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Simple Summary: Protein interactions govern the majority of an organism’s biological processes.
Therefore, to fully understand the functionality of an organism, we must know how proteins work
at a molecular level. This study assembled a protocol that enables scientists to construct a protein’s
tertiary structure easily and subsequently to investigate its mechanism and function. Each step
involved in prediction, validation, and functional analysis of a protein is crucial to obtain an accurate
result. We have dubbed this the trifecta analysis. It was clear early in our research that no single study
in the literature had previously encompassed the complete trifecta analysis. In particular, studies
that recommend free, open-source tools that have been benchmarked for each step are lacking. The
present study ensures that predictions are accurate and validated and will greatly benefit new and
experienced scientists alike in obtaining a strong understanding of the trifecta analysis, resulting in a
domino effect that could lead to drug development.

Abstract: Current in silico proteomics require the trifecta analysis, namely, prediction, validation,
and functional assessment of a modeled protein. The main drawback of this endeavor is the lack of
a single protocol that utilizes a proper set of benchmarked open-source tools to predict a protein’s
structure and function accurately. The present study rectifies this drawback through the design and
development of such a protocol. The protocol begins with the characterization of a novel coding
sequence to identify the expressed protein. It then recognizes and isolates evolutionarily conserved
sequence motifs through phylogenetics. The next step is to predict the protein’s secondary structure,
followed by the prediction, refinement, and validation of its three-dimensional tertiary structure.
These steps enable the functional analysis of the macromolecule through protein docking, which
facilitates the identification of the protein’s active site. Each of these steps is crucial for the complete
characterization of the protein under study. We have dubbed this process the trifecta analysis. In
this study, we have proven the effectiveness of our protocol using the cystatin C and AChE proteins.
Beginning with just their sequences, we have characterized both proteins’ structures and functions,
including identifying the cystatin C protein’s seven-residue active site and the AChE protein’s active-
site gorge via protein–protein and protein–ligand docking, respectively. This process will greatly
benefit new and experienced scientists alike in obtaining a strong understanding of the trifecta
analysis, resulting in a domino effect that could expand drug development.
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1. Introduction

In the scientific endeavor of understanding the mechanisms of an organism’s biology,
the study of proteins, which are key elements in several cellular activities, is vital. Proteins
play both structural and functional roles within the organization of a cell [1]. A protein’s
characteristic and functionally related 3D structure originates from a simple but unique
amino acid sequence [2]. Understanding a novel amino acid sequence that codes for a
particular protein begins with identifying the sequence’s relatedness to other proteins
with a similar polypeptide chain [2]. Sequencing is followed by the characterization
and functional analysis of the protein by studying its three-dimensional tertiary or even
quaternary structure. For this trifecta analysis of identification, characterization, and
function prediction, many bioinformatics tools exist [3]. However, a single protocol that
encompasses all three processes utilizing the best-suited tools based on efficiency and
accuracy is lacking [4]. The present study aims to fill this gap by using a series of open-
source in silico tools to achieve this goal economically, thus creating a tested and proven
pathway for sound protein analysis.

With the completion of the human genome project and the genomes of entire organ-
isms being decoded almost every day, the gap between proteins with known sequences
and those with experimentally validated structures and functions has increased rapidly [5].
Therefore, the requirement for a protocol capable of converting genomic data into func-
tional information has become more crucial [3]. Several experimental procedures exist
today for the determination of a protein’s tertiary structure. X-ray crystallography, cryo-
EM, and nuclear magnetic resonance are some of the most commonly used pathways.
However, the main shortcomings of these methods are that they lack efficiency and are
highly costly [1]. These drawbacks prevent a significant portion of the scientific community
from conducting comprehensive studies of a protein’s structure and function, primarily
due to lack of access to such specialized and costly equipment.

The process of protein identification is the first step in any protein study. Following
protein identification, recognition of its relatedness to other closely related proteins via
conserved sequence motifs and sequence similarity is crucial [6]. This step of the analysis
helps reveal conserved functional domains. These conserved regions across species have
been found through experimentation to contribute to the macromolecule’s function [7].
In silico tools for phylogenetic analysis and multiple sequence alignment (MSA) cater for
this requirement.

With the advancements in DNA sequencing and the increase in the number of pre-
dicted amino acid sequences, there is a serious need for the comprehensive analysis of these
novel proteins in the study of proteomics. As proven through experimentation, a com-
plete analysis requires identification of the amino acid sequence within a non-redundant
database, then characterization and functional prediction through protein modeling tech-
niques [8]. However, in the current environment of bioinformatics, a single, open-source,
and complete pipeline that caters for all of these functions is absent.

The present study attempts to fill this gap utilizing three examples. The first ex-
ample involves the amino acid sequence of Danio rerio, which codes for the protease-
inhibiting cystatin C protein and its interactions with human cathepsin proteases. The
second and third examples involve the AChE protein-coding sequences of Homo sapiens
and Rattus norvegicus and their interactions with the organophosphate echothiophate.

The zebrafish, otherwise known as Danio rerio, is a model organism of vertebrate
development and is of considerable scientific interest, especially in modeling human
biology and disease [9]. Cystatin C is a type 2 cystatin protein present in all vertebrate
organisms. It is known for being a competitive protease inhibitor of papain-like proteases
such as cathepsin B, H, L, and S, competitively blocking the cysteine-active site of the
cathepsin proteins [10]. Due to its function as a competitive inhibitor of proteases, it plays
a crucial role in regulating certain diseases caused by cathepsin overexpression, such as
atherosclerosis and metastasis of cancer cells [11].
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Organophosphates such as echothiophate could inhibit AChE activity. The mechanism
of AChE inhibition is well known, making this an ideal candidate for benchmarking the
proposed pathway. This study focused on the AChE proteins of Homo sapiens (hAChE) and
Rattus norvegicus (rAChE). AChE proteins have been predicted to possess an active-site
gorge with a tryptophan residue, and echothiophate is known to bind at this active site [12].
The inhibitory mechanisms are essential for identifying the evolutionarily conserved active
sites [13] successfully.

