with model type (optimal
color, mean LMS, and mean chromaticity), distribution
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Figure 9. How to define the MI that quantifies the degree to
which the three models of interest (optimal color, mean LMS,
and mean chromaticity) account for the human observers’
settings. Vectors �c and�b show the shift of chromaticities
predicted by a model and the shift of the perceptual white
point, respectively. ϕ is the angle between two vectors. MI is
defined by |�b|cosϕ/|�c| in the scaled MB chromaticity diagram.

condition (mountain, reverse, and flat), and illuminant
condition (3000 K and 20,000 K) as the within-subject
factors for the MIs. The main effects of the model
type and distribution condition were significant, F(2,
6) = 52.8, p = 0.000155; F(2, 6) = 7.93, p = 0.0207,
respectively, whereas the main effect of illuminant
condition was not significant, F(1, 3) = 8.51, p > 0.05.
The interactions between model type and distribution
condition and between model type and illuminant
condition were significant, F(4, 12) = 15.4, p =
0.000113; F(2, 6) = 220.9, p < 0.00001, respectively. In
contrast, the interaction between distribution condition
and illuminant condition was not significant, F(2,
6) = 0.57, p > 0.05. The interaction among three
factors also was not significant, F(4, 12) = 3.11,
p > 0.05.

We then analyzed simple main effects for the
interaction between model type and distribution
condition. The simple main effect of model type was
significant for all distribution conditions: F(2, 18) =
45.4, p < 0.00001 for the mountain condition; F(2, 18)
= 42.9, p < 0.00001 for the reverse condition; and F(2,
18) = 62.8, p < 0.00001 for the flat condition. Also, the
simple main effect of the distribution condition was
significant for all models: F(2, 18) = 8.36, p = 0.00271;
F(2, 18) = 7.74, p = 0.00375; and F(2, 18) = 7.69, p
= 0.00386, respectively. Post hoc multiple comparison
using a Bonferroni’s correction (significance level,
0.05) revealed the following: (a) mountain = reverse,
mountain < flat, and reverse < flat for the optimal
color model; and (b) mountain = reverse, mountain <
flat, and reverse = flat for the mean LMS and mean
chromaticity models. We also found the following
results: optimal color model > mean LMS model,
optimal color model > mean chromaticity model, and

Figure 10. The MI for each condition in Experiment 1. The MIs
were calculated separately for each observer first and then
averaged across four observers. A higher MI indicates that a
model predicted the human observers’ settings better. Error
bars show ±SE across four observers.

mean LMS model > mean chromaticity model for all
distribution conditions (i.e., mountain, reverse, and flat
distributions).

Next, we analyzed simple main effects of interaction
between model type and illuminant condition. We
found that model type showed significant simple
main effects at both 3000 K and 20,000 K, F(2, 12)
= 97.7, p < 0.00001; F(2, 12) = 19.8, p = 0.000158,
respectively. Moreover, the simple main effects of
illuminant condition were significant for the optimal
color model and mean LMS model, F(1, 9) = 12.5, p =
0.00636; F(1, 9) = 8.78, p > 0.0159, respectively, but
were not significant for the mean chromaticity model,
F(1, 9) = 4.81, p > 0.05. Again multiple comparison
using a Bonferroni’s correction (significance level,
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0.05) provided the following results: (a) optimal color
model > mean LMS model, optimal color model >
mean chromaticity model, and mean LMS model >
mean chromaticity model for 3000 K; and (b) optimal
color model > mean LMS model, optimal color model
> mean chromaticity model, and mean LMS model
= mean chromaticity model for 20,000 K. Overall,
these statistical tests suggest that our optimal color
model predicted observers’ settings generally better
than the mean LMS and mean chromaticity models, at
least under the current experimental procedure. This
observation held for the different distributions and test
illuminants, as supported by the results from multiple
comparisons reported above.

With regard to the degree of color constancy, it was
shown that human observers can achieve roughly 50%
constancy for each distribution condition, although
the flat condition showed slightly higher CIs. MI-based
analysis revealed that our optimal color model predicted
the shift of observers’ settings in response to test
illuminant changes better than other candidate models
in general. With regard to raw chromaticity settings
(Figure 5a), our model was successful in revealing that
the shape of distribution had little impact, but the
mean LMS model and mean chromaticity model also
predicted this observation (Figure 5b). In Experiment
2, to further pursue the applicability of our model, we
tested three different distributions designed to separate
predictions made by our model and the mean LMS
model. We designed the shape of color distributions
so that optimal color model would again perfectly
predict the chromaticity of the illuminant, but the mean
LMS model predicted a different illuminant for each
distribution condition. Our intent was to determine the
effect of the shape of the color distribution on human
observers’ white-point settings, as predicted by the
optimal color model.

Experiment 2

Experiment 2 tested follow-up conditions from
Experiment 1, and color distribution shapes were
designed based on the mountain condition in
Experiment 1. The luminance profiles of the mountain
condition were modulated to alter the prediction from
the mean LMS model while keeping the prediction of
optimal color model constant.

