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Compact holographic sound fields enable rapid one-
step assembly of matter in 3D
Kai Melde1,2*, Heiner Kremer3, Minghui Shi1,2, Senne Seneca2,4, Christoph Frey2,4, Ilia Platzman2,4,
Christian Degel5, Daniel Schmitt5, Bernhard Schölkopf3, Peer Fischer1,2*

Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows
control over the force landscape and should permit particulates to fall into place to potentially form whole 3D
objects in “one shot.” This is promising for rapid prototyping, most notably biofabrication, since conventional
methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the gen-
eration of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using
acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid micropar-
ticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of
the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic con-
trast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications
of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
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INTRODUCTION
One-shot fabrication of polymer structures has recently been pro-
posed as a manufacturing concept, in which a whole three-dimen-
sional (3D) object is formed in one shot (1). In this case, the object’s
3D shape has to be defined by a suitable intensity distribution of the
generating light field, e.g., by a photo-initiated polymerization reac-
tion. However, it is difficult to shape optical fields in a compact 3D
volume at once using conventionally available devices and spatial
light modulators. We refer to compact 3D fields as those that
exhibit feature sizes over similar length scales in all three dimen-
sions. For a projected image, the achievable lateral resolution
scales with 1/NA and the axial resolution with 1/NA2, where NA
is the numerical aperture (2). Thus, to create compact 3D holo-
graphic images, the optimal working distance should be about
half the aperture diameter, so that NA ≈ 1. Such high numerical
apertures are thus far only practicable for illuminating microscopic
target volumes. Examples for optical computer-generated hologra-
phy (CGH) at larger dimensions have correspondingly lower NAs,
and the resulting images are stretched by several orders of magni-
tude in the beam propagation direction (3, 4), which limits their use
for fabrication purposes of compact objects. Proposed solutions to
this problem are thus far based on the nonlinear activation of a pho-
toinitiator. One promising approach is the sequential illumination
from varying angles into a rotating chamber to obtain projected to-
mography (5–7). In this case, it is necessary that the chemical cross-
linker activates only when the accumulated light dose exceeds a
certain threshold (7). Recently, this concept has been demonstrated

to also work within lightly scattering media such as cell suspensions
and using a cytocompatible photoinitiator (8). An alternative ap-
proach, called xolography (9), is based on two-photon excitation
with different wavelengths and consequently allows separation
into two beams: one illuminating a plane with a focused lightsheet
and the second beam projecting the corresponding cross section of
the object on that plane. Since both excitation wavelengths are nec-
essary, the polymerization reaction is only initiated in one plane at a
time. It stands to reason that both methods, however, still generate
the 3D fields in a serial manner and not in a single step.
An alternate approach to light is to use sound fields that exert

acoustic forces for assembly. This approach has the distinct advan-
tage that the material of interest, such as particles or cells, is directly
manipulated. Furthermore, the application of ultrasound at the in-
tensities used here is cytocompatible and does not warrant the use of
chemical additives such as photoinitiators. Acoustic particle assem-
bly shows promise for rapid prototyping (10) and application in cell
cultures (11) but has thus far been limited to 2D assembly close to
boundaries (12, 13) or point-like tweezing in air (14, 15) and water
environments (16, 17). These tweezing methods require phase dis-
continuities in the focal region, which complicates their extension
toward extended traps. Alternatively, standing waves can be used to
assemble cells in 2D into regular patterns (18, 19) or colloidal mi-
croparticles in 3D (20), but here, the patterns are generally highly
symmetric. Prisbrey et al. (21) have examined the use of a closed
cavity whose surface is fully lined by transducer elements to assem-
ble particles in a fluid volume. They found solutions for a selection
of 3D traps using the boundary element method. However, the geo-
metric constraints imposed by opposing transducers and inevitable
reflections in this closed environment limit the attainable shapes to
mode geometries highly dependent on the container shape, i.e.,
cubic symmetries.
Here, we present a method to realize the first one-step 3D assem-

bly of matter into arbitrary shapes using ultrasound by combining
multiple acoustic holograms. In particular, we show that neither
counterpropagating waves nor phase discontinuities are required
to trap particles in 3D. Our method thus not only allows assembly
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into arbitrary 3D forms but also confers flexibility in the experimen-
tal setup as all acoustic sources can be placed on one side of the pro-
jected field. That leaves room for experimental intervention, i.e., the
addition of sample material, the integration with other processes,
and access for optical characterization and imaging. We demon-
strate the practicability of our compact 3D fields by assembling dif-
ferent classes of matter—namely, solid particles, biological cells,
and hydrogel beads—into 3D shapes in one shot.

RESULTS
Computation of compact 3D holographic fields
The wavelengths of waterborne ultrasound at megahertz frequen-
cies are about three orders of magnitude larger than those of
visible light. The experimental dimensions and aperture sizes that
we use in practice, however, are of the same order. For this
reason, the axial and radial resolutions scale favorably, and we
achieve similar resolution in all three spatial directions. Superposi-
tion of concurrent fields from different angles leads to high-fidelity
acoustic fields due to a wider range of accessible wave vectors (es-
sentially a much larger numerical aperture). Figure 1 shows the
general concept and workflow. The target object (Fig. 1A) is first
converted and transferred to the computation volume (Fig. 1B). De-
pending on the problem at hand, the number and orientation of the
holograms and transducers are chosen and placed relative to the
target. In practice, we found orthogonal placement as the most con-
venient, because it is very space efficient and enables faster compu-
tation of the combined fields. See fig. S1 for renderings of two
configurations. Then, we compute phase maps for all holograms
using an optimization algorithm (Fig. 1C). In this exemplary

