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Abstract: Neurodegenerative diseases (NDDs) are disorders that affect both the central and pe-
ripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and
endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tis-
sue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include
Alzheimer’s disease (AD), Lewy body dementia (LBD), and Parkinson’s disease (PD). The formation
of β-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegen-
erative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the
central nervous system (CNS), are affected. However, the inflammatory process is linked to several
neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory
signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may
increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression.
Unlike medical symptoms, which are just signs of a patient’s health as expressed and perceived,
biomarkers are reproducible and quantitative. Therefore, this current review will highlight and
summarize the neurological disorders and their biomarkers.

Keywords: neurological disorder; neuroinflammation; proteinopathies; biomarkers

1. Introduction

Neurodegenerative diseases (NDDs) are disorders that affect both the central and
peripheral nervous systems. Infection may play a role in late-onset AD, among the other
risk factors causing sporadic occurrences of AD. Infectious agents such as bacteria, viruses,
fungus, and protozoa have been linked to the development of Alzheimer’s disease (AD)
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over the last three decades [1,2]. The human brain is the world’s most complicated bi-
ological organ. We are not invincible, though, and we are susceptible to a variety of
medical conditions, some of which are linked to a brain malfunction [3]. Neurodegener-
ation develops immediately before clinical manifestation of AD, i.e., the development of
cognitive impairment, as a result of cumulative tau and Aβ pathologies, followed by a
cellular malfunction in the brain [4]. Nervous system damage, ischemia, oxidative and
endoplasmic reticulum (ER) cellular stress, inflammation, abnormal protein deposition
in neural tissue, autoimmune-mediated neuronal loss, and viral or prion infections are
just a few of the causes of NDDs [5]. Additionally, neurodegeneration comprises many
clinically and pathologically heterogeneous disorders, most characterized by the accumula-
tion of misfolded proteins in the CNS as insoluble aggregates (or inclusions) and gradual
neuronal death in the affected regions [6–8]. AD symptoms include memory loss and
personality changes, Parkinson’s disease (PD) symptoms include impaired motor capacity
and focus challenges, and amyotrophic lateral sclerosis (ALS) symptoms include weakness
and cognitive decline [2,9,10]. Multiple sclerosis (MS) is a peripheral nerve condition that
includes diabetic neuropathy, various metabolic neuropathies, endocrine neuropathies,
and disorders of myelin degeneration, all of which present with sensory impairments
and autonomic dysfunction [11–13]. The research and development of effective therapy
solutions for NDDs are the most complex and challenging topics in contemporary neu-
romedicine. Simultaneously, the social and economic benefits of resolving, at least in part,
these issues outweigh any potential dangers or development costs. Although prevalent
neurodegenerative disorders such as Alzheimer’s and Parkinson’s were described over a
century ago, they remain incurable. Despite significant progress in understanding these
diseases’ pathophysiology, the triggers and exact mechanisms of neurodegeneration remain
unknown [14,15].

Biomarkers can be utilized for a variety of purposes, including guiding clinical di-
agnosis, estimating disease risk or prognosis, determining disease stage, and tracking
medication response [16]. Biomarkers can be used in clinical trials to select a specific
diagnostic subgroup (patient enrichment or stratification), assure proper treatment target
engagement, detect therapeutic downstream effects on the disease process, and to assess
clinical efficacy and/or safety [17]. The creation of blood-based biomarkers has been a sig-
nificant advancement in the study of neurology. Despite initial skepticism about peripheral
markers due to the physical constraints imposed by the blood-brain barrier (BBB), recent
technical improvements have enabled the measurement of analytes in various biofluids at
extremely low concentrations [18].

