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ABSTRACT: Precision technologies for confine-
ment animal agricultural systems have increased 
rapidly over the past decade, though precision 
technology solutions for pastured livestock re-
main limited. There are a number of  reasons for 
this limited expansion of  technologies for pas-
tured animals, including networking availability 
and reliability, power requirements, and expense, 
among others. The objective of  this work was 
to demonstrate a rapidly deployable long-range 
radio (LoRa) based, low-cost sensor suite that 
can be used to track location and activity of  pas-
tured livestock. The sensor is comprised of  an in-
expensive Arduino-compatible microprocessor, a 
generic MPU-9250 motion sensor which contains 
a 3-axis accelerometer, 3-axis magnetometer,  
and a 3-axis gyroscope, a generic GPS receiver, 
and a RFM95W generic LoRa radio. The micro-
processor can be programmed flexibly using the 
open source Arduino IDE software to adjust the 
frequency of  sampling, the data packet to send, 
and what conditions are needed to operate. The 

LoRa radio transmits to a Dragino LoRa gateway 
which can also be flexibly programmed through 
the Arduino IDE software to send data to local 
storage or, in cases where a web or cellular con-
nection is available, to cloud storage. The sensor 
was powered using a USB cord connected to a 
3,350 mAh lithium-ion battery pack. The Dragino 
gateway was programmed to upload data to the 
ThingSpeak IoT application programming inter-
face for data storage, handling, and visualization. 
Evaluations showed minimal benefit associated 
with reducing sampling frequency as a strategy 
to preserve battery life. Packet loss ranged from 
40% to 60%. In a 3 d evaluation on pastured 
sheep, the sensor suite was able to report GPS 
locations, inertial sensor readings, and tempera-
ture. Preliminary demonstrations of  our system 
are satisfactory to detect animal location based 
on GPS data in real-time. This system has clear 
utility as a lower-cost strategy to deploy flexible, 
useful precision technologies for pasture-based 
livestock species.
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INTRODUCTION

Over the past decade, there has been tremen-
dous expansion of wearable precision technology 
options for livestock in confinement settings 
(Neethirajan, 2017). These technologies pro-
vide the benefit of yielding individual data on 
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group-housed animals and can be used to enhance 
animal welfare (Halachmi et  al., 2019), health 
(Rodgers et  al., 2015), and productivity (Koltes 
et al., 2018). Moreover, wearable sensor technolo-
gies provide the possibility of remotely managing 
individual animals facilitating urgent interventions, 
responding to time and labor-intensive concerns in 
a more efficient manner (dos Reis et al., 2020). In 
order for these benefits to be fully realized, how-
ever, real-time communication to the farmer is es-
sential (Kwong, et al., 2012).

A diversity of  commercial systems that track 
and monitor livestock behavior are available, 
including Moovement, 2020, Herddogg, 2020, 
The CowManager System, 2020. Typically, these 
technologies rely on WiFi or Bluetooth con-
nectivity for data transmission, which is sens-
ible because they are predominantly designed for 
confinement-based operations where the system 
requires high-density, low distance data trans-
missions. Although these systems are commer-
cially available, they have a number of  challenges 
including high initial cost, difficulty in data inter-
pretation, lack of  clarity on data ownership, and 
unclear accuracy of  their analytics approaches 
(dos Reis et al., 2020).

Confinement animal operations have the benefit 
of close physical proximity between managers, safe 
handling facilities, and animals, such that animals 
can easily be handled to replace lost wearable tech-
nologies, or to change out batteries, etc. In extensive 
livestock production systems, the lack of access to 
networking, handling facilities, and regular animal 
contact presents a barrier to effective use of these 
technologies. In order for wearable sensors to be 
more practical for extensive management settings, 
they must: 1) network over longer distances; 2) have 
reliable (and preferably renewable) power supplies; 
and 3) be low-cost so that damaged and lost sensors 
are less economically impactful; 4) must have data 
being transmitted in real-time. The expansion of the 
Internet of Things (IoT) movement across industry 
sectors provides numerous solutions to these four 
challenges. Numerous IoT applications leverage 
Long Range Wide Area networks (LoRaWAN) 
which have capacity to transmit small data pack-
ages over long distances. This networking tech-
nology provides a reasonable alternative to WiFi or 
cellular networking solutions currently offered for 
extensive systems.