simulation, three transducers with a frequency of 3.5 MHz and a
diameter of 50 mm are used. Results for the generated 3D pressure
fields in the shape of the target are shown in Fig. 1D, and more ex-
amples can be found in the SupplementaryMaterials (figs. S2 to S4).
The pressure images in the shape of the 3D target will drive the as-
sembly process.
The synthesis of 3D fields forming a target volume or shape is

challenging and an active research topic in CGH (4, 22). The goal
of CGH is to find the spatial phase and amplitude distribution of an
incident wavefront that will, upon diffraction, form the target
image. The goal is achieved by optimizing the output acoustic
field under the experimental constraints, such as the incident
beam profile and wave shaping modalities. The latter indicates
whether the amplitude or the phase (or both) can be controlled.
CGHmethods for 2D images are well advanced; however, accessing
the third dimension poses the additional problem that often the
optical or acoustic waves have to propagate across regions with
highly varying intensities while energy conservation has to be pre-
served. Some desired 3D target images may thus not be physically
realizable, only via a different geometry. As we show here, an effec-
tive way to quickly infer the feasibility of volumetric fields without
having to undertake time-consuming volumetric wave propagation
calculations is to analyze the 3D spatial frequency spectrum of the
target object (23). Figure 2A shows an exemplary field of focal spots
(regions where high intensity is desired) arranged so as to form the
vertices of a regular icosahedron. Its 3D Fourier transform (FT)
(Fig. 2B) corresponds essentially to a decomposition into plane
waves, each represented by their wave vector k. Thus, for mono-
chromatic illumination (insonification) with wavelength λ0, this
spectrum has to be limited to the surface of a sphere, the Ewald

Fig. 1. Concept to form compact acoustic 3D pressure images. The target 3D shape (A) is scaled and converted into a voxel representation (B). The number of nec-
essary holograms as well as their position and orientation relative to the target are chosen as part of the design process. Each hologram is placed on an ultrasound
transducer that emits a plane wave at a fixed frequency. (C) Our CGH routine finds the optimal phase maps for each hologram. (D) Reconstruction of the ultrasound
pressure amplitude emanating from the transducer-hologram sources (1, 2, and 3) and projecting into the 3D volume shows good results, displayed here as isosurfaces at
40% of the maximum pressure.
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sphere, whose radius is equal to the wave number ∣k∣ = k0 = 2π/λ0.
However, sources of light or sound are restricted in space. The finite
aperture of a real source thus further constrains the wave vectors to a
cone of opening angle α, which is given by the dimensions of the
source (Fig. 2C). Back transformation of this limited spectrum
using the inverse FT (iFT) reveals one possible solution to the
initial field. We call this approach the Fourier constraint method
(FCM). Alternatively, solutions can be found by varying the
complex phases of points in the spatial field, which then determines
the hologram that is to be used in conjunction with the source. The
same procedure can be extended to multiple transducers with their
respective holograms in arbitrary (source) orientations and config-
urations. An example for the spectrum limited to two holograms
along the x and y directions, respectively, can be seen in Fig. 2C.
The iFT reveals the resulting field in Fig. 2D, where characteristic
intensity (pressure) nodes around the foci are visible. Other config-
urations are shown in fig. S5.
Iterating through these steps to compute a hologram has been

termed a 3D variant of the Gerchberg-Saxton (GS) algorithm in
optical CGH (3, 24). However, this is not directly applicable in
the case of ultrasound, which we will use for assembly. In ultra-
sound, the near field needs to be considered in contrast to the far
field typically encountered in optics, where the source and target are
related by a simple FT. Before source constraints can be applied, it
becomes necessary to propagate the wave from the image to the ho-
logram plane. This propagation is accomplished in a straightfor-
ward manner using the angular spectrum method applied to the
limited spectrum, which is contained on the section of the Ewald
surface with regard to the opening angle of the source. The FCM

delivers very good results for fields that consist only of collections
of focal points. However, one difficulty for it [and including GS and
its derived iterative angular spectrum approach (12, 25)] is to
achieve uniform amplitude over extended regions, which is partic-
ularly desirable for acoustic traps making up lines, surfaces, or
volumes. To improve the homogeneity of amplitudes over extended
traps, we therefore resorted to parallel computation of the volumet-
ric field using the angular spectrum method combined with a gra-
dient-based optimization procedure. Nonconvex optimization has
been used previously in this context with pioneering work done
by Zhang et al. (26). Similar in spirit, Marzo et al. (14) used gradi-
ent-based optimization to improve the stiffness of their traps.
Further details can be found in Materials and Methods. In
summary, our approach is suitable for holographic reconstruction
in the acoustic near field and allows for arbitrary numbers of holo-
grams at user-defined positions and orientations to generate
complex 3D pressure patterns in space.

Directed 3D assembly of microparticles
Structured acoustic fields have long been used to trap and assemble
microparticles (27, 28). In this work, however, we use an overlooked
configuration. Instead of counterpropagating (i.e., standing) waves
or single-beam setups, we use the superimposed foci of multiple
beams. This results in interference around the foci and allows tweez-
ing of positive acoustic contrast particles at nodes between the high-
amplitude interference fringes. In the following, we intend to illus-
trate the trapping with two exemplary configurations. A popular
measure to gauge the attainable trapping potential in acoustics is
the Gor’kov radiation potential because of its straightforward com-
putation (see Materials and Methods) (29), which has been extend-
ed to complex structured fields (30) and arbitrarily shaped particles
(31). Figure 3 visualizes two examples of superimposed beams: Two
(Fig. 3A) or three (Fig. 3C) beams are focused to a point at the origin
(0,0,0) coming from orthogonal directions corresponding to the
axes highlighted in red in the insets. The Gor ’kov potential is
defined in such a way that particles experience a force toward the
potential’s minima. Therefore, the opposite sign of the potential
is displayed as isosurfaces in Fig. 3 (B and D). In this way, the
closed surfaces resemble the approximate form of particle aggre-
gates in a superimposed focal spot. The particles used in this
work (e.g., silica gel) have positive acoustic contrast in water,
which means that the minima of the Gor’kov potential coincide
with the sound pressure nodes. It should be noted here that these
traps do not constitute a single connected potential well that the
particles fall into. Because of the interference patterns, the trapping
regions span multiple pressure nodes in proximity to the focal
points, leading to a striped appearance of the assembled structures.
The spacing between stripes can consequently be reduced by using
higher ultrasound frequencies.
Trapping of solid particles in specified locations in 3D has been