Color distribution of surrounding stimuli

We used three new distributions: red-reduced,
green-reduced, and blue-reduced. We used the same
30 chromaticities as in Experiment 1, but luminance
values were assigned differently as follows. First, as

shown in Figure 11a, we divided the 30 chromaticities
into six categories. Some chromaticities were included
in only a red, green, or blue group (indicated by
red, green, and blue circles, respectively). But, some
chromaticities belonged to more than one group (e.g.,
magenta circles belong to both red and blue groups).
For the red-reduced distribution, colors included in
the red group (i.e., red, magenta, and yellow symbols)
were set to have one-third the luminance of optimal
colors, whereas other colors were all set to optimal
colors. The same manipulation was applied to the
green-reduced and blue-reduced conditions. The intent
of this manipulation was to reduce the contribution
to mean LMS values from colors in a specific region
in the chromaticity diagram. For example, for the
green-reduced distribution, colors that have low
L/(L+M) values are forced to have low luminance,
and thus the mean LMS values across 60 surfaces
should be biased towards higher L/(L+M). We used
30 bright colors and 30 dark colors that had the same
chromaticity but 20% of the luminance of the bright
colors. The luminance values over chromaticities under
the test illuminant of 6500 K are shown in Figure 11b
to d. Note that for each distribution some colors had
noticeably lower luminances than others.

In Experiment 2 we also set the intensity of the test
illuminants such that the mean luminance across the 60
colors became 1.2 cd/m2. To achieve this, illuminant
intensities were set to 4.45 cd/m2, 4.29 cd/m2, and 4.18
cd/m2 for red-reduced, green-reduced, and blue-reduced
distributions in the 3000 K condition. For 6500 K,
they were 4.53 cd/m2, 4.63 cd/m2, and 4.63 cd/m2,
respectively; for 20,000 K, we used 3.66 cd/m2, 3.74
cd/m2, and 3.80 cd/m2, respectively.

Results and discussion

The presentation of results follows the format in
Experiment 1. Figure 12a shows the averaged observers’
settings across 10 trials. The shape of the symbol
indicates the distribution condition (red-reduced,
green-reduced, or blue-reduced), and the colors indicate
the illuminant condition (3000 K, 6500 K, and 20,000
K). Figure 12b shows predictions from the optimal
color model, mean LMS model, and mean chromaticity
model. As in Experiment 1, the optimal color model
provided perfect estimation of illumination for all
conditions by design; thus, we only plotted predictions
for the red-reduced condition. Predictions from the
mean LMS model show some differences depending
on distribution condition as expected. For example,
for the red-reduced condition, surfaces with high
L/(L+M) had lower luminance than the other surfaces,
thus contributing less to the averaged LMS values.
As a result, the prediction shifted toward the lower
L/(L+M) direction. The mean chromaticity model
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Figure 11. (a) How to group 30 chromaticities into six different categories. Note that the yellow, magenta, and cyan symbols indicate
colors that belonged to both red and green, both red and blue, and both green and blue groups, respectively. (b–d) Color distributions
for each distribution under 6500 K. The size of the symbols indicates the luminance value at each chromaticity. The highest luminance
color is marked by a black edge. Only the 30 bright colors are shown here.

predicted exactly the same chromaticity as Experiment
1 because our experimental manipulation changed
only the luminance profiles of the surrounding stimuli
while keeping the chromaticities of the 60 surfaces
constant.

For observer MS and TK, we see that their settings
for the three distribution conditions seem to come close
under any illuminant condition, which is consistent with
the prediction from the optimal color model. However,
some separation and systematic pattern of settings were
observed for KU and especially KF—lower L/(L+M)
for the red-reduced condition, higher L/(L+M) for the
green-reduced condition, and lower S/(L+M) for the
blue-reduced condition—observations that seem to be
somewhat consistent with the predicted pattern by the
mean LMS model. Also, the observers’ settings were
predictably influenced by the color temperature of the
illuminant.

Figure 13 shows the averaged luminance settings
across four observers for each condition. The

predictions for mean luminance, highest luminance,
and illuminant intensity are indicated by red, cyan,
and blue cross symbols, respectively. We performed
two-way, repeated-measures ANOVAs with the
distribution condition (red-reduced, green-reduced,
or blue-reduced) and illuminant condition (3000 K,
6500 K, or 20,000 K) as the within-subject factors for
the luminance settings. The main effect of distribution
condition and illuminant condition were not significant:
F(2, 6) = 0.10, p > 0.05; F(2, 6) = 1.65, p > 0.05,
respectively. The interaction between two factors also
was not significant, F(4, 12) = 0.55, p > 0.05. Thus,
there was no significant difference for any pair of
conditions in Experiment 2.