Numerous mutations mediating family variants of major neurodegenerative disorders
have been discovered in several genes over the last two decades, igniting a fresh wave of
research into the pathology of neurodegeneration and the mechanisms underlying neuronal
protection [19–21]. Based on toxicological and transgenic disease models, a number of
possible neurodegenerative routes have been postulated. They have similar characteristics
and mechanisms, such as an accumulation of intrinsically disordered proteins in the form
of aggregates, mitochondrial dysfunction and oxidative stress, and neuroinflammation,
which have been used to develop therapeutic strategies aimed at halting or slowing disease
progression rather than symptomatic treatment [22–25]. One of the outcomes of bacterial
and viral infections is a disrupted BBB, which leads to widespread cerebral dysfunction
after the systemic inflammatory response, with or without direct CNS infection [26]. Higher
levels of the systemic inflammatory marker TNF-α have been linked to increased cognitive
impairment in Alzheimer’s patients [27]. Microglia are activated after CNS infection by
viruses, bacteria, fungi, and parasites, according to recent findings from both preclinical
and clinical research. Because of their potential to acquire various activation states or
phenotypes, microglia, a marker of brain inflammation, have several features for neu-
roinflammation, including cytotoxicity, repair, regeneration, and immunosuppression [28].
Recent research shows that infection with Enterobacteriaceae family bacteria accelerates
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the onset of AD in a Drosophila model by boosting immunological hemocyte migration to
the brain [29].

However, many NDDs have identical symptoms and characteristics, making diagnosis
difficult. As a result, a lot of study has been undertaken to investigate the clinical aspects as
well as the molecular mechanisms that cause these diseases, to find traits that can help with
diagnosis. Therefore, this current review will highlight and summarize the neurological
disorders and their biomarkers.

2. Neurodegeneration, Inflammation, and Tumorigenesis in the Central
Nervous System

Although the pathogenic function and basic molecular processes underpinning neu-
rodegeneration are complicated, involving genetic, environmental, and endogenous vari-
ables linked with aging, their pathogenic function and basic molecular mechanisms are
unknown [30,31]. Now, NDDs are categorized based on their known genetic pathways and
the primary chemicals found in their protein deposits. These disorders are called ‘protein
misfolding’ diseases or proteinopathies because significant structural abnormalities cause
them in proteins [32,33]. Numerous fundamental mechanisms underlying neurodegenera-
tion may be initiated at various stages of the neurodegenerative cascade by inflammatory
cells and mediators.

Apoptosis: Apoptosis is a form of planned cell death controlled by caspases [34–37]. It
is characterized by the production of membrane-encased apoptotic bodies that are rapidly
phagocytozed by macrophages or neighboring cells. Although evidence of apoptotic path-
ways has been found in animal models of a variety of neurodegenerative illnesses, there is
less evidence in human tissues. In Huntington’s disease (HD) models, activation of caspase-
1, -3, -8, and -9 as well as cytochrome c release were found in human striatal brain tissue.
Similarly, in amyotrophic lateral sclerosis (ALS) and HIV-associated neurodegeneration,
caspase activation and neuronal death have been observed [38].

Necroptosis: Necroptosis is a type of programmed cell death defined by the loss of
plasma membrane integrity and occurs in the absence of caspase activation. The receptor-
interacting serine/threonine-protein kinase 1 (RIPK1) and mixed-lineage kinase domain-
like are the two key effector proteins in necroptosis (MLKL). TNF-α, FasL-, and TRAIL are
released by astrocytes and can cause necroptosis by activating RIPK1 and MLKL, as shown
in ALS mice models [39]. Axonal disease caused by RIPK1 was detected in pathological
specimens from ALS patients [40]. In MS pathology samples, necroptotic pathways were
also detected [41].

Autophagy, also known as type II programmed cell death, is defined by the buildup
of autophagic vacuoles during cell death, along with potentially harmful components such
as proteins or damaged organelles. Excessive autophagy can result in cell death and self-
destruction. Autophagosomes were found in AD, HD, and PD patients’ damaged neurons.
Numerous other triggers, such as food deprivation, mitochondrial toxins, hypoxia, and
oxidative stress, can cause autophagy [42,43].