demonstrated by arranging trapping sites at vertices of the platonic
bodies. In this experiment, two holograms were computed for two
source beams intersecting at 90°, as shown in the schematic in
Fig. 4A. A photo of this setup can be seen in fig. S6. A removable
cubic container was filled with a suspension of porous silica gel
spheres in water and placed so that it rested directly on the holo-
grams. Its faces were covered with acoustically transparent
windows and therefore allowed the ultrasound field to propagate
through the container with minimal reflection. The holograms

Fig. 2. Field synthesis in Fourier space. (A) Exemplary 3D arrangement of focal
points at the vertex locations of an icosahedron and (B) its spatial frequency spec-
trum. (A) and (B) are linked via the (inverse) 3D FT, indicated by FT (or iFT). (C) The
spectrum is limited to the Ewald surface of a monochromatic wave with wave
number k = 2π/λ and two sources with limited aperture size (opening angle α).
(D) The resulting field with a close-up view on a single spot.
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were computed so that an acoustic image forms at the center of the
container. At the start of the experiment, the cube was shaken man-
ually and then placed on the rig. The microparticles quickly sedi-
mented under the influence of gravity; however, particles that
traversed the trapping sites around each focal point were retained
by the acoustic radiation force. Figure 4 (B and C) shows photo-
graphs of the final trapping state for an octahedron and an icosahe-
dron, respectively. Movie S1 shows the assembly process in real
time. The gallery containing all other platonic solids can be found
in fig. S7. All trapping sites were successfully populated with parti-
cles in our experiments, and the trapped particle clusters appear vi-
sually as predicted in Fig. 3.
The combination of beams from orthogonal directions (causing

highly varying wave vectors) causes interference patterns with pres-
sure nodes that can be used to trap and assemble matter with a pos-
itive acoustic contrast. This is useful as most materials, including
cells, have a positive acoustic contrast in water (polydimethylsilox-
ane is an exception). Figure 5 shows assemblies of biological cells
(C2C12 mouse myoblasts) and microscopic hydrogel beads
[gelatin methacrylate (GelMa)]. The assembled particles and cells
were fixed in a slow-curing hydrogel medium, which leaves
enough time for excess particles to settle before solidification. The
experiments were performed inside square cuvettes, which were
aligned to the transducers so that the target field is projected

toward the center of the medium (Fig. 5A and fig. S8). The first
demonstration is the assembly of biological cells to an extended
spherical volume. Figure 5 (B and C) shows the simulated sound
intensity field and the final cell assembly, respectively. We recorded
and confirmed the 3D structure of the sample using a custom-built
laser-sheet fluorescence imaging setup, a schematic of which is
shown in fig. S9. Note here that the assembly does not form a
closed 3D sphere but rather fills the volume with intertwined
nodal surfaces similar to those seen in Fig. 3D. Hydrogel beads
labeled with a fluorescent dyewere fabricated on amicrofluidic plat-
form as reported in Materials and Methods. A fluorescence micro-
scope image and their size distribution before (droplets) and after
curing (μGels) can be seen in Fig. 5 (D and E, respectively). It can be
seen that the hydrogel beads swell by a small amount relative to the
droplet size before curing. However, the microfluidic fabrication
method leads to a narrow and well-controlled size distribution.
The beads can also be readily loaded with a cargo, for instance,
with cells. We then computed the holograms to obtain a compact
figure eight curve and used the same experimental setup to assemble
the hydrogel beads. Figure 5 (F and G) illustrates the simulated
sound intensity fields in front view and side view, respectively.
The thresholds for the isosurfaces have been chosen in a way to vi-
sually reflect the achieved asemblies. Note that acoustic trapping
itself is similarly threshold based, since particles are held at posi-
tions that provide a minimum of trapping force. By changing the
input power to the transducers, the particle aggregates become
larger or smaller as well. Laser-sheet images of the same sample
are shown corresponding to the views in Fig. 5 (H and I). Anima-
tions of the reconstructed 3D structures for the different experi-
ments can be seen in movie S3, and a series of photos in fig. S10
further illustrates the process. There, hydrogel beads were left to
sediment through either the enabled ultrasonic field (projecting a
helix) or no field at all.
Figure 6 shows a rendering of the 3D assembly of silica gel mi-

croparticles in the shape of a helix, with the setup and target place-
ment illustrated in Fig. 6A, where the sample tube has been omitted
for clarity. The simulated intensity distribution of this field can be
seen in Fig. 6B, and the corresponding Gor’kov radiation force po-
tential can be seen in Fig. 6C.Wemeasured the sound pressure field in
the experiment by scanning a hydrophone through the region of in-
terest. To avoid excessive heating of the transducers during this time-
consuming measurement, the transducers were driven at lower elec-
trical power (0.5 W, about 1/10 of the power used in the trapping ex-
periments). The acquired volumetric data (Fig. 6D) confirm the
successful reconstruction of the holographic 3D shape. In this case,
the maximum measured pressure was 55 kPa. Because we found the
transducers to respond linearly over the whole experimental range, we
use this data point to estimate the maximum pressure amplitude
during trapping experiments to be about 175 kPa. The acoustic assem-
bly was fixed using the two-part hydrogel kit as in the previous exper-
iments. Figure 6E shows the assembly of silica gel particles captured
from varying angles to demonstrate its 3D character.