Similarly, IoT technologies regularly focus on 
low-power use with programmatic options to sleep 
technologies between readings, leverage low-power 
circuitry, and readily utilize renewable energy 

sources such as solar. Exploring how these different 
low-power options can be incorporated into wear-
able livestock sensors may help address the power 
supply challenges associated with these technolo-
gies. Finally, IoT technologies have also invested 
in reducing the per-unit cost of individual boards 
and sensors to make them affordable as a hobby. 
Because these technologies are already relatively 
low-cost, they present a logical starting place for 
exploring alternative options for wearable sensors 
for extensive livestock production systems.

The objective of this work was to demonstrate 
and assess the practical limitations of an IoT-based 
wearable sensor network for extensive livestock 
production systems. We will describe the construc-
tion of individual wearable sensors, the coding 
required to collect and transmit data, the configur-
ation of the LoRa base station, and the linkage of 
the base station to the ThingSpeak IoT application 
programming interface (API). All technologies and 
software are open-source and can be implemented 
with fairly limited training, making the system 
valuable for research and refinement efforts.

MATERIALS AND METHODS

All animal work conducted in this study was 
approved by the Virginia Tech Animal Care and 
Use Committee (protocol no. 19–159).

System Overview

The sensor suite included three primary elem-
ents: the wearable sensor, the gateway, and the 
cloud-based server. The sensor was comprised of 
an Arduino-compatible microprocessor ($4), a gen-
eric MPU92/50 motion sensor ($8) which contains 
a 3-axis accelerometer, 3-axis magnetometer, and a 
3-axis gyroscope, a generic GPS receiver ($5), and 
an RFM95W generic LoRa radio ($7). The sen-
sor was powered using a USB cord connected to a 
battery. The microprocessor was designed for flex-
ible programming using the open-source Arduino 
Integrated Development Environment (IDE) soft-
ware. The code can be adjusted to change the fre-
quency of sampling, the data packet to send, and 
what conditions are needed to operate. The LoRa 
radio transmitted to a Dragino LoRa gateway ($60) 
which was also flexibly programmed through the 
native configuration software provided by Dragino 
(Dragino Technology Co, Zhenzhen, China). The 
LoRa gateway was programmed to upload data to 
the ThingSpeak API (The MathWorks, Inc, Natick, 
MA) for data storage, handling, and visualization.
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Wearable Sensor Design

The central processing unit of the wearable 
sensor used an Arduino-compatible micropro-
cessor with 32 kB of flash memory and 2 kB of 
static random access memory. The microcontroller 
weighs 7 g and is 18 mm by 45 mm in size. A mini-
USB was used to connect the microcontroller to a 
computer during programming, and to connect the 
microcontroller to the power supply during data 
collection.

The wearable sensor was equipped with two 
sensing devices, a generic HiLetgo® MPU92/50 
motion sensor, and a generic GP-20U7 GPS re-
ceiver. Regardless of the programmed communi-
cation frequency, the MPU9250 normal mode data 
output rates are 1 kHz for the gyroscope, 4 kHz for 
the accelerometer, and 8 Hz for the magnetometer 
(repetition rate). The Arduino code is used to con-
trol the communication rate between the micropro-
cessor and the inertial measurement unit (IMU), 
meaning that the communication rate is flexible, de-
pendent on the inputs of the user. In this example, 
the IMU was sampled at 100 Hz and averaged for 
the 15 s reporting intervals.

The MPU92/50 is, in principle, two chips. The 
first includes a 3-axis gyroscope and a 3-axis ac-
celerometer (MPU-6500) and the second includes 
a 3-axis magnetometer (AK8963). The board re-
quires a 3.3 V power supply, weighs 2.722 g, and is 
15.4 mm by 25.5 mm in size. The microcontrollers 
leverage the Inter-integrated Circuit (I2C) protocol 
for communication between the microcontroller 
and various connected digital integrated circuits. 
This communication protocol enables multiple sen-
sors to transmit data via the microcontroller using 
only two signal wires, one linking the clock signal 
and one linking the data signal. Using this I2C inte-
gration, the completed wearable sensor connected 
the analog 4 and 5 pins of the microcontroller to 
the clock and data signal pins on the MPU92/50, 
respectively (Figure 1).