Axonal damage or transection can result in retrograde degeneration of the proximal
neuronal cell body, which is associated with a range of degenerative alterations within
the cell body, including apoptosis and neuronal perikaryon chromatolysis. Because of
the relationship between neuronal apoptosis and axonal damage, inflammation-induced
axotomy may result in retrograde (secondary) apoptosis of neuronal cell bodies [44].

Astrogliopathy: Astrogliopathy is a broad word that refers to astrocyte dysfunction.
The abnormal buildup of inappropriately phosphorylated tau protein in astrocytes seen in
AD, frontal temporal lobe dementia (FTLD), and corticobasal degeneration is referred to
as aging-related tau astrogliopathy (ARTAG) [45,46]. Optic neuritis and myelitis charac-
terize neuromyelitis optica (NMO), which can mimic MS. Antibodies against aquaporin-4
(AQP4), which binds to astrocyte water channels, are linked to NMO. NMO is characterized
pathologically by a significant loss of immunoreactivity for the astrocytic proteins AQP4
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and glial fibrillary acidic protein (GFAP), perivascular deposition of immunoglobulins, and
complement activation, even in lesions containing some myelin [47].

Inflammation begins when the body’s immune cells start inflammatory cascades
to avoid tissue damage caused by injury or invading pathogens. If the inflammatory
response is successful, it eliminates pathogens, initiates wound healing and angiogenesis,
and eventually decreases. When the neuroinflammatory response is acute, it is required
and even helpful for the neuronal environment, as it aids in pathogen elimination and brain
restoration. When serious threats to the neural environment, such as protein aggregates
(Lewy bodies, neurofibrillary tangles), build in the brain and sustain inflammation for
an extended length of time, continuous gliosis and apoptosis can occur as a result of
uncontrolled inflammatory cytokine production. Chronic inflammation is associated to
nearly all neurological diseases, including AD, PD, and ALS, as a result of persistent
activation [48,49]. In contrast to this protective homeostatic mechanism, inflammation has
been implicated in a wide variety of diseases. In recent years, its impact on neurological
disorders has been hypothesized as a crucial role in disease progression. Microglia in the
CNS form phagocytic morphologies and secrete pro-inflammatory cytokines to interact
with astrocytes and neurons. This can result in neurodegeneration, synaptic phagocytosis,
reduced neuronal function, microglial activation, inflammatory cytokine release, and even
more microglial activation until the neural environment is no longer threatened. Astrocytes
are also activated during the inflammatory process, a process known as astrogliosis. Aging
is a significant risk factor for neurodegeneration [50–52]. In general, older adults have
dysregulated cytokine expression (i.e., increased synthesis of pro-inflammatory cytokines
and decreased availability of anti-inflammatory cytokines), resulting in a chronic low-grade
inflammatory state. Inflammaging is a term that refers to this type of auto-inflammatory
disorder that occurs throughout aging [53].

Aside from blood and lymphatic vessels, data suggests that neurogenesis (the growth
of new neurons) and axonogenesis (tumor-induced neural sprouting toward the tumor
microenvironment) are important in carcinogenesis and cancer progression. Neurogenesis
and axonogenesis have been seen in pre-neoplastic lesions, implying that they play a role
in the onset of cancer as an early occurrence in the pre-malignant phase [54].

3. Neurodegenerative Diseases as Proteinopathies

AD, LBD, and PD are the most frequent neurodegenerative proteinopathies. The
formation of β-sheet-rich aggregates of intracellular or extracellular proteins in the CNS
characterizes all neurodegenerative proteinopathies [55,56]. It is widely accepted that
specific unstructured proteins in healthy brains change their shape in neurodegenera-
tive proteinopathies, naturally undergoing severe structural folding and forming small
oligomeric or large fibrillary clumps. These changes in size and three-dimensional shape
cause self-association, elongation, and precipitation in certain brain regions, resulting in
pathogenic protein properties being acquired. In most proteinopathies, the basic pathways
generating misfolded protein structural alterations are similar. They may include post-
translational alterations, decreased protein clearance, or increased protein production [57].
It has been claimed that protein clearance plays a vital function in maintaining neuronal
cell integrity. Numerous studies have described how, in most neurodegenerative disor-
ders, impaired protein clearance may affect brain functioning and structure, resulting in
clinical symptoms [58,59]. Although adult neurons are thought to be terminally differ-
entiated, degenerating neurons have been shown to accumulate linked cell-cycle-related
proteins [60,61].