We again calculated correlation coefficients between
the nine observers’ settings and each luminance
statistics. The correlation coefficients were –0.356
(p > 0.05), –0.6273 (p > 0.05), and 0.0210 (p >
0.05) for mean luminance, highest luminance, and
illuminant intensity (i.e., prediction from the optimal
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Figure 12. (a) The observers’ white settings for each condition in Experiment 2. Different panels indicate different observers. (b)
Model prediction by the optimal color model, mean LMS model, and mean chromaticity model. The optimal color model and mean
chromaticity model predict the same chromaticity regardless of distribution condition by experimental design; thus, only the
prediction for the red-reduced condition is shown here.

color model), respectively. Thus, these models failed
to predict the human observers’ performance. This
might be due to the observers’ use of a more complex
strategy than the simple luminance statistics tested
here.

Next, we quantified the degree of color constancy
based on Equation 2. Figure 14 shows the CIs for all
conditions. We conducted two-way ANOVAs with the
distribution condition (red-reduced, green-reduced,
or blue-reduced) and illuminant condition (3000
K or 20,000 K) as the within-subject factors for
the CIs. The main effect of distribution condition
was not significant: F(2, 6) = 3.59, p > 0.05. Also,
the main effect of illuminant condition and the
interaction between two factors were not significant:
F(1, 3) = 7.18, p > 0.05; F(2, 6) = 2.16, p > 0.05,
respectively. Consequently, the degree of color
constancy was not influenced by the shape of the
distribution or the color temperature of the test
illuminants.

We again calculated MIs from Equation 3 based on
predictions from the optimal color, mean LMS, and
mean chromaticity models as shown in Figure 15. For
the 3000 K condition (top nine bars), it was found that
the MI values were generally higher for the optimal
color model than for the other models, except for the
blue-reduced condition, where the mean LMS model
showed a slightly higher MI than that of the optimal
color model. This observation also held for the 20,000
K condition. However, the error bars are large, thus
making it difficult to make a conclusive statement about
whether our optimal color model overall worked better
than other models. For this reason, we performed the
following statistical analyses.

Three-way, repeated-measures ANOVAs were
conducted with model type (optimal color, mean
LMS, or mean chromaticity), distribution condition
(red-reduced, green-reduced, or blue-reduced), and
illuminant condition (3000 K or 20,000 K) as the
within-subject factors for the MIs. The main effect
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Figure 13. The observers’ luminance settings for each condition
in Experiment 2. Distribution conditions are indicated by the
lightness of the bars. The red and cyan crosses indicate the
mean luminance and the highest luminance across 60
surrounding surfaces, respectively. The blue cross symbol
shows the intensity of the test illuminant. Error bars are ±SE
across four observers.

of model type was significant, F(2, 6) = 68.1, p =
0.000075, whereas the main effects of distribution
condition and illuminant condition were not significant:
F(2, 6) = 1.27, p > 0.05; F(1, 3) = 6.82, p > 0.05,
respectively. The interaction between model type and
distribution condition and between model type and
illuminant condition were significant: F(4, 12) = 48.1,
p < 0.00001; F(2, 6) = 18.6, p < 0.00268, respectively.
In contrast, the interaction between distribution
condition and illuminant condition was not significant,
F(2, 6) = 2.18, p > 0.05. The interaction among
three factors also was not significant, F(4,12) = 3.02,
p > 0.05.

Regarding the significant interaction between model
type and distribution condition, the simple main effect
of model type was significant under the red-reduced,
green-reduced, and blue-reduced conditions: F(2, 18)
= 38.7, p < 0.00001; F(2, 18) = 75.6, p < 0.00001;
F(2, 18) = 64.0, p < 0.00001, respectively. In addition,
the simple main effect of distribution condition
was significant for the optimal color model, F(2,
18) = 4.79, p = 0.0184, but was not significant for
the mean LMS model or mean chromaticity model:
F(2, 18) = 2.79, p > 0.05; F(2, 18) = 3.36, p > 0.05,
respectively. Furthermore, multiple comparison using
a Bonferroni’s correction (significance level, 0.05)
showed that red-reduced = green-reduced; red-reduced

Figure 14. The CI for each condition in Experiment 2. CIs closer
to 1.0 indicate a higher degree of color constancy. Error bars
show ±SE across four observers.

= blue-reduced; and green-reduced > blue-reduced for
the optimal color model. Also, optimal color > mean
LMS, optimal color > mean chromaticity, and mean
LMS > mean chromaticity for both the red-reduced
and blue-reduced conditions. For the green-reduced
condition, optimal color > mean LMS model, optimal
color > mean chromaticity, and mean LMS model =
mean chromaticity.

Next, we analyzed the simple main effects of
interactions between model type and illuminant
condition. We found that model type showed significant
simple main effects at 3000 K and 20,000 K: F(2, 12)
= 79.7, p < 0.00001; F(2, 6) = 31.0, p = 0.000018,
respectively. Moreover, the simple main effects of
illuminant condition were significant for the optimal
color model and mean LMS model, F(1, 9) = 8.27, p =
0.0183; F(1, 9) = 8.88, p = 0.0155, respectively, but they
were not significant for the mean chromaticity model,
F(1, 9) = 3.73, p > 0.05. Again, multiple comparison
using a Bonferroni’s correction (significance level, 0.05)
showed that optimal color > mean LMS, optimal
color > mean chromaticity, and mean LMS > mean
chromaticity at 3000 K. At 20,000 K, optimal color >
mean LMS, optimal color > mean chromaticity, and
mean LMS = mean chromaticity.