DISCUSSION
In summary, we introduced a concept for generating compact 3D
acoustic pressure shapes through superposition of fields from mul-
tiple acoustic holograms. To compute the fields in 3D, we initially
used an FCM, which is sufficient to generate point-like targets.

Fig. 3. Particle-trapping potential around the mutual focal spot of multiple
focused beams. Beam directions are indicated by red arrows in the circular
insets. (A) Normalized intensity distribution at the focus of two beams pointed
in the X and Z directions (isosurfaces at 0.25 · max {I}) and (B) the particle-trapping
sites indicated by the negative Gor’kov potential−Υ (isosurfaces at−0.25 · min {Υ}).
(C and D) Intensity distribution (isosurfaces at 0.1 · max {I}) and negative Gor’kov
potential (isosurfaces at −0.25 · min {Υ}) for three focused beams in the X, Y, and Z
directions. All dimensions are normalized bywavelength λ, and the potentials have
been computed for a silica gel particle with radius ap = λ/10.
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Furthermore, FCM is useful as a fast and intuitive way to gauge the
feasibility whether certain target shapes can be generated with a par-
ticular configuration of holograms. To obtain traps beyond points
that extend along lines in space, one needs to resort to a gradient-
based optimization of the phase profile. To this aim, we devised an
alternative computational method based on nonconvex optimiza-
tion that minimizes the mean squared error between the generated
field and the target field via a projected gradient descent scheme.
Note that closely related approaches to nonconvex optimization
have been proposed by Zhang et al. (26) and subsequently been
taken up by Chakravarthula et al. (32). However, these works con-
sider standard single-source optical holograms. Here, we show how
to obtain complex 3D pressure shapes using multiple acoustic
sources and holograms. The compact acoustic fields that we
created experimentally using the computed holograms allowed us
to rapidly assemble matter into arbitrary 3D shapes. We have dem-
onstrated this concept with silica gel particles, biological cells, and
also hydrogel beads in setups consisting of two or three transducers,
where each is fitted with one hologram. The assemblies were fixed in
a hydrogel phase for subsequent analysis. Our compact 3D acoustic
fields trap and assemble particles simultaneously around specified
points or along curved lines in a bulk suspension and even inside
conventional sample tubes and cuvettes. Note that the assembly
happens in parallel in a single step. The only time-limiting factors
currently are (i) the removal of untrapped particles or cells in the
regions with low acoustic exposure and (ii) cross-linking the hydro-
gel medium. In future work, we intend to optimize this process
using carefully designed cross-flows or container movements. The
hydrogel can further be modified with a photoinitiator, which
would enable fast polymerization upon exposure to light. Therefore,
the method presented here is orders of magnitude faster than serial
bioprinting, and crucially, the fabrication time in our method does
not depend on the size of the object. Multiple holograms can thus be
used to obtain arbitrary shapes and objects that are not subject to
any symmetry constraints, provided a corresponding hologram can
be computed that encodes the object’s shape. The complexity of the
3D shapes that can be formed will depend on a number of param-
eters, including the number of holograms (three is better than two),
the frequency where higher frequencies make for finer features (but
this is ultimately limited by absorption and streaming), and the
nature of the constituent particulate matter that is being assembled,
which needs to have a suitable contrast factor such that the acoustic
radiation force can counter sedimentation. One design goal is

therefore to increase both the transducer frequency and its aperture.
Furthermore, in practice, the size of the assembly is largely limited
by the output power of the available transducers. Trapping the same
type of particles over extended volumes approximately scales P∝ d3,
with d being a characteristic length of the target. To achieve the as-
sembly of objects such as the dove in Fig. 1 requires transducers with
high frequencies and sustained acoustic output power.
Because of the versatility and ability to accommodate different

materials, our method shows promise for fabrication of scaffolds
or directly assembling biological tissue. We foresee applications of
compact high-fidelity 3D ultrasound fields in medical therapy, tar-
geted drug delivery, and neurostimulation. The effects of ultrasound
in these emerging fields have already been shown and are investigat-
ed by many research groups (33). Furthermore, the directed 3D as-
sembly ofmatter is a promising avenue for rapid prototyping and, in
particular, for tissue engineering.

MATERIALS AND METHODS
Angular spectrum method
The angular spectrum method (34) provides an efficient way to
propagate electromagnetic or acoustic fields between parallel and
aligned planes by means of fast FTs. Given the value of a 3D
complex valued field pðx; y; zÞ : R3 ! C in a plane z = zi, i.e.,
pziðx; yÞ :¼ pðx; y; z ¼ ziÞ, we can obtain the field in a different
plane via multiplication with a corresponding propagator function
in Fourier space (34). To this aim, let the spatial frequency spectrum
Pziðkx; kyÞ of the wave in the plane at zi be obtained via a 2D FT of
the field pziðx; yÞ

Pziðkx; kyÞ ¼ F 2D½pziðx; yÞ� ð1Þ

¼

ð ð1

� 1

pziðx; yÞe
� iðkxxþkyyÞdxdy ð2Þ

Let k ¼ 2π
λ denote the wave number of a single frequency wave

with wavelength λ. The propagator function, relating fields at z0
and z1 in Fourier space, can be written as (35)

Hz0!z1ðkx; kyÞ ¼
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k

2
y

p
ðz1 � z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k

2
y

q ð3Þ

Fig. 4. Trapping of silica gel microspheres with ultrasound at specified points in 3D. (A) Schematic of the experimental setup (2.25 MHz) using two holograms and a
removable particle container. After initial resuspension by shaking, the particles (white dots) sediment under gravity g until they pass a trapping site (red cross). The trap
locations represent vertices of platonic solids: (B) octahedron and (C) icosahedron. Scale bar, 10 mm.
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Then, the propagated field can be related to the original field via
a linear operator Az0 → z1 : ℂℝ2