Because of the pathogenic mechanisms involving the transmission of the prion (the
disease’s causative agent) or proteinaceous infectious particles, prion disease has a distinct
phenotype among the proteinopathies. These particles are made up of a prion protein
isoform (PrPSc) that is aberrant. The PrPSc isoform binds to PrPC fragments and causes
conformational misfolding, resulting in autocatalytic amplification and transmission in the
central nervous system [56]. As a result, prion illnesses are spread via highly infectious
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misfolded prions. The prion-like mechanism is based on irreversible connections between
constitutive molecules and protein clearance resistance and the ability to propagate to
target cells [57].

4. Relationship between Neurodegeneration and Inflammation

In mammals, the nervous system can directly sense inflammatory stimuli, allowing for
the identification of a potential source of injury via the creation of pain and the modulation
of the immune response to infection [62,63]. Although afferent routes and immunological
information integration in the brain are still under investigation, there is evidence that
central muscarinic signaling affects inflammation in experimental sepsis, obesity, and
inflammatory colitis [64–66]. Inflammation and regeneration of peripheral nerves are
shown in Figure 1.

Figure 1. Inflammation and regeneration of peripheral nerves.

The immune system is constantly on the lookout for possible infections and self-
produced chemicals indicative of injury. Inflammation, under standard settings, is a
well-coordinated reaction that is continuously fine-tuned. Once germs have penetrated the
epidermal and mucosal barriers, innate immunity is crucial for limiting further invasion
through the induction of inflammation. After the source of infection has been eliminated,
the inflammatory response is critical for tissue repair and functional recovery. The precise
systems that initiate and regulate inflammation will lessen the response if the source of the
injury is removed. Large pathogen loads or infections with extremely virulent bacteria can
cause sepsis and multiple organ failure [67].

SLE is an autoimmune disease that affects a range of organs, including the central
nervous system, and is relapsing-remitting. It is characterized immunologically by a lack of
tolerance for self-antigens and aberrant B- and T-cell responses. Immunoglobulin complexes
can accumulate in tissues and cause systemic inflammation. Anti-nuclear antibodies are
found in up to 98% of patients, but they can also be found in people with other autoimmune
diseases. Neuropsychiatric SLE (NPSLE) is a poorly known medical condition with various
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clinical manifestations. According to one study, patients with neurological and mental
disorders range between 12% and 95%. Involvement of the CNS predicts a more severe
clinical manifestation of SLE [68]. Neuropsychiatric symptoms are challenging to diagnose
due to their breadth of motor, sensory, cognitive, and behavioral manifestations [69].

The death of neurons in the hippocampus is linked to memory loss. Antibody-
mediated cytotoxicity in response to binding to neuronal cell surface receptors such as the
NMDA receptor or the neuronal surface P antigen (NSPA) may be the reason [70,71]. MS is
the most prevalent demyelinating inflammatory illness in young adults, with a substantial
risk of long-term disability. It affects approximately 2.5 million people worldwide [72].

Biological systems, such as the human brain’s neural network, exhibit “small-world”
features. Small-world networks are organized on two layers. Locally, clusters of neu-
rons specialized in a particular task create functional modules with a high degree of fast
intramodular connection. On a global scale, many modules are connected via lengthy
intermodular connections. The latter sort of connection benefits increased computational
efficiency due to parallel data processing. White matter axonal fiber bundles generate
long intermodular connections anatomically [73,74]. Long fibers have significant energy
“wiring costs” [75]. The brain relies on a steady energy supply to maintain these long fibers.
Recent research has revealed oligodendrocyte-derived lactate as the primary metabolic
source for axonal maintenance undertaken in an elegant manner [76]. Disruption of this
oligodendrocyte-neuronal metabolic coupling consistently results in neurodegeneration.
Systemic inflammation significantly impairs the brain’s energy supply [77].