Our main interest in this experiment was to evaluate
whether our proposed model preforms better than other
candidate models. The calculated MIs and statistical
analyses overall support this idea, which is consistent
with the trends in Experiment 1. However, predictions
from the optimal color model are still limited in
Experiments 1 and 2, as MIs for the optimal color
model were considerably smaller than 1.0, showing a
lack of agreement. Thus, it is still inconclusive as to



Journal of Vision (2021) 21(3):7, 1–28 Morimoto, Kusuyama, Fukuda, & Uchikawa 18

Figure 15. The MI for each condition in Experiment 2. Higher
values indicate better prediction by the models. Error bars
show ±SE across four observers.

whether the optimal color model is a good candidate
strategy to be adopted by human observers to infer the
influence of illuminant.

It is worth noting that we used optimal surfaces for
the surrounding stimuli that do not exist in the real
world; thus, the observers never experienced luminance
distributions formed by optimal colors. Instead, in
the real world, the visual system encounters scenes
containing natural objects that have a reflectance less
than 1.0. In Experiment 3, we used 60 reflectances
selected from a database of 575 natural objects (Brown,
2003). We manipulated the shape of the distribution
to “deceive” the optimal color model, so that even
when the test illuminant was held constant the model
predicted different illuminant chromaticities influenced
by the shape of the color distribution. We then
measured the observers’ white points using the same
procedure as in Experiments 1 and 2. We tested whether

the white points of human observers change in response
to a change in the shape of the color distribution, and,
if so, whether the optimal color model can predict those
shift patterns.

Experiment 3

Color distribution of surrounding stimuli

We used three distributions: natural, red-increased,
and blue-increased. As discussed in the previous
section, the aim of manipulating color distributions
in this experiment was to alter the prediction by the
optimal color model. To achieve this, we selected 60
reflectances from a database that contains 575 spectral
reflectances of natural objects (Brown, 2003) based on
the following criteria. First, a white surface provides
a direct cue to the illuminant color, thus allowing
observers to adjust the color of the test field so that it
simply matches the white surface. Therefore, we decided
to exclude 59 flat reflectances that have chromaticities in
a range between 0.6978 and 0.7178 along the L/(L+M)
axis and between 0.800 and 1.200 along the S/(L+M)
axis when rendered under equal-energy white. Second,
we randomly sampled 60 surfaces from the remaining
516 reflectances so that mean chromaticity across
the 60 surfaces corresponded to the chromaticity of
equal-energy white—0.7078 for L/(L+M) and 1.0000
and S/(L+M)—when rendered under equal energy to
make a scene chromatically balanced. The chosen 60
surfaces were defined as the natural distribution. This
natural distribution condition was designed to form a
mountain-like color distribution to imitate the scene
distribution typically seen in the natural environment.
We also made sure that the optimal color model was
able to perfectly estimate the chromaticity of the test
illuminant in this condition.

Next we manipulated the luminance profile of
natural distribution to alter the model prediction
without changing the chromaticity of any surface.
To create the red-increased condition, we scaled
up or down 60 reflectances by multiplying scalar
values without changing the spectral shape of
the reflectances. The scalar value was determined
proportionally to the L/(L+M) of the reflectance
under equal-energy white so that reflectances with
higher L/(L+M) had higher luminance. Similarly,
to create the blue-increased distribution, we scaled
60 reflectances by the scalar value as a function of
S/(L+M) so that the reflectances with high S/(L+M)
became lighter. We made sure that maximum reflectance
did not exceed 1.0 to keep all reflectances physically
plausible.

Resultant distributions are shown in Figure 16. We
see that the natural distribution has a mountain-like
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Figure 16. Color distributions for each distribution condition under 6500 K in Experiment 3. Each panel also indicates the optimal
color distribution best fit to the 60 colors.

shape, whereas the red-increased and blue-increased
conditions both have skewed luminance profiles. For the
red-increased distribution, the upper subpanel shows
that luminances around higher L/(L+M) regions are
elevated. Also, for the blue-increased distribution, the
lower subpanel shows that luminances around higher
S/(L+M) regions are increased. Importantly, fitted
optimal color distributions are plotted together, and
best-fit color temperature and illuminant intensity are
shown at the top right of each upper subpanel. These
fitting results indicate that model perfectly predicted
the color temperature for the natural condition. In
contrast, the estimation is biased at 5500 K and 8000 K
for the red-increased and blue-increased distributions,
respectively, as expected. For the 4000 K condition, the
model predictions of color temperature were 4000 K,
3500 K, and 4500 K for the natural, red-increased, and
blue-increased distributions, respectively. For the 10,000
K condition, the predictions were 10,000 K, 7500 K,
and 15,500 K, respectively.