→ ℂℝ2

pz1ðx; yÞ ¼ F
� 1
2D½Hz0!z1 �F 2D½pz0 �� ð4Þ

¼: Az0!z1 ½pz0 � ð5Þ

where F 2D and F � 12D are the Fourier and iFT in 2D, respectively.
From the unitarity of the propagator function in Eq. 3 combined

with the unitarity of the FT, we can conclude that Az0 → z1 itself is a

unitary operator, i.e., (Az0 → z1)
*Az0 → z1 = Az1 → z0Az0 → z1 = I, where

(Az0 → z1)
* denotes the adjoint operator.

In practice, for computational purposes, one can only consider
the field p(x, y, z) in a discretized finite volume with dimensions nx
× ny × nz, where ni denotes the number of pixels in dimension i. We
denote the discretized field, which can be expressed as a 3D tensor,
as p ∈ ℂnx × ny × nz and analogously the field in the transducer plane
at z = z0 as a 2D tensor pz0 ∈ ℂnx × ny. Moreover, we overload notation
and define the action of the propagation operator Az0 → z1 on the
discretized field as a mapping ℂnx × ny → ℂnx × ny in which the

Fig. 5. 3D holographic assembly of cells and microgel beads. (A) The compact 3D sound image formed by three 2.25-MHz ultrasound transducers and associated
holograms is focused into a standard cuvette. Inset shows the target field, in this example, an extended spherical volume, where (B) and (C) show the simulated sound
intensity I (isosurface at 0.09 · max {I}) and a 3D fluorescence image stack of assembled C2C12 mouse myoblasts, respectively. (D) Microscope image of fluorescent
microgels. (E) Size distribution of microgels before and after curing. CV, cofficient of variation. (F and G) Simulated sound intensity field of a distorted figure eight
curve shown in front view and turned 90° around the vertical axis. Sound intensity isosurfaces at 0.16 · max {I}. (H and I) Assembly of microgels shown according to
the views in (F) and (G). Scale bars, 100 μm (D) and 1 mm (all others).
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continuous FTs are substituted by discrete FTs. Now, as we only
consider the field in a finite volume, generally, not all wave
vectors originating in the plane at z = z0 are able to reach the
plane at any other z = z1. One can account for this phenomenon
by introducing a cutoff in the frequency domain that is usually de-
termined by some heuristics (36). Our implementation relies on the
procedure described in the following. Suppose that we have a circu-
lar aperture with diameter lA and the image plane of interest is in
distance z from the aperture. Moreover, the image has transversal
extend ltarget, and its center is aligned with the center of the aperture.
A simple geometric consideration shows that in order for a wave
vector k = (kx, ky, kz) originating at the phase modulating device
to reach the image volume, its x and y components must fulfill

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k
2
y

q

�
2π
λ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Δz2

ðltargetþlAÞ2
q ¼: kΔzmax ð6Þ

The frequency cutoff can then be implemented in a modified
propagator Hm

z0!z1 defined as

Hm
z0!z1ðkx; kyÞ ¼

ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2max� k

2
x � k

2
y

p
ðz1� z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2max � k

2
x � k

2
y

q θðkmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k
2
y

q

Þ ð7Þ

where θ is the Heaviside step function, and we defined
kmax :¼ kz1� z0max . Note that this frequency filter removes the unitarity
of the forward operator A so we can no longer
assume A�z0!z1Az0!z1 ¼ I.
This means that, due to the consideration of a finite volume,

some energy will be lost between planes and, consequently, that
propagation is not reversible, i.e., A�z0!z1 = Az1!z0 .
While the angular spectrummethod provides a way to propagate

a field from one plane to another, it can be readily extended to prop-
agate one field into multiple planes and back, respectively. By slicing

Fig. 6. 3D assemblyof silica gel beadswith holographic ultrasound fields. (A) Arrangement of three sources (2.25MHz) and target field (sample container hidden). (B)
Intensity distribution (isosurface at 0.16 · max {I}) of the simulated field and its (C) radiation force potential Υ for silica gel particles (isosurfaces at −0.1 · min {Υ}). (D)
Hydrophone measurement of the sound pressure field. Isosurfaces at 0.4 · max {p} = 21.6 kPa. (E) Photo of the fixed 3D assembly of silica gel particles in cross-linked
hydrogel. Subsequent images show rotated close-up views. Scale bar, 5 mm.
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a 3D target image into a number of 2D planes, this allows us to
deploy the framework for 3D holography. For a 3D target volume
sliced into nz discrete planes of dimension nx × ny at z = zi, i = 1, …,
nz, we define the 3D discretized propagation operator A : ℂnx × ny →
ℂnx × ny × nz as the direct sum of propagation operators Az0 → zi
between pairs of planes at (z0, zi)

Apz0 ¼ fAz0!zipz0g
nz
i¼1 ¼ fpzig

nz
i¼1 ¼ p ð8Þ

where fpzig
nz
i¼1 is to be interpreted as a concatenation of the field in

the nz planes pzi ∈ ℂnx × ny along the third dimension, which yields a
tensor p ∈ ℂnx × ny × nz. Correspondingly, the adjoint operator A* :
ℂnx × ny × nz → ℂnx × ny is given by

A�p ¼
Xnz

i¼1
A�z0!zipzi ð9Þ

which for i = 1,…, n picks the ith plane of the image volume, revers-
es the propagation from z0 to zi, and subsequently sums over all
backward-propagated contributions with equal weight.
As described above, the angular spectrum method requires the

planes of interest to be parallel and aligned. In multitransducer set-
tings, this translates into the requirement that the transducers are
placed orthogonal to each other. While, in practice, a roughly or-
thogonal setting is often already required for space reasons, our op-
timization methods described in the following can be used in
nonorthogonal settings by resorting to a propagation operator
defined via pointwise wave propagation based on carrying out the
diffraction integral.