The human brain’s repair capacity is restricted, making it extremely sensitive to tissue
injury. The brain is protected from many modes of tissue injury as central preventive
mechanisms; for example, the skull bone protects the brain from mechanical harm, and
the BBB protects the brain from blood-borne infections. Endothelial cells and astrocytes
make up the majority of the BBB. Endothelial cells establish tight junctions, which provide
a highly selective barrier that becomes permeable during systemic inflammation [78].

The buildup of misfolded Aβ in the brain has been suggested as the crucial initiating
event in a complicated pathophysiological cascade leading to AD pathology. Robert Moir
and Rudolph Tanzi demonstrated Aβ’s additional physiological role as an antibacterial
agent in in vitro and in vivo experiments [79]. One study reported that systemic infection
with the gram-negative bacterium C. pneumoniae was linked to a five-fold increase in the
prevalence of AD, and higher anti-C. pneumoniae titers in the blood were also seen in many
AD patients [80]. Therefore, after infection, the mice and C. elegans that expressed the
Aβ peptide lived longer than those that did not. S. typhimurium injection in the brain
resulted in the development of Aβ amyloid deposits with a longer survival rate in another
A-overexpressing animal model. These findings also suggested that Aβ oligomerization,
which is thought to be a pathogenic development in the context of neurodegeneration, could
be a required step in increasing the peptide’s antimicrobial action [81]. Microbes provide
an efficient surface for the nucleation of amyloid aggregates, increasing the likelihood of
amyloid deposition [82]. Furthermore, Aβ buildup in the brain could be an early harmful
event in the etiology of Alzheimer’s disease. The soluble and probably nontoxic Aβ

monomers would form numerous complex assemblies with varying degrees of toxicity,
including soluble oligomers and protofibrils. This could spread throughout the brain,
eventually forming insoluble amyloid fibrils, which then combine into amyloid plaques, one
of the hallmark histological lesions of AD. The biological importance of Aβ conformational
states in the context of AD is crucial because different types of assemblies may influence
the progression of neurodegenerative phases differently [83].

The immune system itself is a third possible source of brain tissue injury. Because
pathogen defense is generally accompanied by host tissue damage, an anti-inflammatory
environment protects the brain from abnormal immune activation. Astrocytes and neurons
actively regulate the activation of brain immune cells in physiological settings [84].
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5. Alzheimer’s and Neuroinflammation

The physiological and molecular pathways underlying neuroinflammation are most
likely the same in aging and metabolic illnesses including hypertension, diabetes, depres-
sion, and dementia, as well as after brain injuries such as stroke, and are thus considered
silent contributors to neuroinflammation [85]. Inflammatory pathways have been linked to
the etiology of dementia and functional impairment in the elderly. Cerebral small vessel
disease (SVD)-vascular dementia is hypothesized to be caused by systemic and local CNS
inflammation, which results in persistent oligodendrocyte death and subsequent degrada-
tion of myelinated axons [86,87]. Another important risk factor for stroke and CNS tissue
destruction is atherosclerosis, which is characterized by vascular inflammation caused by
monocyte infiltration into the injured vascular wall and an increase in interleukin (IL)-6
levels associated with subsequent progression of intracranial significant artery stenosis
following a stroke episode [88]. Inflammatory indicators including C-reactive protein
(CRP) have also been detected in SVD. CRP is a potent predictor of subclinical and clin-
ical atherosclerosis, as well as the progression of hemorrhagic stroke, in cardiovascular
disease [89,90].