The hAChE macromolecule has already been modeled and is readily available in the
PDB data bank [14]. The primary reason for selecting hAChE was to quantitatively identify
the accuracy of the proposed pipeline for predicting the actual structure. In contrast, the
rAChE molecule provided us with an opportunity to predict another novel protein and
comparatively analyze it against its human counterpart.

The primary focus in selecting the cystatin C protein encoded by zebrafish and the
AChE proteins was to benchmark the timeline with a multitude of queries and provide
a wealth of information to the scientific community. The selection of an immune-related
protein provided an opportunity to benchmark all the features of the proposed pipeline.
Here we report novel in silico tools to generate valid protein models, prove their function-
ality through molecular docking techniques, and discover the immune potential against
diseases in the human body by using gene–gene interaction mapping. The study aims to
develop an economical in silico approach to analyzing the structure and functionality of
novel proteins with a comprehensive revelation of their clinical significance.

2. Materials and Methods

The proposed methodology (Figure 1) aims to provide the reader with a guided
protocol for protein analysis. Its foundation is the amino acid sequence from which
the translated protein’s structure and function are analyzed. We emphasize that for a
complete protein study, the three processes of (1) prediction of the translated protein and
its characterization, (2) prediction of the protein’s tertiary structure and validation of its
structure, and (3) functional analysis of the protein must be conducted.

In the present study, we have detailed the steps required for such an analysis. We
have validated our pipeline through a series of analyses using a selection of computational
tools. It is possible to replace these tools with others as required by the user. Our selection
of these tools is based on their time-tested reliability, the fact that they are free to use, and
the fact that they can be used on general hardware.

We proved the robustness of our proposed pipeline using a series of use cases. In this
study, we detailed the use of the complete pipeline for three proteins, namely, cystatin C
from D. rerio and acetylcholinesterase from humans (hAChE) and Rattus norvegicus (rAChE).
The use of these three proteins enabled the testing of the protocol in multiple different
situations that may arise in the analysis of the structure and function of a protein. The
cystatin C of D. rerio and the rAChE proteins enabled the protocol to conduct the trifecta
analysis of novel structures and test their functions in protein–protein and protein–ligand
interactions. The hAChE example enabled the methodology to be comparatively tested
against a protein of known structure. The actual structure of hAChE is readily available
in the PDB data bank (PDB ID: 4PQE). The analyses of both cystatin C and AChE are
novel. These findings are unique to this work, and we believe they help to explain the
power of a standardized protocol. However, these predictions still need to be validated
via experimentation.

To further prove the validity of our work, we conducted protein–ligand and protein–
protein replication studies. To analyze protein–ligand interactions, we analyzed the sur-
vivin protein and 4-hydroxy pyridine 1-oxide pyridin-4-ol 1-oxide ligand, and the more
well-known hemoglobin protein and haem ligand [15,16]. These replication studies have
been proven through experimentation, and we believe that our results confirm the reliability
and ad hoc nature of the proposed process.
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2.1. Validation of the Selection of the Proposed Computational Tools

Two primary concerns were reliability and accessibility. We wanted to ensure the
selected tools were time-tested and freely available to all users. These tools guide the use
of our trifecta analysis but can be changed as the user deems fit.

For functions involving protein characterization, such as identifying conserved do-
mains and collecting sequences for analysis, we chose NCBI tools such as their CD-Search
and database [17]. The NCBI model was developed specifically for genomic sequences. Its
services and tools include stringent quality assurance protocols. These powerful tools and
the database’s long-lasting reliability have secured its place as the industry standard in
genomics [18–22].

MEGA software was selected to fulfill our phylogenetic needs. MEGA is equipped
with a user-friendly graphical user interface (GUI) that simplifies complex phylogenetic
analyses. It has sound statistical models that ensure the accuracy of its analyses. Addition-
ally, it can be run on general-purpose computer hardware, in contrast to its counterparts
such as PAML and BEAST, which may require high-performance computing (HPC). PAML
and BEAST are known to require a steep learning curve. PAML, with its command-line-
based usage, and BEAST require a sound knowledge of Bayesian statistics and MCMC
methodologies [23–25], both of which can be overwhelming for new users.
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To predict the proteins’ tertiary structures, we selected Zhang Lab’s I-TASSER and
QUARK servers. Both services are available to academics and have quick turnaround
times (usually three days). I-TASSER was the number one server used in all CASP experi-
ments from CASP7 to CASP14, and QUARK was ranked number one in both CASP9 and
CASP10 experiments [26–28]. Recently they have been overtaken by Google’s DeepMind
AlphaFold 2. However, it should be noted that AlphaFold 2 is unavailable at this time for
public use [29].

The selected docking software was Hex 8.0.0 for protein–protein docking and AutoDock
Vina for protein–ligand docking [30–32]. Hex 8.0.0 is readily available software specialized
for protein–protein docking, validated by the CAPRI blind docking experiments. Hex 8.0.0
is widely used software that runs independently on general-purpose computers without
the use of expensive servers [33,34]. Alternatives to Hex, such as HDOCK and PatchDock
1.0 rely on the submission of experiments to servers, and so have relatively long turnaround
times of a few days [34]. Hex 8.0.0 is capable of running most analyses in a few minutes.
AutoDock Vina is the most widely used protein–ligand docking software to date. Its free
and open-source license, coupled with its speed and user-friendliness, has made it the tool
of choice for novices and experts alike. AutoDock Vina has proven its robustness against
its counterparts such as GOLD and its predecessor AutoDock4, and in certain scenarios
has surpassed commercial software such as Glide in its prediction capabilities [32,35,36].