Note that different color temperatures were used for
the test illuminants in Experiment 3 (4000 K, 6500 K,
and 10,000 K) compared to Experiments 1 and 2 (3000
K, 6500 K, and 20,000 K). This is because we wanted
to manipulate distribution shapes so that the model
predicted higher or lower color temperatures than the
ground truth. If we had instead used 20,000 K as a test
illuminant, for example, the model would have predicted
a color temperature of 30,000 K for the blue-increased
distribution, and the observers’ chromaticity settings

might have exceeded the chromatic gamut of the CRT
display. For this reason, we employed less extreme color
temperatures in this experiment.

We set intensities of test illuminants so that the mean
luminance across 60 surfaces became 6.0 cd/m2 for all
conditions. To achieve this, illuminant intensities were
set to 25.1 cd/m2, 25.4 cd/m2, and 25.6 cd/m2 for the
natural, red-increased, and blue-increased distributions,
respectively, in the 4000 K condition. For 6500 K,
they were 26.3 cd/m2, 26.9 cd/m2, and 27.3 cd/m2,
respectively. For 10,000 K, we used 27.4 cd/m2, 27.7
cd/m2, and 27.8 cd/m2, respectively.

Results and discussion

Figure 17 shows averages of the human observers’
settings across 20 settings for each condition. The
presentation of results follows previous experiments.

In this experiment, Figure 17b is particularly
important, as the optimal color model provided
different chromaticities for each distribution condition
by design. We see here that the prediction by the mean
LMS model was also influenced by the shape of the
distribution. The mean chromaticity model predicted
the same chromaticity for any distribution condition;
thus, any shift of the observers’ perceptual white
point depending on distribution condition cannot be
explained by the mean chromaticity model.
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Figure 17. (a) Observers’ chromatic settings for each condition in Experiment 3. Different panels indicate a different observer. (b)
Model prediction by the optimal color model, mean LMS model, and mean chromaticity model. The mean chromaticity model
predicts the same chromaticity for any distribution condition by design; thus, only the prediction for the natural condition is shown
here.

Figure 17a shows that all observers’ settings exhibited
a systematic pattern. For the red-increased distribution,
observers’ settings shifted in a higher L/(L+M)
and lower S/(L+M) direction compared to settings
under the natural distribution. For the blue-increased
distribution, the observers’ settings shifted in a lower
L/(L+M) and higher S/(L+M) direction. Thus, the
shape of the color distribution had a strong effect on
observers’ settings in this experiment. Importantly
these shifts closely resemble the prediction pattern
of the optimal color model, as shown in Figure 17b.
These results would support our hypothesis that human
observers use the shape of a color distribution to infer
the chromaticity of an illuminant. However, note that
the mean LMS model also seemed to predict shifts in
the observers’ settings reasonably well. Later in this
section, we quantify the degree of agreement between
observers’ settings and model predictions based on
correlation coefficient and RMSE values.

Figure 18 shows the luminance settings for each

condition. Overall, it can be seen that the observers’
luminance settings are closer to the illuminant intensity
(i.e., ground truth) compared to Experiments 1 and
2 (Figures 6 and 13), suggesting better estimation of
the intensity of illuminants. We performed two-way,
repeated-measures ANOVAs with distribution
condition (natural, red-increased, or blue-increased)
and illuminant condition (4000 K, 6500 K, or 10,000
K) as the within-subject factors for the luminance
settings. The main effects of distribution condition and
illuminant condition were not significant: F(2, 6) =
0.149, p > 0.05; F(2, 6) = 4.06, p > 0.05, respectively.
The interaction between two factors also was not
significant, F(4, 12) = 1.32, p > 0.05. Thus, we found
no significant difference for any pair of conditions in
Experiment 3.

We again calculated correlation coefficients for
the averaged observers’ settings (nine points) and
each luminance statistic. Correlation coefficients were
0.2154 (p > 0.05), 0.3255 (p > 0.05), 0.1833 (p > 0.05),
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Figure 18. Observers’ luminance settings for each condition in
Experiment 3. The red and cyan crosses indicate the mean
luminance and highest luminance across 60 surrounding
surfaces, respectively. The blue cross symbol shows the
intensity of the test illuminant. The magenta cross denotes the
prediction by the optimal color model. Error bars are ±SE
across four observers.

and 0.2701 (p > 0.05) for mean luminance, highest
luminance, illuminant intensity, and optimal color
model, respectively. Thus, none of the tested models
here shows a particularly high correlation. This result is
in agreement with Experiment 2.

Because the main focus of this experiment was to
examine the effect of distribution shape on observers’
settings, we do not show CIs that focused on the effect
of illuminant change on observers’ settings. Instead,
we examine the degree of agreement between model
prediction and observers’ settings using correlation
coefficients. Figure 19 shows a plot where the horizontal
axis is the prediction of a optimal color model and the
vertical axis is the observers’ settings in the L/(L+M)
and S/(L+M) direction. The dotted line indicates a
unity line. The solid line is a straight line fitted to the
nine data points. The correlation coefficient is shown at
the bottom right in each subpanel, where *** indicates
a p value less than 0.001. The correlation coefficients
show fairly high values, suggesting that the optimal
color model can account for human observers’ behavior
well.