Computation of holograms
Phase-only CGH is concernedwith finding the optimal phase relation
ϕ∈ ℝnx × ny of the sound pressure field in the hologram plane p0 = ueiϕ
∈ ℂnx × ny so that the propagated fieldmatches a desired amplitude g∈
ℝnx × ny × nz at some distance from the transducer. Here, we assume the
transducer to be located at z0 = 0 and to have a fixed amplitude u ∈
ℝnx × ny independent of the phase modulation ϕ. The fields in the ho-
logram (or transducer) plane and the target volume are related by a
linear operator A : ℂnx × ny → ℂnx × ny × nz, which can be implemented,
e.g., using the angular spectrum method (see the previous section).
Correspondingly, the inverse propagation from the target volume
to the transducer plane is described by the adjoint operator
A* : ℂnx × ny × nz → ℂnx × ny. Mathematically, the problem is an
inverse problem consisting of two amplitude constraints: (i) In the
transducer plane, the field p0 = ∣p0∣ eiϕ is required to have the amplitude
u imposed by the transducer ∣p0∣ = u, and (ii) in the image volume, the
target amplitude g from ∣Ap0∣ = g should be produced. The degrees of
freedom of this optimization problem lie in the phase ϕ.

Fourier constraint method
Assume that we want to generate a 3D amplitude profile g(x, y, z)
using a transducer that emits a wave field p(x, y, z) with wavelength
λ. For the purpose of presentation, we describe the algorithm on
the level of field variables p(x, y, z) instead of their discretization
p ∈ ℂnx × ny × nz. The discretized version follows directly by going
over to discrete FTs and adapting the constraint set accordingly.
For a physical wave field with wave number k = 2π/λ, all allowed
wave vectors k = (kx, ky, kz) lie on a so-called Ewald sphere with
radius k and k2 ¼ k2x þ k

2
y þ k

2
z . As the wave field is emitted by a

transducer with a designated propagation direction, e.g., in the

positive z direction, we obtain the additional constraint kz ≥
0. Moreover, with a finite aperture, not all wave vectors originating
at the transducer plane can reach the image volume, which, as
argued in the previous section, can be expressed with a heuristic
constraint Eq. 6. As a result, all allowed wave vectors lie within a
patch E on one half of the Ewald sphere defined as

E ¼

(

k [ R3 : k2x þ k
2
y þ k

2
z ¼ k

2; kz � 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k
2
y

q

� k 1þ
4Δz2

ðltarget þ lAÞ2

 !� 1=2)
ð10Þ

Let F 3D[p](kx, ky, kz) denote the FT of the field p. Then, we can
formulate the problem as finding a solution in the intersection of
the target amplitude constraint set G and Fourier space constraint
set F defined respectively as

G ¼ fp :jp j¼ gg ð11Þ

F ¼ fp : F 3D½p�ðkÞ ¼ 08k [ Eg ð12Þ

In general, F ∩ G =∅; however, this problem has a form suitable
for a GS-like alternating projection scheme to compute an approx-
imate solution (37, 38). Note that the following procedure has been
proposed previously in (23). Starting with a random initial field in
Fourier space p

≏
ðkÞ, the algorithm proceeds by repeating the follow-

ing steps.
1) Projecting the iterate p

≏
on the set of fields G with the desired

target amplitude by taking the iFTF � 13D½p
≏
� and setting the amplitude

to g while keeping the phase to obtain p.
2) Projecting the iterate p on the set of physically realizable fields

F by taking the FT F 3D[p] and setting the field to zero outside the
relevant patch E on the Ewald sphere to obtain p

≏
.

Finally, the result p
≏
can be transformed back into real space using

an iFT. Using, e.g., the angular spectrum method, the field can be
propagated to the transducer plane to obtain the corresponding
phase profile that needs to be realized in the hologram. As here,
we are interested in holograms from multiple transducers. Each
transducer corresponds to a patch E in Fourier space. Using the lin-
earity of the (inverse) FT allows us to transform the information
lying on the different patches into real space separately and thus
allows us to separate the contributions from the transducers in
real space. With the separated real-space fields at hand, we can
simply propagate each field to the corresponding transducer
plane to obtain the required phase profiles.
The Fourier constraint approach has the drawback that while it

takes into account the direction and geometrical properties of the
transducers, their amplitudes do not enter the iterative hologram
computation. Instead of ensuring physical consistency between
the transducer amplitude, which is a constraint on a single plane,
and the produced field consisting of nz planes, the FCM only
focuses on ensuring physical consistency between the nz 2D
planes in z direction. For 3D CGH, it has been observed in practice
that taking into account the transducer amplitudes has a small but
non-negligible impact on the quality of the result. Therefore, for
more complex fields, we resort to a gradient-based optimization
procedure that explicitly takes into account the transducer ampli-
tudes as described in the following section.
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Gradient descent optimization
Gradient-based optimization schemes have been deployed in the
context of CGH (26, 32, 39). These methods generally optimize the
phase pattern ϕ ∈ ℝnx × ny in the hologram plane by minimization
of a real-valued error measure l[h(ϕ), g] between the generated field
h(ϕ) and the target g, where h describes the functional relationship
between the phase pattern ϕ and the produced amplitude field in
the target volume. Typically, this is solved with first-order optimiza-
tion methods, such as the limited-memory Broyden-Fletcher-Gold-
farb-Shanno algorithm (26) or gradient descent (32, 39). Instead of
solving the unconstrained optimization problem in real variables, we
opt for a closely related but different approach by solving a constrained
optimization problem over the complex field in the transducer plane
p0 ∈ ℂnx × ny with the constraint ∣p0∣ = u, where u ∈ ℝnx × ny represents
the transducer amplitude, so that the problem becomes