2.2. Identification of Conserved Domains

The amino acid sequence coding for the putative cystatin C protein of D. rerio (Acces-
sion No. AAZ29462.1), rat AChE (AAH94521.1), and human AChE (AAA68151.1) were
identified using the NCBI database. The conserved functional domains present in the
translated amino acid sequences were identified using the conserved domain search service
(CD-Search) in NCBI. The predicted protein was annotated, and a graphical summary was
obtained [19].

2.3. Phylogenetic Data Analysis

The protein families evolutionarily related to the predicted protein of D. rerio were
identified using the HUGO Gene Nomenclature Committee search tool. The related pro-
teins were searched for in the NCBI database, and the amino acid sequence was extracted
in the FASTA format. It was ensured that at least one amino acid sequence was obtained for
each of the five vertebrate classes: Pisces, Amphibia, Reptilia, Aves, and Mammalia. These
amino acid sequences were subsequently aligned using ClustalW with the MEGA6 soft-
ware, and a phylogenetic tree was obtained using the neighbor-joining statistical method.

2.4. Identification of Conserved Sequence Motifs

The translated protein sequences were subjected to multiple sequence alignment by
ClustalW, performed using the program Unipro UGENE [35]. The analyses were conducted
using ten of the most closely related amino acid sequences to identify sequence motifs that
have been evolutionarily conserved.

2.5. Amino Acid Sequence and Secondary Structure Characterization

The secondary structure expressed by the amino acid sequence was predicted using
the JPred secondary structure prediction server [36].

2.6. Tertiary Structure Prediction

The 3D structure of the protein was predicted using two main systems. Homology
prediction of the protein was conducted using the I-TASSER online software [5]. Ab initio
model prediction was performed using the QUARK server [27]. However, ab initio mod-
eling was not utilized to predict the AChE molecules due to the limitation of the server
to 200 amino acids. The predicted 3D structures were visualized using PyMOL visualiza-
tion software [37]. Cystatin C proteins are required to possess a series of evolutionarily
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conserved structural features. The characteristic features include a short and a long alpha-
helix lying across a five-stranded antiparallel beta-sheet with two disulfide bridges. The
predicted structure possessing all of these features was selected as the most accurate
model. The tertiary structure of AChE consisted of a centrally placed mixture of beta-sheets
surrounded by 15 alpha-helices [13].

2.7. Quality Assessment of the Predicted Structure

The successfully predicted structure was evaluated for its overall quality and stability,
to identify any errors that may be present. The general model quality and the local model
quality were assessed using the ProSA-web service [38]. The stability and stereochemistry
of the structure were evaluated by generating a Ramachandran plot using the PROCHECK
software [39].

2.8. Tertiary Structure Refinement

The overall tertiary model quality was improved using the ReFOLD online software.
The software was utilized to assess the global model quality, the overall structural improve-
ment, and the accuracy [40]. The refined structure was then subjected to validation and
quality assessment to ensure it met all the protein requirements.

2.9. Surface Analysis of the Tertiary Structure

The surface of the protein structure was analyzed for potential active binding sites by
examining the distribution of electrostatic charges and hydrophobic amino acids using the
protein surface analyzer tool from the Maestro BioLuminate 2.8 software [41].

2.10. Functional Analysis through Molecular Docking

In the functional analysis of a protein, it is essential to determine the type of interac-
tions occurring in the target macromolecule. The following protocol addresses the most
common protein interactions, namely protein–ligand [15] and protein–protein interac-
tions [42]. For protein–protein interactions, the cystatin C protein, along with its numerous
cathepsin substrates, was considered. Rigid-body protein–protein docking was conducted
to analyze the functional effectiveness of the cystatin C protein produced by D. rerio as a
cysteine protease inhibitor. Hex 8.0.0 CUDA was used, together with fast Fourier transform
(FFT) correlation techniques [43]. The software was configured to search for 2000 solutions,
and the top 100 were extracted. The required protein models were obtained from the Protein
Data Bank (RCSB). After the docking process, the interacting amino acids of the proteins in
each protein–protein interaction were analyzed using Maestro BioLuminate 2.8 software
and LigPlot+ [44,45].

For successful inhibition of the cysteine protease, the cystatin C protein had to block
the cysteine active site of the target protein with an excellent negative binding energy. The
protein was first subjected to molecular docking with papain (PDB ID: 9PAP), which
is known to be inhibited by all cystatins. The docking was followed by papain-like
proteases, namely, cathepsin B (PDB ID: 2IPP), cathepsin H (PDB ID: 8PCH), cathepsin
L1 (PDB ID: 2Y2J, and cathepsin S (PDB ID: 2FRQ). The proteases have been proven to be
actively inhibited by cystatin C [46].

AutoDock Vina was chosen for the protein–ligand docking software. The protein–
ligand substrate consisted of AChE and the organophosphate echothiophate (PubChem
CID: 10548). A negative control, imidazole (PubChem CID: 795), was used to reduce the risk
of false positives and ensure proper testing. To further prove the reliability of our selected
software, AutoDock Vina, two replication analyses were conducted. The first, between
the survivin protein (PDB ID: 1XOX) and 4-hydroxy pyridine 1-oxide pyridin-4-ol 1-oxide
ligand (PubChem ID: 23321) was initially conducted by Heendeniya et al. [15], and that be-
tween the hemoglobin protein (PDB ID: 1GZX) and haem ligand (PDB Chemical ID: H.E.M.)
was initially conducted by Paoli et al. [16].
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In AutoDock, the protein was prepared by removing water molecules followed by the
addition of hydrogens and merging of non-polar hydrogens. Finally, computation of the
charges was conducted using the Gasteiger function. Grid preparation was performed for
the potential active sites. In AutoDock, the ligand was prepared by assigning a torsion
tree and detecting the root. AutoDock Vina provided the nine best poses with default ex-
haustiveness. Subsequently, a 2D analysis of the protein–ligand complexes was performed
using Discovery Studio 2017 or LigPlot+ [44].