Furthermore, fatty tissue dysfunction associated with obesity and hypertension leads
to low-grade inflammation, predisposes people to type 2 diabetes and cardiovascular
disease, and may be linked to poor outcomes in stroke patients [91–93]. In diabetes mellitus,
mortality is primarily due to micro- and macrovascular problems and sensory neuropathic
disorders, which exacerbate the consequences of vascular disease. Sensory neuropathy
contributes to the development of foot ulcers and eliminates warning signals associated
with a heart attack. However, inflammatory, metabolic illness (metaflammation) related to
poor nutritional habits can result in various ailments and diseases, including cardiovascular
disease, stroke, hypertension, insulin resistance, metabolic syndrome, and diabetes mellitus.
Metaflammation is characterized by the development of negative regulatory responses
in target cells such as macrophages, lipid hormones (sphingolipids and eicosanoids),
cytokines, and adipokines [94].

6. Depression and Neuroinflammation

Chronic activation of pro-inflammatory signals throughout aging may enhance sen-
sitivity to neuropsychiatric diseases [95]. Inflammation was associated with more pro-
inflammatory markers such as IL-6, CRP, and adipokines in obese women [96]. These
pro-inflammatory indicators were related to depressive and anxious symptoms [97]. Ac-
cording to those findings, metabolic illnesses such as obesity, hypertension, and advanced
age all serve as significant risk factors for depression, cognitive dysfunction, and de-
mentia [98], and individuals suffering from severe depression have an increased risk of
developing aging-related disorders affecting the cardiovascular, cerebrovascular, neuroen-
docrine, metabolic, and immunological systems [99–101]. Potential biomarkers with their
features are shown in Table 1.

Hyperglutamatergia, oxidative stress, enhanced pro-inflammatory cytokines IL-6
and IL-8, and uncoupling of endothelial nitric oxide synthase have all been proposed
as mechanisms linking inflammation and depression. As a result, patients with major
depressive disorder (MDD) [102–104], a serious mental illness associated with higher
levels of inflammatory markers in the periphery, depression, and suicide mortality, have
been found to have indirect indications of neurovascular dysfunction. Inflammatory
characteristics such as chemokines, adhesion molecules, cytokines, and acute phase proteins
are all linked to neurodegenerative illnesses such as MDD [105,106].

7. Infections and Neuroinflammation

It has been suggested that viruses can reproduce in macrophages and CCR5+ T
cells within the CNS, as with HIV proteins gp120 and Tat, which can cause neuronal
apoptosis via CXCR4-PKC increase and neuronal dysfunction via miRNA disruption,
respectively [107–109]. Most notably, as with HIV infection, additional viral insults are
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associated with increased cytokine secretion, increased cholesterol, increased lipopolysac-
charide (LPS) concentrations, insulin resistance, testosterone insufficiency, and APOE4, all
of which contribute to CNS inflammation. As a result of persistent stress, age-dependent
augmentation of the provocative response appears to be the major trigger mechanism for
tissue damage associated with numerous age-related diseases [110]. Local inflammation
is frequently triggered by BBB endothelial cells that are equipped with the molecular
machinery to detect bacterial and viral antigens. The antigenic recognition of a broad
number of conserved molecular determinants known as pathogen-associated molecular
patterns (PAMPs; Hanke and Kielian, 2011) by pattern recognition receptors (PRRs) is
the first line of defense against microbial invasion [111,112]. Peripheral variables such as
the gut microbiome can influence the condition of NDDs [113]. Changes in normal flora
composition are linked to severe NDDs that disrupt brain development, plasticity, and
create behavioral issues [114].

8. New Potential Biomarkers

In contrast to medical symptoms, which are simply indications of a patient’s health
as expressed and perceived by the patient, biomarkers, or “biological markers“. In 1998,
the Biomarkers Definitions Working Group of the National Institutes of Health defined
biomarkers as “evidence of any biological, pathogenic, or pharmacogenomic response
to any therapy modification” [115]. Biological markers are any substances, structures, or
processes that may be measured inside or outside the body and can influence any changes
in the body or the chance of disease prevalence of neurological diseases [116].