The GPS receiver used in the wearable sensor 
was a 56-channel receiver with a positional ac-
curacy of 2.5 m and a velocity accuracy of 0.1 m/s. 
The GP-20U7 has a navigation update rate of 1 
Hz. The receiver uses a 3.3 V power supply, weighs 
10 g, and is 18.4 mm square in size. The GPS re-
ceiver used a serial peripheral interface (SPI) data 
transmission and was linked to the microcontroller 
through the digital 5 pin (Figure 1).

The final component of the wearable sensor 
was an RMF95W LoRa radio. The radio operates 
at 915 MHz for U.S.  transmission and is capable 

of sending data packets up to 256 bytes. The radio 
requires a 3.3 V power supply, weighs 3 g, and is 
16 mm square in size. The radio also leverages SPI 
communication to link with the microcontroller to 
facilitate the transfer of the data from the micro-
controller out through an antenna (Figure 1).

A USB cord was used to connect the microcon-
troller to the battery (Figure 2). All other connec-
tions in Figure 1 were made using 1.0 mm (63% Tin, 
27% lead, 1.8% Flux Rosin core) solder; 22 gauge, 
PVC insulated solid wire; and a Weller WLC100 
40-W soldering iron.

Programming the Wearable Sensor

Once constructed, the wearable sensors were 
programmed using the open-source Arduino 
IDE software (https://www.arduino.cc/en/Main/
Software). The code used to program the sen-
sors is included at https://github.com/rrwhitevt/

Figure 1. Pinout diagram for linkages among GPS sensor (top left), 
microprocessor (center left), motion sensor (bottom left), and LoRa 
radio (center, right). Wires are represented by different colors. All wires 
to and from the Power bus are represented in yellow and all wire to and 
from the Ground bus are represented in black.

Figure 2. Constructed device used in the present study. Each sensor 
was 50 × 40 mm and weight 57.32 g.

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/rrwhitevt/LoRa-Sensors
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LoRa-Sensors. In brief, Arduino code is broken 
down into three basic sections: code designed to 
be executed upon initialization; setup code; and 
looping code. Upon initialization of the microcon-
troller, the MPU92/50 and the GPS receiver were 
initialized based on the pinout used for sensor link-
ages (Figure 1). The maximum string length for 
strings sent via the radio driver was set to 250 char-
acters and the serial baud was set to 9600. In the 
setup portion of the code, the serial communication 
between the LoRa radio and the microcontroller 
was initialized, as were the communication proto-
cols with the GPS receiver and the MPU9250.

The loop code represents the activity of the 
microprocessor from setup until it is powered off. 
In this case, the loop code was designed to iterate 
at 100 Hz, meaning we can expect updated data to 
be sent from the sensor at that frequency. Each it-
eration, the microprocessor obtained the readings 
from each sensor. The x-, y-, and z-axes of the mag-
netometer, gyroscope, and accelerometer as well as 
the temperature reading were obtained from the 
MPU92/50. The latitude, longitude, and GPS times-
tamp (month, date, year, hour, minute, second) were 
obtained from the GPS receiver. These measure-
ments were then retained in individual arrays until 
15 s of data were collected, at which time the aver-
ages were computed and compressed into a single, 
comma delimited string. The data retrieval was done 
using the SoftwareSerial and SPI libraries of the 
Arduino IDE. The motion sensor data were inter-
preted using the MPU9250_asukiaaa library and the 
GPS data were interpreted using the TinyGPSPlus 
library. Configuration and control of the LoRa re-
ceiver relied on the LoRa library utilities.