2.11. Analysis of the Therapeutic Potential

Clinically significant pathways involving cathepsin B, L1, and S overexpression in
the human body were identified through gene–gene interaction mapping. However,
cathepsin H was excluded due to the absence of its 3D tertiary structure of human origin.
The GeneMANIA database coupled with the Cystoscape software was used to identify
these protein interactions. The interactions were separated into physical interactions, co-
expression, and co-localization [47]. The selected natural substrates that were subjected to
degradation by cathepsin overexpression resulting in a clinical response were subjected to
molecular docking with the respective cathepsin. The binding energies were compared
to that of cystatin C produced by D. rerio. If the cystatin C of D. rerio had a more feasible
binding energy (a lower energy value implies a stronger binding affinity), it was estimated
to have clinical potential as a drug to solve the cathepsin overexpression.

3. Results
3.1. Identification of Conserved Domains

The initial analysis of the cystatin C amino acid sequence obtained from the NCBI
database (Accession No. AAZ29462.1) contained a cystatin protein-coding domain com-
plete with an N-terminal glycine and a QxVxG sequence motif.

The analysis of the AChE of rAChE (AAH94521.1) and hAChE (AAA68151.1) amino
acid sequences showed an AB-hydrolase superfamily, complete with a substrate-binding
pocket and a catalytic triad. AChE is a member of the AB-hydrolase superfamily, referred
to as the alpha/beta hydrolase fold family of enzymes [48].

3.2. Phylogenetic Data Analysis

The resulting phylogenetic tree Figure 2, obtained after iterative refinement of the
complete tree (Supplementary Figure S1) revealed that the query sequence was clustered
among type 2 cystatin C proteins, closely resembling the type 2 cystatin protein produced
by Oncorhynchus keta, as shown in Figure 2.

In the AChE example, it could be observed that the proteins were grouped based on
the phyla of Mammalia, Aves, Reptilia, and Pisces. The AChE of humans and rats was
shown to share a common origin. The overall phylogenetic tree was sound, with confidence
levels of over 80% (Supplementary Figure S5).

3.3. Identification of Conserved Sequence Motifs

The cystatin C protein produced by D. rerio possessed three evolutionarily conserved
sequence motifs: the N-terminal glycine, the QVVAG motif, and the PW motif [49]. D. rerio
is also recognized as containing a mutation in the PW motif, which is instead read as the
LW motif, as shown in Figure 3.
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In contrast, the AChE sequences for the mammalian clade had a high degree of
conservation in sequence motifs. The MSA also showed the high degree of similarity
between the AChE of Rattus norvegicus and Homo sapiens (Supplementary Figure S6).

3.4. Secondary Structure Prediction

The JPred server stated that the amino acid sequence under study coded for one short
and one long alpha-helix, complete with five antiparallel beta-sheets situated between the
two helix structures (Supplementary Figure S2). This complied with the typical cystatin
C protein [50]. Both AChE amino acid chains had 14 alpha-helices and 12 beta-sheets.
These data were in agreement with previous work conducted on AChE secondary structure
prediction [13].

3.5. Protein Structure Prediction and Refinement

The structure predicted by I-TASSER had five antiparallel beta-sheets lying across a
short and a long alpha-helix complete with two disulfide bridges. In contrast, the structure
predicted ab initio was devoid of both the short alpha-helix and the disulfide bridges.
Therefore, the homology model was selected while the latter was rejected.

Quality assessment of the homology-predicted structure through the ProSA-web service re-
sulted in a Z-score of−4.55, nested within other proteins of similar size (Supplementary Figure S3).
In contrast, the local model quality assessment revealed a series of N-terminal amino acids
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with unfavorable, elevated knowledge-based energies. Stereochemical analysis of the
model using a Ramachandran plot revealed only 67.5% of the amino acid residues occupy-
ing the most favorable region (Supplementary Figure S4). Due to the inadequacies in the
structure revealed through these tests, it was decided to subject the homology-predicted
model to structure refinement using the ReFOLD server. The ReFOLD server produced a
high-resolution structure of 1.5 Å complete with the five antiparallel beta-sheets, a short
and a long alpha-helix, and the two disulfide bridges characteristic of all cystatin C proteins.
The refined structure is depicted in Figure 4.
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Figure 4. Refined tertiary structure model produced by ReFOLD server. The N-terminus (protein
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in red, and disulfide bonds in gray.

The refined structure had a confidence score of 6.31 × 10−8, translating to an accuracy
level of 99.99%. The ReFOLD server scored the structure with a satisfactory global model
quality score of 0.6671, stating that an overall improvement of 0.3% was obtained for the
final structure. Quality assessment of the refined structure using the ProSA-web service
revealed an improved Z-score of −4.87, including a significant reduction in the knowledge-
based energies of the N-terminal residues into favorable values. The final stereochemical
analysis of the refined structure via the Ramachandran plot revealed that 76.1% of the
amino acid residues occupied the most favorable regions. In comparison, only 3.4% or four
residues occupied the disallowed regions of the plot. The results of the ProSA-web service
and the Ramachandran plot of the refined structure are shown in Figures 5 and 6.

The initially predicted AChE molecules showed certain discrepancies when sub-
jected to the Ramachandran plot and ProSA-web server analyses refined in the same
manner using the ReFOLD server, resulting in more stereochemically sound models
(Supplementary Figure S7).



Biology 2021, 10, 1113 11 of 22Biology 2021, 10, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 5. ProSA-web service quality assessment plots for refined ReFOLD model. 

 

Figure 6. Validation of the ReFOLD-predicted protein structure using the Ramachandran plot. * p < 0.05, ** p < 0.01 

The initially predicted AChE molecules showed certain discrepancies when sub-

jected to the Ramachandran plot and ProSA-web server analyses refined in the same man-

ner using the ReFOLD server, resulting in more stereochemically sound models (Supple-

mentary Figure S7). 