8.1. Alzheimer’s Disease

AD is a slowly progressing neurological disease for which there is now no effective
cure. Deposition of 42-amino-acid-long amyloid (Aβ) protein in extracellular plaques in
the brain is the earliest identifiable disease, which occurs decades before clinical symptoms
appear [117]. According to biomarker studies, a buildup is connected to synaptic dys-
function and increased tau phosphorylation and secretion, a microtubule-binding axonal
protein abundantly produced in cortical neurons [118]. This dysregulated tau metabolism
puts neurons at an elevated risk of degeneration, as intraneuronal neurofibrillary tangles
formed of hyperphosphorylated and shortened tau proteins form. Neurodegeneration
finally manifests as the AD clinical syndrome, characterized by progressive cognitive
deficits [101,119,120]. The pathology of AD is shown in Figure 2.

Table 1. Potential biomarkers with their features.

Amyloid-Beta Tau Protein Phosphorylated Tau

Aβ plaque depositions commonly define
AD. The amyloidogenic pathways

produce these 42-amino-acid peptides
(Aβ1-42), clumping in the brain. The
amount of Aβ in AD patients’ CSF is

reduced by roughly 500 pg/mL
compared with healthy controls (79,420

pg/mL) [121].

Tau inclusion intraneuronal
microtubule-associated protein is another
well-established AD biomarker. There is

an exponential increase in tau protein
levels in AD patients from 300 to 600
pg/mL, which grows with age from

21–50 years to >71 years (in patients aged
51–70 years). Therefore it is an excellent

prognostic biomarker [122].

In AD, tau protein is phosphorylated in
about 39 places. Position 181 is a distinct

biomarker in AD versus controls. Tau
protein phosphorylation causes function
loss and neuronal malfunction. There are

also phosphorylated tau-199, tau-231,
tau-235, tau-396 and tau-400 [123].
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Figure 2. Pathology of AD.

8.2. Aβ Pathology Biomarkers

Extracellular deposition of Aβ, formed by BACE1 and γ-secretase cleavage of amyloid
precursor protein (APP), forming plaques is a significant pathological characteristic of AD. It
has been hypothesized to represent the primary pathogenic event in the illness [124]. Aβ42
is an APP breakdown product generally transported from the brain interstitial fluid to the
CSF and blood via the glymphatic system [125]. Amyloid positron emission tomography
(PET) has been validated in comparison with neuropathology, has undergone substantial
standardization in terms of quantifying pathology and defining abnormality cut-points,
and has adequate usage criteria [126–128].

8.3. Tau Pathology Biomarkers

A fundamental pathogenic hallmark of AD is the aggregation of hyperphosphorylated
tau in the neuronal soma, generating neurofibrillary tangles. However, tau inclusions
in neurons or glial cells are also observed in other neurodegenerative dementias [129].
Together with the CSF Aβ42/Aβ40 ratio, the cornerstone markers totaled tau (T-tau) and
phosphorylated tau (P-tau) have been proposed as biomarkers for biologically defining
AD and are considered diagnostic in the research criteria for AD [130,131]. Both T-tau
and P-tau concentrations in the cerebrospinal fluid (CSF) reflect AD pathogenesis in all
neurodegenerative dementias [132]. The most likely explanation is that the higher tau
levels in the CSF result from enhanced tau phosphorylation and release by neurons in
response to Aβ exposure [133,134].

8.4. Multiple Sclerosis

MS is a chronic autoimmune disease that causes demyelination of the central ner-
vous system and neurodegeneration [135]. Through interplay with immune cells, energy
metabolic problems and endocrine abnormalities have been demonstrated to begin MS [136].
Furthermore, viral infection and environmental pollutants have been demonstrated to im-
pair immunological tolerance and trigger the release of proinflammatory factors such as
IL-6 and NF-kB in hereditarily vulnerable people [137]. The disease is heterogeneous
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in radiological and histological alterations, clinical presentation and development, and
response to therapy [138,139]. P-gp expression is also increased, which promotes CD4+ and
CD8+ T cell migration and amplifies neuroinflammation [140]. T-cells and B-cells mediate
inflammatory responses by secreting cytokines that activate inflammatory cells such as
microglia behind the BBB [141]. The pathology of MS is shown in Figure 3.