Flexibility in the functionality of the wearable 
sensor can be accomplished by changing a number 
of parameters within the code well as the frequency 
of sampling data. For example, the delay(t) state-
ment at the end of the loop can be used to adjust 

the reporting frequency of the sensor. To report 
more frequently, t should be reduced (1,000 = re-
porting every second, 10,000  =  reporting every 
10  s). Additionally, the outString can be adjusted 
to add or drop data from the reporting protocol. 
Finally, statements can be added before the delay 
statement to sleep the sensor between reads to help 
reduce power consumption.

LoRa Gateway Setup

In Smart Farming environments, IoT technolo-
gies have previously been used to facilitate moni-
toring traceability in the value chain, which enables 
producers to optimize their production processes 
(Alonso et al., 2020). Within the agricultural context, 
LoRa being is a low-power, long-range wireless com-
munication system which offers a good infrastructure 
for loT (Augustin et al., 2016). The LoRA coverage 
range varies from 2 to 5 km in urban areas to 20–25 
km in rural environments (Augustin et  al., 2016), 
making this technology the most feasible for rural 
areas considering networking demands of at least 
10 km in small-pasture. Several agricultural studies 
related to LoRA data transmission can be found in 
the literature. Li et  al. (2018) collected vital signals 
of grazing cattle via LoRA network. Germani et al. 
(2019) demonstrated the use of LoRa networking to 
continuously monitor cattle located in barns and in 
pasture. Sadowski and Spachos (2020), comparing 
performance of between loT devices, conclude that 
LoRa has the optimal technology to be used in an 
agricultural monitoring system.

Although there are several options for LoRa 
gateways to collect data packets sent out from the 
wearable sensors, we used the Dragino LG01-N 
Single Channel LoRa IoT Gateway for conveni-
ence. The gateway was installed in a barn at the 
Smithfield Farm 334 m away from the paddock 
where the animals were located. During initial 
setup, the gateway was connected using the wide-
area network (WAN) port to a wired ethernet con-
nection to be able to connect the device to the WiFi 
connection presented in the barn. After initial con-
nection to this WiFi network, the gateway main-
tained WiFi connectivity (the wired connection was 
terminated) and it was powered throughout the ex-
periment by connecting the device into an electric 
outlet. Following manufacturer specifications, the 
gateway was programmed to forward packets to 
ThingSpeak, an open-source IoT application used 
to store and retrieve data using the machine-to-ma-
chine IoT connectivity protocol (MQTT). Although 
this server system was used for demonstration, the 

Figure 3. Data obtained from the sensor and the battery life in days 
with regard to sampling intervals in seconds.

https://github.com/rrwhitevt/LoRa-Sensors
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network is compatible with other MQTT applica-
tions and other custom servers.

Testing Sensor Network

The sensor network was tested for three per-
formance attributes: battery life; signal repeat-
ability; and data recovery. To test the battery life, 
sensors were charged to full capacity and allowed to 
exhaust at a sampling rate of once per 5, 10, 30, or 
60 s. The length of signal reception was used to de-
termine exactly when the battery was exhausted. To 
test signal repeatability, we compared the number 
of transmissions sent by the sensor to the number 
of transmissions logged in ThingSpeak at each 
transmission frequency. Finally, to evaluate the 
data recovery, we placed the sensor on test animals 
as described in the Experimental Testing section

The experimental testing was conducted be-
tween July and October of 2020 at the Smithfield 
Farm, Virginia Polytechnic Institute and State 
University, Blacksburg, VA. The prototype sensors 
were placed on a neck-collar of adult crossbred 
Suffolk × Dorset sheep (Figure 4), with an average 
weight of 70  kg (mean ± SD ± 5  kg). Data were 
collected from animals in two different operating 
systems. In the first test, animals were housed indi-
vidually in 10 ft × 3 ft cages. After the first period of 
raw data collection, animals were moved to a pad-
dock (2.91 acres) in the same facility, in order to 
collect data in a grazing environment and analyze 
the performance of the sensor networking on trans-
mitting data in a field scenario. A single prototype 
sensor was used during the intensive system trial 
to collect data for 3, 24-h sampling periods. After 
implementing some design updates to improve the 
durability and stability of the sensor casing, two 
prototype sensors were used to test performance 

in the extensive system. Again, data were collected 
for 3, 24 h sampling periods. The readings from the 
three-axis accelerometer, magnetometer, and gyro-
scope were reported as raw readings from the x-, y-, 
and z-axis of each measurement unit. The readings 
from the GPS receiver were also graphed as a heat 
map to detect patterns of where the animals were 
located when housed in the paddock.