3.6. Comparative Analysis of Predicted Structure with Existing Structures 

The prediction of the hAChE structure was conducted to analyze the degree of accu-

racy with which the predicted protein matched the existing model of the hAChE protein. 

The two structures did not fit perfectly, and there was some degree of variation. The 

RMSD of the deviation between the two structures was 0.609 Å . 

3.7. Placement of Evolutionarily Conserved Sequence Motifs 

The amino acid sequences encoding cystatin C proteins contain three prominent evo-

lutionarily conserved sequence motifs: the N-terminal glycine, the QVVAG motif, and a 

Figure 5. ProSA-web service quality assessment plots for refined ReFOLD model.

Biology 2021, 10, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 5. ProSA-web service quality assessment plots for refined ReFOLD model. 

 

Figure 6. Validation of the ReFOLD-predicted protein structure using the Ramachandran plot. * p < 0.05, ** p < 0.01 

The initially predicted AChE molecules showed certain discrepancies when sub-

jected to the Ramachandran plot and ProSA-web server analyses refined in the same man-

ner using the ReFOLD server, resulting in more stereochemically sound models (Supple-

mentary Figure S7). 

3.6. Comparative Analysis of Predicted Structure with Existing Structures 

The prediction of the hAChE structure was conducted to analyze the degree of accu-

racy with which the predicted protein matched the existing model of the hAChE protein. 

The two structures did not fit perfectly, and there was some degree of variation. The 

RMSD of the deviation between the two structures was 0.609 Å . 

3.7. Placement of Evolutionarily Conserved Sequence Motifs 

The amino acid sequences encoding cystatin C proteins contain three prominent evo-

lutionarily conserved sequence motifs: the N-terminal glycine, the QVVAG motif, and a 

Figure 6. Validation of the ReFOLD-predicted protein structure using the Ramachandran plot. * p < 0.05, ** p < 0.01.

3.6. Comparative Analysis of Predicted Structure with Existing Structures

The prediction of the hAChE structure was conducted to analyze the degree of accu-
racy with which the predicted protein matched the existing model of the hAChE protein.
The two structures did not fit perfectly, and there was some degree of variation. The RMSD
of the deviation between the two structures was 0.609 Å.

3.7. Placement of Evolutionarily Conserved Sequence Motifs

The amino acid sequences encoding cystatin C proteins contain three prominent
evolutionarily conserved sequence motifs: the N-terminal glycine, the QVVAG motif, and
a PW motif. The positioning of these sequences on the protein’s structure is directly related
to the functional effectiveness [51]. The N-terminal glycine occupied the protein chain
while the QVVAG motif and the PW motif inhabited the beta-hairpin turns (Figure 7). This



Biology 2021, 10, 1113 12 of 22

structural placement proved that the predicted structure of the cystatin C protein produced
by D. rerio was functionally active [52,53].
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3.8. Surface Analysis of the Tertiary Structure

Analysis of the protein’s surface for potential active sites revealed a total of 28 regions
capable of forming viable protein–protein interactions (Supplementary Table S1). Twenty
regions consisted of electrostatically charged patches resulting from 6 positively charged
regions and 14 negatively charged regions. The remaining 8 regions were naturally hy-
drophobic. The hAChE was shown to possess 109 regions capable of protein–ligand
interactions with 34 positive interactions, 52 negative interactions, and 21 hydrophobic
interactions. In comparison, the rAChE structure contained 141 regions in total, with
54 positive, 62 negative, and 23 hydrophobic interactions.

3.9. Functional Analysis via Virtual Screening

The ability of the predicted cystatin C structure to inhibit the activity of a cysteine pro-
tease enzyme was evaluated via rigid-body protein–protein docking. The cystatin C protein
was first evaluated for inhibiting the cysteine protease papain (PDB ID: 9PAP). A stable
enzyme–substrate complex was formed with a binding energy of −347.6 kJ/mol and the
complete blockage of the 25Cys and 159His active papain sites [54]. The inhibition of cathep-
sins revealed promising results. Cathepsin B’s active sites of 29Cys, 110His, and 111His
were successfully inhibited with a binding energy of −542.3 kJ/mol [55]. Cathepsin H
activity was inhibited with a binding energy of −601.8 kJ/mol, with complete blockage of
the 25Cys and 159His active sites [56]. Cathepsin L1 had the most robust protein-inhibitor
complex, with a binding energy of −793.4 kJ/mol. The cathepsin L1 active sites of 25Cys
and 163His showed complete blocking [57]. Finally, the activity of cathepsin S was inhibited
with a binding energy of −435.7 kJ/mol and complete blocking of the active 25Cys site [58].
The resultant protein–protein complexes produced by the virtual screening exercise are
depicted in Figure 8, and their detailed surface interactions are shown in Supplementary
Tables S2–S6. The predictions from this analysis are novel and, therefore, will require
further experimentally based analyses to confirm the results.
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3.10. Virtual Screening Analysis for Protein–Ligand Interactions

The protein–ligand interactions were predicted using AutoDock Vina. The predicted
structures of rAChE and hAChE were subjected to virtual screening with echothiophate.
The purpose of using two different types of software was to enable us to identify whether
both programs would produce the same result.