Figure 3. Pathology of MS.

When a patient’s blood serum and CSF fluid are analyzed at the same time, oligo-
clonal bands are discovered. It has long been known that oligoclonal bands (OCB) can
be found in the CSF of MS patients (by isoelectric focusing). Plasma cells in the CNS use
immunoglobulin G (IgG) and M to create them (IgM) [142].

After a period in which OCB were not employed for diagnosis according to the
McDonald criteria, they have been reintroduced into the diagnostic algorithm in the 2017
update. This shift toward substituting a positive CSF result for dissemination in time rather
than in space is pragmatic. However, it underlines clinical neurologists’ responsibility to
obtain cutting-edge CSF tests. MS is the most likely diagnosis for patients with typical
clinical presentations, typical lesions, and alternative diagnoses that have been ruled out. By
demonstrating the presence of OCB, we may provide proof for the disease’s immunological
and inflammatory nature without waiting for the spread to occur. Thus, OCB is a well-
established biomarker with clinical relevance for MS diagnosis [143–146].

8.4.1. IgG Index

The immunoglobulin (Ig) G index is defined as the ratio of IgG’s CSF/serum quotient
to albumin’s CSF/serum quotient. The albumin quotient, defined as albumin in CSF
divided by albumin in serum, is used to assess blood-CSF barrier failure in MS [147].
The IgG index is used to quantify intrathecal immunoglobulin synthesis. An IgG index
result greater than 0.7 implies an elevated intrathecal B cell response and, consequently,
MS’s existence. Around 70% of people with MS have a high IgG index. As a result, this
biomarker’s sensitivity is lower than that of the OCB [148,149].
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8.4.2. Antinuclear antibodies

Antinuclear antibodies (ANA) are tissue-independent autoantibodies directed against
components of the cell nucleus that are quantified in the serum [150]. A continuously high
titer indicates collagenous SLE [151].

8.4.3. Anti-MOG antibodies

MOG is a myelin protein that is mostly located on the surface of myelin sheaths and
oligodendrocyte membranes, and it could be a target for the autoimmune response in
demyelinating disorders [152,153]. Therefore, anti-MOG antibodies, contrary to common
perception, are only beneficial for differential diagnosis, not for MS diagnosis or prognosis.
Using cutting-edge detection technologies, anti-MOG antibodies were found in a subset
of pediatric patients with acute disseminated encephalomyelitis (ADEM), patients with
clinical symptoms of NMOSD, and patients with bilateral optic neuritis in particular (cell-
based approaches) [154].

8.4.4. Anti-aquaporin-4 antibodies

Aquaporin-4 (AQP-4) is a water channel protein that is expressed by astrocytes in
the CNS and is necessary for brain water homeostasis [155,156]. Antibodies to this pro-
tein are found in around 75% of patients with neuromyelitis optica spectrum disorder
(NMOSD), but not in MS patients. Anti-aquaporin-4 antibodies are thus appropriate for
high-specificity biomarkers. It is the first molecular biomarker to be clinically proven for
differentiating between distinct CNS inflammatory demyelinating disorders. Antibod-
ies against aquaporin-4 are frequently seen in the serum of patients suspected of having
NMOSD [157].

9. Conclusions

Neurodegeneration is a condition that affects the CNS and is characterized by the
loss of neuronal structure and function. One of the greatest challenges of our time is
to disrupt neurological diseases, which pushes our clinicians and scientists every day.
The presence of biomarkers aids in the early treatment of particular diseases. However,
there is much research required to find a more advanced solution. Overall, this present
review provides a unique opportunity to advance knowledge and innovation in the field of
neurological biomarkers.
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