These assessments allow us to identify the degree of
correlation between model predictions and observers’
settings, but the data points should all fall on the unity
line if the model prediction is perfect. For example, we
see that data points are generally slightly off downward

from the unity line for the L/(L+M) direction, especially
for the 4000 K condition. To quantify the deviation of
data points from the unity line, we calculated the RMSE
values between model prediction and observer settings,
across nine data points separately for the L/(L+M) and
S/(L+M) directions. The correlation coefficients and
RMSE together should allow us to reach a conclusion
regarding the accuracy of model prediction.

In Figure 20, we summarize correlation coefficients
(upper subpanels) and RMSE values (lower subpanels)
for the optimal color model and other models. We
calculated both indices separately for each observer
first (as demonstrated in Figure 19), and Figure 20
shows the averaged values across four observers.
Here, the upper subpanels indicate that the optimal
color model had the highest correlation coefficients
for both chromatic channels. The mean LMS model
shows a correlation close to that of the optimal color
model. The vertical axis ranges between 0.80 and
1.00 for L/(L+M) and S/(L+M), indicating very high
correlations for any tested model here. For luminance,
the correlation coefficient is noticeably lower than
L/(L+M) and S/(L+M) for any model. Also, variation
among observers seems to be larger, as indicated by
the length of the error bars. The mean LMS and
mean chromaticity models gave the same estimation of
illuminant intensity; thus, the correlation coefficients
are also exactly the same. Regarding RMSE values, the
optimal color model showed a lower value for L/(L+M)
than did the other two models. Also, the trend held
for the S/(L+M) direction, but the differences across
models seem to be small. We do not show RMSE
values for the luminance condition, as we believe that
the absolute prediction from the mean LMS and mean
chromaticity models should not be expected to match
human observers’ luminance settings and that only a
relative measurement matters here (e.g., correlation
coefficient).

For correlation coefficients, we performed one-way,
repeated-measures ANOVAs separately for each
channel—L/(L+M), S/(L+M), and luminance—with
model type (optimal color, mean LMS, and mean
chromaticity models) as the within-subject factor. The
main effect of model type was significant for L/(L+M)
and S/(L+M), F(2, 6) = 15.8, p = .00408; F(2, 6) =
21.0, p = 0.00195, respectively, but not for luminance,
F(2, 6) = 0.0094, p > 0.05. We next performed multiple
comparison using Bonferroni’s correction (significance
level, 0.05). Pairs that showed significant differences are
indicated by asterisks in Figure 20.

Also, for RMSE values, one-way, repeated-measures
ANOVAs were conducted separately for L/(L+M)
and S/(L+M) channels with model type (optimal
color, mean LMS, and mean chromaticity) as the
within-subject factor. The main effect of model type
was significant for L/(L+M), F(2, 6) = 1687.0, p <
0.00001, but not for S/(L+M), F(2, 6) = 1.44, p >
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Figure 19. (a) Optimal color model prediction (horizontal axis) versus human observers’ settings (vertical axis) for the L/(L+M)
direction. Different subpanels indicate different observers. The right-bottom numbers show correlation coefficient and *** indicates p
values less than 0.001. The dotted straight line represents a unity line, and the solid line indicates a straight line fit to the data points.
(b) The same plot for the S/(L+M) direction.
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Figure 20. Correlation coefficient (upper panel) and RMSE
(lower panel) between observers’ settings and model
predictions for (a) L/(L+M), (b) S/(L+M), and (c) luminance.
Values are averaged across four observers, and error bars
indicate ± SE across four observers. Note that the range of the
vertical axis is different for the luminance direction. Asterisks
denote a significant difference (α < 0.05, Bonferroni’s
correction).

0.05. We next performed multiple comparisons using
Bonferroni’s correction (significance level, 0.05); pairs
that showed a significant difference are indicated by
asterisks in Figure 20.

Overall, these results suggest that the optimal color
model is better than either the mean LMS model or
the mean chromaticity model in predicting observers’
estimations of L/(L+M) and that tested models are
equally good at predicting observers’ estimations
of S/(L+M). Also, in terms of predicting intensity
estimation, none of tested models here was particularly
good.

In summary, in Experiment 3, a proposed optimal
color model accounted for the shift of chromatic
settings in response to the change of the scene color
distribution with high precision. Here, we note that our
experiment still should not rule out the possibility of
use by the visual system of the mean LMS model or
any other models that we did not test in the present
study. Nevertheless, empirical data here suggest that
this geometry-based estimation of illumination might

be a plausible algorithm for our visual system to infer
the influence of illumination.