The active site of AChE is situated in a centrally placed gorge [59]. The active-site gorge
contains a tryptophan residue involved in the formation of protein–ligand interactions [13].
Coupled with this information, AutoDock Vina predicted the binding of the echothiophate
ligand to the active site in both of the rAChE and hAChE macromolecules. The binding
affinity was −5.6 kcal/mol for both proteins (Supplementary Tables S7 and S8). In contrast,
the negative control showed weak binding to both proteins: −3.2 kcal/mol for rAChE and
−3.3 kcal/mol for hAChE (Supplementary Tables S9 and S10). However, these complexes
did not occupy the active-site gorge, thus confirming that the binding of the echothiophate
is not random (Figure 9). This also provides evidence that the echothiophate ligand is a
potential competitive inhibitor of AChE proteins. Further experimental analysis will be
required to confirm these predictions.
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Through our replication studies, we were further able to validate the use of our
pipeline and its selected tools in obtaining a comprehensive understanding of a protein’s
function. The first analysis replicated the protein–ligand interaction between the survivin
protein and 4-hydroxy pyridine 1-oxide pyridin-4-ol 1-oxide ligand. The original authors
had conducted a series of tests to identify the active compounds, such as the 4-hydroxy
pyridine 1-oxide pyridin-4-ol 1-oxide present in Nyctanthes arbor-tristis. These have proven
their anticancer properties through anticancer assays involving cell cultures. Additionally,
these authors investigated the interaction of the aforementioned active compound with
survivin to identify its anticancer mechanism [15]. We replicated this portion of the
analysis using AutoDock Vina and conducted our analysis of the binding site. AutoDock
Vina’s predictions shared a significant number of similarities with those of the original
work, including the involved residues and their interactions, for example, the pi-cation
interaction formed between the ligand and 18Arg (Supplementary Figure S8). The binding
affinities were near-identical, with ours at −4.6 kcal/mol and that of the original authors
at −5.449 kcal/mol (Supplementary Table S11).

Our second replication study was based on the X-ray crystallography analysis of
hemoglobin and the haem complex formed in the presence of oxygen [16]. Our analysis
revealed favorable binding with an affinity of −11.4 kcal/mol (Supplementary Table S12).
The haem ligand was found to be nestled inside the pocket of the protein. Additionally, the
characteristic “heme coordinated to the histidine residue” protein–ligand interaction was
present between the haem’s central iron atom and the hemoglobin’s histidine amino acid
(Supplementary Figure S9) [60].

3.11. Prediction of Cystatin C Active Binding Site

Statistical analysis of the interacting residues of the cystatin C protein responsible
for the inhibition of cysteine protease activity revealed seven closely situated amino acids.
These residues were identified as 2Phe, 3Leu, 9Phe, 124Glu, 125Asn, 126Ser, and 127Cyx. The
seven residues displayed their activity in the inhibition of the cathepsin proteins. In all
instances, these residues were present in the formation of the enzyme–substrate complex
that led to the inhibition of the cathepsin active site by the cystatin C protein. The predicted
active binding site based on these findings is depicted in Figure 10.
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3.12. Human Gene Interaction Mapping of Cathepsin Pathways

Gene interaction mapping of cathepsin B, cathepsin L1, and cathepsin S revealed a
series of clinically significant pathways where cathepsin overexpression would lead to
protein degradation and subsequent illness. The results of the gene interaction mapping
are depicted in Figure 11.
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Figure 11. Human gene interaction network of cathepsin B (green), cathepsin L1 (purple), and
cathepsin S (pink). Clinically significant gene interactions are shown in black.

Cathepsin B overexpression results in the onset of osteoporosis, rheumatoid arthritis,
and certain forms of cancers due to the excessive degradation of the proteins aggrecan,
tenascin C, fibronectin, and collagen type 1 [57]. Rigid-body protein docking of aggrecan
(PDB ID: 4M4D), tenascin C (PDB ID: 2RB8), fibronectin (PDB ID:1E8B), and collagen type 1
(PDB ID: 3EJH) with cathepsin B revealed successful enzyme–substrate complexes with
binding energies of −263.2 kJ/mol, −500.1 kJ/mol, −551.8 kJ/mol, and −79.5 kJ/mol,
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respectively. All four of these binding energies except that of fibronectin were greater than
that of cystatin C of D. rerio and cathepsin B, at −549.2 kJ/mol.

Cathepsin L1 overexpression has been proven to lead to the degradation of fibronectin,
resulting in the onset of melanomas [61]. Cathepsin L1 formed an enzyme–substrate
complex with fibronectin with a binding energy of −508.7 kJ/mol, which was greater than
the binding energy of the cystatin C protein under study and the cathepsin L1 protein,
at −793.4 kJ/mol.

Visualization of the gene interaction network of cathepsin S revealed the degradation
of occludin, which would result in the metastasis of cancer cells causing bone and breast
cancers [62]. Protein docking of cathepsin S with occludin resulted in a low binding energy
of −488.5 kJ/mol, which was lower than that of the cystatin C and cathepsin S complex,
at −454.4 kJ/mol.

4. Discussion

The primary objective of the present study was to design a novel procedure that
attempts to identify, characterize, and predict the structure of a protein under study, prove
its functional capability and predict its therapeutic potential for the treatment of diseases.
Although this is the standard procedure for protein analysis, a complete single study
encompassing these steps in order with benchmarked tools was lacking. In the present
study, we produced such a protocol to validate the importance of each step in the process
of protein analysis. We corroborated the selection of our tools through replication studies
and literature-based reviews. Finally, we showed the robustness of our protocol and its
information-rich results through three novel studies unique to this work, namely, the study
of the cystatin C protein of D. rerio and the interactions of the rAChE and hAChE proteins
with echothiophate.

Proteins belonging to the same family usually have a series of conserved sequence
motifs that act as a fingerprint, enabling the classification of novel sequences. The cystatin C
coding amino acid sequence of Danio rerio obtained from the NCBI database contained
one cystatin coding domain consisting of an N-terminal glycine and a QxVxG sequence
motif [63]. The conserved domain search service revealed the presence of a cystatin
domain with two evolutionarily conserved sequence motifs. If a DNA sequence coding
of a novel protein is present, it is recommended to commence the study using NCBI’s
blastx search [64].