RESULTS AND DISCUSSION

Wearable Sensor Deployments

Wearable sensors could be deployed in a var-
iety of configurations including attached to animal 
collars, halters, or affixed directly to the animal leg 
or tail head. In each case, future work should be de-
voted to developing appropriately shaped housing 
for the sensors because sensor parts can easily be 
entangled in animal hair, components can easily be 
damaged by animals rubbing their heads on fences, 
trees, and other objects, and batteries should be 
kept out of contact with animals to minimize risk 
of animal exposure in the event that a battery ex-
plodes or catches fire. The appropriateness of the 
sensor design should be tailored to the species and 
use of the sensors for any particular study or end 
goal. In this study, we elected to enclose the sen-
sors and batteries in a clear vinyl bag as this casing 
proved to be flexible, reasonably durable, and suffi-
ciently waterproof to prevent damage to the sensors.

Sensor Battery Life and Data Fidelity

Data obtained from the sensors showed that 
rapid sampling intervals had only marginal advan-
tage in comparison to longer sampling intervals 
with respect to battery life (Figure 3). This is be-
cause the packages used to put the microprocessor 
into sleep mode between sampling events do not 
control all the sensors attached to the micropro-
cessor, thus the main battery drain is still occurring, 
despite the microprocessor being placed in sleep 
mode. Changing the code to adjust the frequency 
of sampling to a less frequency sampling is an al-
ternative to prevent the battery drain, which is a 
general challenge for the advancement of these sen-
sor technologies because the frequency of sampling 
is highly correlated with the accuracy of the sen-
sor and its power intensive. A battery with higher 
capacity is the simplest way to extend the bat-
tery-life, or to implement solar energy harvesting 
with a moderate capacity battery. Future work by 
our team is focused on comparing such strategies 

Figure 4. Experimental animal displaying the location and orienta-
tion of the device fitted on a collar.
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for practicality, size/weight, device durability, and 
battery life. Irrespective of battery and energy har-
vesting advancements, future work is needed to 
simultaneously reduce the power requirement of 
sampling while maintaining the adequate level of 
accuracy for behavioral monitoring (Radeski and 
Ilieski, 2017).

The data fidelity testing showed that 40–60% of 
the transmitted packets were received and logged to 
the ThingSpeak network (Figure 2). This high rate 
of packet loss is likely due to the overloading of 
the system, which is better designed for more peri-
odic transmissions (e.g., once per minute or less fre-
quently). Future work should focus on developing 
strategies to obtain useful information from sensors 
with less frequent sampling intervals, and to evaluate 
the feasibility of designing custom servers for data 
housing.

Animal Behavioral and Location Data

A major advantage of the sensor system de-
ployed within this study is immediate capacity to 
monitor animal locations in real-time without cali-
bration, interpretive algorithms, or further research. 
The use of Global positioning system (GPS) data 
has been well established in the research settings 
in order to track animal location (Turner et  al., 
2000; Handcock et al., 2009). More recently, GPS 

measurements have been coupled with accelerom-
eters for behavioral testing to better understand be-
havior and animal location concurrently (González 
et al., 2015; Bailey et al., 2018).

Although commercial sensors for animal GPS 
monitoring exist, there is a need for more flexible 
sensor designs and more affordable options for re-
search and industry applications alike.

 As shown in Figure 5, the sensors used in this 
study were able to provide detailed data on where 
individual animals spent their time within the pas-
ture and how behaviors varied across a 24-h period. 
The tight clusters of points highlight areas where 
animals spend more time within the field. The 24-h 
data readings from the IMU also point to variation 
in how animals behave within the field throughout 
the day. Location-specific monitoring of animal 
velocity has previously been conducted for live-
stock (Trotter et  al., 2010) and wildlife (Baratchi 
et al., 2013) in conjunction with GPS monitoring; 
however, most of these previous studies do not 
transmit data in real-time. Future work is needed to 
transition this real-time data transmission system 
to behavioral classification, rather than raw read-
ings from IMU sensors, to better understand the 
geospatial distribution of animal behaviors in field 
environments.