General discussion

From the set of colors in a scene, how can we infer
the color of the illuminants projecting onto the surface?
An intuitive answer would be to use the chromaticities
of surfaces (for example, when the illuminant is reddish,
chromaticities of all surface become reddish). What
is less known is that the luminance distribution also
systematically changes, providing a diagnostic cue
to the illuminant color. Our present study addressed
the importance of the luminance distribution and
specifically investigated whether subjective white-point
settings recorded from human observers can be
predicted by the optimal color model, which estimates
illuminant color based on the shape of the color
distribution. We conducted three psychophysical
experiments to test this hypothesis. Experiments 1 and 2
were designed so that the optimal color model predicted
a constant illuminant despite changes in the distribution
shapes, and observers’ behavior generally agreed with
this model prediction. In Experiment 3, we manipulated
the shapes of the color distribution so that the optimal
color model predicted the success or failure of color
constancy, and we found that observers’ chromaticity
settings followed the prediction well. These empirical
data collectively suggest that the optimal color model
could be a good candidate model for human color
constancy, especially in estimating the chromaticity
of illuminants in scenes that contain natural
objects.

However, the accuracy of the model with regard to
observers’ illuminant intensity estimations was largely
limited. One notable feature in the results is that the
observers’ luminance settings were substantially higher
than the actual illuminant intensity (shown in Figures
6, 13, and 18). This implies that the human observers
assumed that the presented surrounding stimuli were
darker than the optimal colors, because under the
estimated illuminant intensities the presented stimuli
were not optimal colors. One might argue that because
we know that white is very bright, observers simply
increased the luminance of the test field up to the upper
limit allowed by our experimental display. However,
we confirmed that no observer settings reached the
upper limit. If we think that optimal colors do not
exist in the real world, it makes sense that observers
assumed high intensity of the illuminant rather than
high surface spectral reflectance. In the framework
of the proposed model, there is a strong association
between accuracies in illuminant intensity estimation
and in color temperature estimation. To demonstrate
this, let us consider a scene illuminated by a bluish
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illuminant. Under the bluish illuminant, bluish surfaces
should become lighter, and one would expect that
optimal color distribution under a reddish illuminant
would be inappropriate, as it cannot cover light blue
surfaces. However, this is true only when the illuminant
intensity is properly estimated. In theory, if we assume
a very intense illuminant, the optimal color distribution
of any color temperature should cover the blue surface.
In other words, for the model to estimate the color
temperature precisely the illuminant intensity must
be estimated well, too. Thus, inaccurate illuminant
intensity estimation by human observers could be
one reason for imperfect agreement between model
prediction and observer settings. This conclusion is also
supported by the finding that observers’ estimations of
illuminant intensity were better in Experiment 3.

It should be noted that the present study used flat
and matte experimental stimuli that are essentially
an array of colors to eliminate other cues regarding
the illuminant, such as the influence of memory
color (Olkkonen, Hansen, & Gegenfurtner, 2008). In
contrast, objects in the real world are usually three
dimensional and sometimes contain specular reflection.
Thus, a single object typically exhibits a color variation
over a surface that may provide additional cues to
color constancy. The use of simple stimuli may be a
potential reason why we found a relatively low degree
of color constancy (around 50%) in Experiments 1
and 2. Especially, the use of three-dimensional stimuli
(Morimoto, Mizokami, Yaguchi, & Buck, 2017;
Mizokami, 2019) and the presence of specular reflection
(Yang & Shevell, 2002; Lee & Smithson, 2016) are
claimed to be important for color constancy. However,
it is also important to note that perfect color constancy
is usually not observed in lab-based experiments,
even when those cues are present. Logvinenko, Funt,
Mirzaei, and Tokunaga (2015) also argued that perfect
color constancy is, in theory, impossible because of
the presence of illuminant metamerism (referred to
as “metamer mismatching”). The purpose of the
present study was to test whether human observers
are able to maintain color constancy based on the
shape of color distribution; thus, it was a necessary
choice to keep our experimental stimuli as simple as
possible to exclude the influence from other cues. In any
case, it will be important to test how well our model
agrees with human behavior in the presence of other
cues.

In addition to the simplification of surface
properties, there are at least two limitations regarding
illuminant properties in this study. First, our test
illuminants always changed along the blue–yellow
direction. It would be interesting to test whether human
color constancy still holds for non-black-body locus
illuminants (e.g., magenta illuminant) to which we are
not exposed in daily life. Interestingly, Delahunt and
Brainard (2004) showed that our color constancy is

not impaired under atypical illuminants, suggesting
that our internal assumption about illuminant color is
not constrained along the blue–yellow axis. Second, all
experimental scenes were uniformly illuminated by a
single illumination. In contrast, objects placed in the
real world tend to receive incident light from every
direction, and the spectral distribution of this light may
change from one direction to another. For example,
in sunny outdoor scenes, light from above tends to
come from sunlight or a skylight, but the object also
receives light from below dominated by a secondary
reflection from other objects in the scene. Recent
studies indeed have shown that natural scenes have a
significant amount of directional spectral variation
(Morimoto, Kishigami, Linhares, Nascimento, &
Smithson, 2019). For a scene illuminated by a single
light source, as shown in Figure 1, a single optimal
color distribution shows a complete representation
of the surface color gamut; however, for a scene
under multiple illuminants, the gamut accordingly
expands. For this reason, our model also must consider
more than one optimal color distribution. In general,
estimation of multiple illuminations increases the
complexity of the color constancy problem and thereby
inflates computational cost; therefore, our model may
also suffer because there are too many combinations
of optimal color distributions to fit. In recent years, a
growing body of research has investigated the influence
of directional-dependent illumination on human
color constancy or other functions of color vision
(Fleming, Dror, & Adelson, 2003; Doerschner, Boyaci,
& Maloney, 2004; Morimoto & Smithson, 2018). Our
present study suggests that the optimal-color-based
explanation works reasonably well when there is only
one illuminant in a scene. Testing the limitation of
human color constancy under multiple illuminants
allows us to investigate the degree to which our
proposed model can be applied.