Conserved segments in DNA or protein sequences play a role in the function of
the macromolecules encoded by them [65]. Likewise, proteins with similar functions
belong to the same family. Therefore, positioning a predicted protein among others with
shared functions and the presence of these evolutionarily conserved sequences enable the
validation of a predicted protein [66].

The phylogenetic construction of the cystatin superfamily tree conducted by the
MEGA 6 software revealed a cystatin C dendrogram that coincided with the existing
validated cystatin protein family. The generated phylogenetic tree depicted in Figure 2
showed a common ancestry between the type 1 cystatins, cystatin A and B, which branch
off to a shared ancestry between type 2 and type 3 cystatins, with a completely separate
branching shown by type 4 cystatins or fetuins. This phylogenetic pattern was successfully
reproduced in the study and is characteristic of the cystatin superfamily [10]. The protein
considered in this study was found to be positioned among the type 2 cystatin C proteins,
validating the phylogenetic tree and confirming its accurate prediction.

Executing a multiple sequence alignment (MSA) post phylogenetic analysis enables
the accurate recognition of evolutionarily conserved sequence motifs among closely related
proteins involved in the protein’s characteristic functions. It also allows identification of
the sequence motifs that are most critical in the governance of the protein’s function [67].
Cystatin C proteins are thought to have three such evolutionarily preserved sequence
motifs, namely, an N-terminal glycine, a QVVAG motif, and a PW motif [10]. The MSA
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revealed the presence of all three sequence motifs, conserved in the polypeptide chain of
the protein under study.

The next step after protein characterization is the functional analysis, which requires
predicting the protein’s native 3D tertiary structure. This involves the identification of the
proteins’ secondary structure first [2]. The secondary structure of a protein determines the
positioning of the alpha-helices and beta-sheets in the final 3D structure. In proteins such as
cystatin C, a specific configuration of secondary structures is vital for its function. A typical
cystatin C protein’s secondary structure must have two alpha-helices, i.e., one short and
one long alpha-helix, and between them, five antiparallel beta-sheets [68]. These features
were shown to be present by the JPred server in the amino acid sequence under study.

The prediction of a protein’s tertiary structure through computational techniques
has a two-fold advantage. The conventional methods of NMR and X-ray crystallogra-
phy are expensive and not readily available to everyone. In addition, the structure of
short-half-life proteins cannot be predicted using these methods [1]. The current pipeline
successfully utilizes the two main protein modeling methods, namely homology and
ab initio modeling [69].

The I-TASSER server was utilized for the homology prediction of the protein structure.
The I-TASSER server uses a hierarchical approach to predicting protein structures [26]. Its
reliability has been proven by critical assessment of protein structure prediction (CASP)
experiments [70]. The predicted structure contained all the structural components that
must be present in a cystatin C protein, such as both a short and a long alpha-helix, five
antiparallel beta-sheets, and two disulfide bonds [50].

Ab initio or de novo protein modeling was conducted utilizing the QUARK server. In
the absence of available templates, this technique can predict the protein structure from
the amino acid sequence alone [69]. The QUARK server was selected due to its reliability,
proven by CASP experiments [28]. However, the ab initio predicted model failed the validity
test, since both of its alpha-helices were long and there were no disulfide bonds.

The structure of a protein depends on its sequence. A proper tertiary structure should
have minimum free energy and be stereochemically stable [71]. These two tests were
carried out by the ProSA-web test, and the Ramachandran plots revealed that the structure
had a few discrepancies. In this event, the refinement of the protein has proven to be an
efficient solution. The ReFOLD server validated through the CASP12 experiments could
remove these discrepancies, to show significant improvements in retesting the refined
model [40].

It is known that electrostatically charged and hydrophobic residues on a protein’s
surface play a key role in long-distance protein–protein interactions and are vital for drug
design. Therefore these regions were mapped before conducting the virtual screening
process [72]. The cystatin C under study had 35 such regions.

Cystatin C proteins are thought to be the most active protease inhibitors in the entire
cystatin family. They can competitively block the active sites of papain and cathepsins B,
H, L, and S [10]. Protein–protein docking proved this statement to be accurate, as in each
instance, the cysteine active site of the cathepsin protein was blocked by the cystatin C
protein. Based on the Gibbs free energy laws, proteins forming valid complexes should
have negative values. The more negative the value, the more stable the complex [1]. The
inhibition of all the cathepsins occurred under favorable negative binding energies, further
confirming the results of the pipeline’s chosen docking software.

Residues that are frequently involved in protein–protein complexes are believed to
be related to the function of the protein [4]. Such residues existed for the active protein
site [73]. Based on the above principle, the cystatin C protein’s active site was identified by
recognizing the amino acid sequences that were always involved in inhibiting the cathepsin
proteins (Figure 5).

Genetic interaction mapping reveals functional pathways involved in molecular mech-
anisms [74]. Some of these mechanisms can become clinically significant if compromised
and can lead to disease conditions such as tumorigenesis. Therefore, the study of gene–
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gene interaction maps of model organisms and humans has been incorporated into drug
discovery and design [75]. Gene interaction mapping of cathepsins B, L1, and S revealed
several clinically compromised pathways caused by cathepsin overexpression (Figure 11).
Since the cystatin C protein is a competitive inhibitor, cross-analysis of the binding affinity
of cathepsins with their natural substrates and the cystatin C protein should reveal the
potential of the protein under study to act as a potential drug [76]. Viable candidates were
diseases caused by overexpression of cathepsins B and L1.

Benchmarking the pathway was possible using the prediction of the structure and func-
tion of the cystatin C of D. rerio. To further test the reliability and accuracy of the proposed
pathway and the software used, the AChE proteins of both humans and rats were selected,
enabling the extension of the pathway from protein–protein to protein–ligand analysis.