Minimize
p0[C

nx�ny
‘ðjAp0j; gÞ s.t. jp0j ¼ u ð13Þ

The numerical solution of this problem with continuous optimi-
zation tools requires the computation of the gradient of the loss
function with respect to the decision variables. However, because
the objective in Eq. 13 is a real-valued function of a complex vari-
able, it cannot be differentiated in the standard complex analysis
sense as it is nonholomorphic (i.e., not complex differentiable).
Instead, in analogy to previous works (32, 39), we resort to Wir-
tinger subdifferential calculus (40) to extract meaningful gradients;
see, e.g., (41), for a comprehensive introduction.
For simplicity of notation, we substitute the field variable

p ∈ ℂnx × ny with a vectorized version p ∈ ℂnx · ny in the following.
For a general pressure field p = pr + ipi ∈ ℂnx · ny with pr, pi ∈ ℝnx · ny,
we denote the convex conjugate variable as p ¼ pr � ipi [ C

nx�ny .
We define the Wirtinger differential operators (41)

@

@p
¼
1
2

@

@pr
� i

@

@pi

� �

;
@

@p
¼
1
2

@

@pr
þ i

@

@pi

� �

ð14Þ

where pr and pi are treated as independent variables. Consider the
loss as a function of the complex field directly, i.e., let L :ℂnx · ny → ℝ
be a real-valued function on a complex domain such that
L(p) = l( ∣Ap∣ , g). Then, the optimality conditions are given as
dL = 0, where the Wirtinger differential dL is defined as (41)

dL ¼
@LðpÞ
@p

dpþ
@LðpÞ
@p

dp ¼ 2Re
@LðpÞ
@p

dp
� �

ð15Þ

¼ Refh 2
@LðpÞ
@p

� �T

; dpig ¼: RefhrpL; dpig ð16Þ

In the last step, we defined the Wirtinger gradient of L with

respect to p as rpL :¼ 2 @
@p L
� �T

. For computational purposes,
@
@p L can be treated like a normal partial derivative. Using the
chain rule of multivariate calculus, we thus obtain the Wirtinger
(sub-)gradient of L as

rpL ¼ 2
@‘ðjAp j; gÞ

@p

� �T

ð17Þ

¼ 2
@‘ðjAp j; gÞ
@ jAp j

@ jAp j
@ðApÞ

@ðApÞ
@p

� �T

ð18Þ

¼ 2A�
Ap
jAp j

� rx‘ðx; gÞ jx¼jApj
� �

ð19Þ

where ∘ denotes the element-wise or Hadamard product. Note that
several modern automatic differentiation frameworks including
Tensorflow (42) return Wirtinger gradients by default when
trying to differentiate real-valued objectives with respect to
complex variables and thus conceal this additionally required
complexity.
Having defined a meaningful gradient, we can solve Eq. 13 by

deploying the simple projected gradient descent scheme detailed
in Algorithm 1. Therein, PU(p) ≔ u ∘ p / ∣p∣ is the Euclidean pro-
jection onto the constraint set U. In the case of the square loss

‘ðx; gÞ ¼
1
2

Xnx

i¼1

Xny

j¼1
ðxij � gijÞ

2
ð20Þ

we have ∇xl(x, g) = x − g, and Eq. 19 simplifies to

rpL ¼ 2A� Ap � g �
Ap
jAp j

� �

In contrast to the gradient-based optimization methods of
related works (26, 32) that directly optimize the phase pattern ϕ,
our optimization on the level of the complex field variable p bears
a close connection to the famous GS algorithm (37). To see this,
consider the optimization of the square loss in our framework
using a fixed step size τ = 0.5. Now, under the assumption of a
unitary propagation operator A (which is violated in practice; see
the “Angular spectrum method” section), the projected gradient
descent update rule becomes

pkþ1 ¼ PU A� g �
Apk

jApk j

� �� �

ð21Þ

In words, this implies the following steps: (i) Propagate the field
to the target volume and set the amplitude to the target amplitude
while keeping the phase, and (ii) propagate the field back to the
transducer plane and set the amplitude to the transducer amplitude
while keeping the phase. These are exactly the steps taken by the GS
method (37). Therefore, our method can be understood as a variant
of the GS algorithm that uses adaptive step sizes and correctly takes
into account the nonunitarity of the propagation operator.
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Acoustic radiation force potential
We use the Gor’kov radiation force potential Υ to identify the trap-
ping sites for microparticles (14, 29). It is defined as the potential of
conservative radiation forces, F = −∇Υ, and consequently, particles
are pushed toward and trapped at the local minima of Υ. Compu-
tation is straightforward if we compute the acoustic velocity v from
the sound pressure distribution p as v = ∇p/iρmω with i ¼

ffiffiffiffiffiffiffi
� 1
p

,
angular frequency ω = 2πf, and frequency f. Then

Υ ¼ πa3
1
3
C0
jp j2

ρmc2m
�
1
2
C1ρmjv j

2

 !