Our model has some parallels with the idea that
the visual system uses statistical regularities hidden
in natural scenes which can act as internal references
to calibrate our perception (Gilchrist et al., 1999; Lee
& Smithson, 2012). For example, our white-point
settings when no context is presented seem to spread
along the chromatic variation of natural scenes,
implying mechanisms to normalize color appearance
to scene statistics (Bosten, Beer, & MacLeod, 2015).
Empirical data also suggest the influence of natural
scene statistics on color vision mechanisms such
as chromatic adaptation, color discrimination, and
color constancy (Webster & Mollon, 1997; MacLeod,
2003; Webster 2011). Moreover, there is evidence that
our unique hue points can be recalibrated following
exposure to manipulated chromatic signals (Neitz,
Carroll, Yamauchi, Neitz, & Williams, 2002) or the
seasonal change of chromatic statistics (Welbourne,
Morland, & Wade, 2015). DeLawyer, Tayon, Yu,
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and Buck (2018) showed that the amount of S-cone
excitation could be a clue as to whether a color
change stems from an illuminant change or a surface
change.

We have suggested that the optimal color model
explained observers’ settings reasonably well, and
the degree of agreement typically outperformed two
simple alternative statistical models based on mean
chromaticity or mean LMS. However, the prediction
accuracy of our model was not perfect under any of the
conditions. It is possible that the observers used a more
complicated strategy for illuminant estimation, and one
might argue that more sophisticated computational
color constancy algorithms could better explain
the observers’ behaviors. As briefly reviewed in the
Introduction, a number of machine vision algorithms
have been developed, and some aspects of them are
similar to those of our proposed model. This study
did not make an extensive comparison of performance
across computational algorithms for the following two
reasons. First, such algorithms normally operate in the
RGB color space and thus cannot be directly applied
to our experimental stimuli, which were defined in
terms of the proportion of cone excitations: L/(L+M),
S/(L+M), and L+M. Second, and more importantly,
they were designed to solve the machine vision task to
eliminate the illuminant influence from a given image,
and they do not necessarily have a direct link to the
mechanisms that underlie human color constancy.
For example, it is normally not considered whether
calculations are feasible for visual system; consequently,
signals to which our visual system would not have access
are often used. Hence, we figured that making such a
comparison digresses from the purpose of the present
study. However, research comparing human vision
and machine vision is attracting increasing attention
(Geirhos, Meding, & Wichmann, 2020) and might
lead to the development of human-like algorithms
that operate based on sensory signals in visual
pathways.

Major findings in the present study are that we
can account for human observers’ estimation of
illumination if we assume that the visual system has full
access to the distribution of optimal colors. However,
how valid are these assumptions? How plausible is
it for us to determine the physical limit of colors?
It remains an open question as to whether human
observers are able to access the shape of the optimal
color distribution by observing statistical regularities
in natural scenes. Figure 1 shows that when we plot
49,667 natural objects at once, it very much resembles
the shape of the optimal color distribution. This
indicates that if we integrate the luminance versus
chromaticity distribution over a long period, it may
be possible for us to learn where the physical limits
are. We believe that the observer’s internal assumption
about the physical limits of surface colors can be

visualized by measuring luminosity thresholds over
various chromaticities. Our earlier data (Uchikawa,
Koida, Meguro, Yamauchi, & Kuriki, 2001; Uchikawa,
Fukuda, & Morimoto, 2017) indicate that the locus
of luminosity thresholds resembles the luminance of
optimal colors. Additionally, Speigle and Brainard
(1996) suggested that it is possible to relate luminosity
thresholds to the upper luminance boundary estimated
from the luminance distributions of natural objects,
which agrees with the optimal color distribution as
shown in Figure 1. Recent studies also have begun
to show some success with such a learning-based
approach in other research domains (Fleming & Storrs,
2019). For complex functions such as color constancy,
where complete implementation requires solving
inverse optics, a learning-based strategy provides
a powerful alternative. Thus, it may be plausible
for our visual system to learn and utilize optimal
color distributions to implement a mathematically
challenging constancy mechanism. The extension of
research in this direction might yield exciting insights
into long-standing questions regarding the field of color
vision.

Keywords: color vision, color constancy, optimal color,
illuminant estimation
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