The hAChE macromolecule was used to test the reliability of the I-TASSER software
against already identified protein structures. The hAChE protein’s tertiary structure
already exists in the PDB data bank. Even though the server predicted a structure closely
resembling the accurate native model after refinement, minor deviations resulted in an
RMSD with a value of 0.609 Å. Apart from this, both models were successfully analyzed
for their functionality.

The AChE protein was utilized to comparatively analyze the use of AutoDock Vina.
When the grid box was implemented accurately to accommodate the respective active
sites, AutoDock Vina was able to bind the ligands accurately. When faced with a false
negative, the ligand bound away from the active site, showing that Vina’s predictions were
not random.

Th proposed pipeline, therefore, ensures the complete characterization of the protein
under study. The final result confirms that the user can be provided with the function
of the macromolecule and an analysis complete with the query sequence’s evolutionary
significance, structural characteristics, and the prediction of tertiary structures that are
appropriately validated and refined. The pipeline is robust enough to identify putative
active sites also.

5. Conclusions

In conclusion, the proposed computational pipeline utilizing only free, open-source
software can be used to conduct a complete analysis of a novel amino acid sequence,
revealing its identity and its functional and therapeutic potential. Using the cystatin C
and AChE proteins and a series of replication studies, we were able to prove the proposed
pipeline’s robustness. The pipeline characterized the protein based on its evolutionary
relatedness, overcame protein modeling errors through structure refinement, and estab-
lished the protein’s functionality complete with its active site and therapeutic potential.
Such analysis has become crucial in developing targeted therapeutics intended to inhibit a
protein’s active site. Following the successes of genome sequencing, novel proteins’ open
reading frames (ORFs) are being discovered daily, and with the success of protein structure
prediction techniques such as AlphaFold 2, the number of known structures is gradually
increasing. Therefore, we believe that this single, economic pipeline will assist in bridging
the gap between known protein sequences and those that are experimentally validated.
Future work will focus on using our methodology to conduct trifecta analyses on a large
scale and on further refinement of the protocol to enable expansion into large datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10111113/s1, Figure S1: Complete initial phylogenetic tree. Figure S2: JPred sec-
ondary structure prediction server re-sult. The ‘H’ represents a helix, ‘E’ represents a beta sheet.
Figure S3: ProSA-web service quality assessment plots for the I-Tasser generated model before re-
finement. Figure S4: Validation of the I-TASSER predicted protein structure using the Ramachandran
plot before refinement. Figure S5: Phylogenetic Tree Analysis of Acetylcholinesterase. Clear distinct
clade separation represented as follows with Mammalian Ache in Red, Aves Ache in Green, Pisces in
Blue and Invertebrate Ache in Purple. Homo sapiens and Rattus norvegicus highlighted in yellow.
Figure S6: Multiple Se-quence Alignment by ClustalW of mammalian Ache. Symbol * depicts highly
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conserved sequence motifs. Homo sapiens sequence highlighted in yellow and Rattus norvegicus
highlighted in green. Figure S7: The three-dimensional alignment of the AChE crystal structure of
Rattus norvegicus (red) against the AChE crystal structure of Homo sapiens (blue). Figure S8: The 2D
representation of the protein-ligand complex formed in the Survivin protein and 4-hydroxypyridine 1-
oxide pyr-idin-4-ol 1-oxide. The amin acid residues that were present in the original study have been
marked by a red underline. Figure S9: The 2D representation of the protein-ligand complex formed
in the Hemoglobin and the heam ligand. The characteristic “heme coordinated to the his-tidine
residue” protein-ligand interaction can be seen between the heam ligand’s central iron atom and the
Haemoglobin’s Histidine amino acid. Table S1: Detailed description of the electrostatic charge and
hydrophobic residue distribution on the protein surface of Cystatin C of D. rerio, Table S2: Protein
Surface Analysis of the interacting surfaces between Cystatin C (A) and Papain (B). Details regarding
the types of bonding including Hydrogen Bonding (HB), Salt Bridges (SB), Pi Stacking (Pi), Disulfide
bonding (DS) and Vander Waal interactions (VW). Table S3: Protein Sur-face Analysis of interacting
surfaces between Cystatin C (A), Cathepsin B (B). Details regarding the types of bonding including
Hydrogen Bonding (HB), Salt Bridges (SB), Pi Stacking (Pi), Disul-fide bonding (DS) and Vander Waal
interactions (VW). Table S4: Protein Surface Analysis of in-teracting surfaces between Cystatin C (A),
Cathepsin H (B). Details regarding the types of bond-ing including Hydrogen Bonding (HB), Salt
Bridges (SB), Pi Stacking (Pi), Disulfide bonding (DS) and Vander Waal interactions (VW). Table S5:
Protein Surface Analysis of interacting surfaces between Cystatin C (A), Cathepsin L1 (B). Details
regarding the types of bonding including Hy-drogen Bonding (HB), Salt Bridges (SB), Pi Stacking
(Pi), Disulfide bonding (DS) and Vander Waal interactions (VW). Table S6: Protein Surface Analysis of
interacting surfaces between Cystatin C (A), Cathepsin S (B). Details regarding the types of bonding
including Hydrogen Bonding (HB), Salt Bridges (SB), Pi Stacking (Pi), Disulfide bonding (DS) and
Vander Waal interactions (VW). Table S7: AutoDock Vina results for protein ligand docking between
hAChE and Echothiophate. Table S8: AutoDock Vina results for protein ligand docking between
rAChE and Echothiophate. Table S9: AutoDock Vina results for protein ligand docking between
hAChE and the negative control Imidazole. Table S10: AutoDock Vina results for protein ligand
docking between rAChE and the negative control Imidazole. Table S11: AutoDock Vina results for
protein ligand docking between Survivin protein and 4-hydroxypyridine 1-oxide pyridin-4-ol 1-oxide.
Table S12: Auto-Dock Vina results for protein ligand docking between Haemoglobin and Heam.
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