Although algorithms have not yet been devel-
oped to translate raw IMU data obtained from 

Figure 5. Comprehension of GPS location information for two animals over 24 h sampling period. The tan background reflects the pasture 
boundaries and the smaller black rectangle reflects the shedrow shelter in the pasture. The black dots represent the areas visited by the animals 
during the 24 h sampling.
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this field sensor into meaningful animal behavioral 
classifications, the sensor’s successful reporting of 
IMU data suggests future work in this area will 
expand the capacity of  this low-cost, flexible tool 
for evaluation and real-time monitoring of  grazing 
animal location and behaviors. For reference, the 
readings of  the x, y, and z axes data obtained from 
the IMU are reported in Figure 6. The acceler-
ation signals produced are dependent on the ac-
tivity being performed by the animal. Although no 
differentiation of  the behavior’s patterns are pre-
sented in the study, periods of  inactivity and ac-
tivity can be demonstrated by the behavior of  the 
curves in Figure 6.

The real-time data transmission provided by 
the system is critical because its implementation 
may assist farmers to emergent situations such as 
exiting the field area, life-threatening threats, and 
emergent or time-sensitive health and manage-
ment concerns. Collectively, this improved speci-
ficity and timeliness in management can reduce 
economic losses (Neethirajan, 2017) and con-
tribute to enhanced animal productivity (dos Reis 
et  al., 2020). As example, even in confinement 
settings, farmers often miss the signs of  lame-
ness, the disease second only to mastitis in terms 
of  detrimental effects on dairy herd productivity 
(Booth et al., 2004), and accelerometer technolo-
gies have shown promise in detecting lameness 
(Chapinal et al., 2011). Specifically, Martiskainen 

et al. (2009), used a three-dimensional accelerom-
eter placed over the neck of  dairy cows to identify 
lame walking with 65% sensitivity and 66% preci-
sion. Barwick et al. (2018) evaluating the ability 
of  a tri-axial accelerometer sensor equipped with 
GPS attached in collar, ear and leg attached could 
classify lameness in sheep with an accuracy of 
35%, 85%, and 82%, respectively. Transitioning 
these successes into the long-range, real-time data 
transmission paradigm highlighted by the tech-
nologies described in this work may help man-
ager’s better respond to lamenesses and other 
similar time-sensitive health challenges incurred 
by animals in the field.

Much like lameness detection, identification 
of  estrus is a major challenge on most extensive 
livestock operations. In confinement systems, a 
biosensor collar has been used to detect estrus in 
cattle. For example, Shahriar et al. (2016), inves-
tigated the use of  an accelerometer data collar 
to detect heat events in pastured dairy cows, 
and was able to achieve an overall accuracy of 
82–100%. In a similar study using an ear-tag 
based sensor, Schweinzer et al. (2019) reported 
an estrus detection accuracy of  96%. Based on 
these previous studies, coupling appropriate 
analytics with the data obtained from the sen-
sors described herein may facilitate detection of 
time-sensitive management challenges such as 
estrus behavior.

Figure 6. Smoothed, scaled, and centered readings of the x–y–z axes from the accelerometer, magnetometer, and gyroscope during 24-h period. 
Animal 2002 activity is represented by the black color, and the activity of the animal 2003 is presented by the blue color.
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CONCLUSIONS

In conclusion, the present study provides an 
overview of  a flexible, rapidly deployable, and 
field-ready open source IoT sensor for monitoring 
behavior and location of  livestock in extensive 
environments. Although only a very preliminary 
evaluation of  geospatial characterization of  en-
vironments experienced by grazing animals is 
provided, the usefulness of  this research tool is 
highlighted. In future work, we expect this tool 
can be built upon to refine power requirements, 
optimize reporting frequencies, improve precision 
and accuracy of  behavioral classification, and in-
form the update and advancement of  commercial 
wearable IoT technologies for extensive produc-
tion systems.
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