;with ð22Þ

C0 ¼ 1 �
ρmc

2
m

ρpc2p
and ð23Þ

C1 ¼
2ðρp � ρmÞ
2ρp þ ρm

ð24Þ

where a is the particle radius, ρ is the density, and c is the speed of
sound. Subscripts m and p refer to the material properties of the
medium or particle, respectively. The Gor ’kov potential is valid
for a ≪ λ and fields dissimilar to plane traveling waves, which is
the case here (29).
The sonomechanical properties of silica gel can be calculated in

the long-wavelength regime as an effective medium (43), because
the pore sizes are much smaller than the acoustic wavelength.
From the material datasheet, we estimate a pore volume fraction
of 70% and assume that all pores are filled with water, which
gives cp = 1415 ms−1 and ρp = 1498 kgm−3. These values result in
a positive acoustic contrast factor Γ = C0/3 + C1/2 = 0.21 in water,
which means that the minima of Υ and thus the particle-trapping
sites coincide with sound pressure nodes (44). The acoustic contrast
factor for C2C12 mouse myoblasts was not possible for us to obtain.
However, biological cells are known to have positive acoustic con-
trast, and some examples are reported to lie in the range of 0.14 to
0.25 (45).

Synthesis of GelMA
GelMA was synthesized on the basis of a slightly adapted protocol
from Yue et al. (46). Briefly, 10 g of gelatin from cold water fish skin
(Sigma-Aldrich, Germany) was dissolved in 100 ml of Dulbecco’s
phosphate-buffered saline (DPBS) at 50°C, followed by adding 8
ml of methacrylic anhydride (94%; Sigma-Aldrich, Germany) drop-
wise. Themixture was reacted for 2 hours under magnetic stirring at
50°C after which the reaction was stopped with a twofold dilution of
warmDPBS, followed by dialysis for 5 days using amembrane (12 to
14 kDaMw cutoff ) at 40°C to remove impurities, such as unreacted
methacrylic anhydride. Last, the solution was freeze-dried to yield a
white foam and stored at 4°C until further use.

Fabrication of GelMA beads
Freeze-dried GelMA was dissolved in a mixture of DPBS, rhoda-
mine 6G (Sigma-Aldrich, Germany) at a concentration of 1 mg
ml−1, and the photoinitiator lithium-phenyl-2,4,6-trimethylben-
zoylphosphinate (Sigma-Aldrich, Germany) to yield photopoly-
merizable GelMA solutions [10% (w/v)]. To prepare GelMA

microgels, the GelMA solution was used as a dispersed phase,
while 1% (w/w) of perfluoropolyether-PEG (polyethylene glycol)
block copolymer fluorosurfactants (Ran Biotechnologies Inc,
USA) dissolved in HFE 7500 oil (3M, USA) was used as a continu-
ous phase to prepare a water-in-oil emulsion. Both phases were in-
dividually injected into the inlet microchannels of a step
emulsification microfluidic device using syringe pumps at constant
flowrates to obtain droplets of 70 μm in diameter. The surfactant-
stabilized GelMA droplets were then polymerized in solution using
a 10-W ultraviolet (UV) lamp, collected in a microcentrifuge tube,
and stored at 4°C until further use. Confocal images were taken
using an LSM900 (0.75% laser power, 700-V gain, excitation/emis-
sion of 488/512 nm; Zeiss, Germany), and the size of the droplets/
particles was determined manually or by using ImageJ software.

Acoustic assembly
All transducers were custom-built with 2.25-MHz center frequency.
The first version was acquired from the company Precision Acous-
tics (UK) and had an active aperture of 45 mm. Recently, we de-
signed and fabricated our own transducers with the same
frequency, an active aperture of 50 mm, and integrated air-
cooling system, which allows continuous operation over longer
time periods. The transducers were mounted on a 3D-printed me-
chanical rig in orthogonal arrangement so that their axes intersect
in the center of a cubic volume with 60-mm side length. The holo-
grams were fabricated using a 3D printer (Objet Connex 260, Stra-
tasys, Israel) in VeroClear material and placed directly on the
transducer faces using vacuum grease (Dow Corning, USA) or
water as contact layer. For the particle-trapping experiments, the
whole transducer setup was submerged in an open-topped water
tank (600 mm × 300 mm × 300 mm) filled with degassed, deionized
water.
Different containers were used for particle-trapping experi-

ments. The platonic point traps were assembled inside a 3D-
printed cube (side length, 60 mm) with circular openings on all
sides that were covered with transparency sheets (approximately
100 μm thick) to allow unimpeded transmission of the ultrasound
waves and visual inspection. Thewindows had a diameter of 45mm.
The assemblies of biological cells and hydrogel capsules were per-
formed inside UV-Vis cuvettes made of polystyrene. The helix was
assembled from silica gel spheres (75 to 200 μm, Sigma-Aldrich,
Germany) inside sample tubes (size, 1.5 ml; Eppendorf, Germany).
Because of manufacturing tolerances and varying impedances,

each transducer was driven through a separate electric channel, in-
cluding the function generator (AFG1022, Tektronix, USA) and
amplifier (75A2 or 2200L, Electronics & Innovation, USA). The
function generators were synchronized to a common clock.
During trapping experiments, each transducer was driven at ap-
proximately 5-W electrical power to assemble silica gel particles.
The volumetric hydrophone scans were performed at reduced
input power of about 0.5 W per channel. Photos were taken using
a single-lens reflex camera (EOS 60D, Canon, Japan) with macro
lens (LAOWA 100 mm f/2,8 2:1 Ultra Macro APO, Venus-
lens, China).

Laser lightsheet fluorescence imaging
We built a custom laser lightsheet fluorescence imaging setup to re-
construct the samples’ 3D structure from sectional fluorescent
images. A schematic of the setup can be found in fig. S9. The
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light source is a green laser (532 mm, Coherent, USA). Its beam is
expanded via lens pair L1 and L2 with focal lengths of −25 and 25
mm, respectively, and sent through a pin hole P (100 μm). That
beam is then shaped into a light sheet using lens L3 (125 mm)
and cylindrical lens L4 (200 mm). The sample is fixed in a UV-
vis cuvette, which is mounted on a motorized three-axis stage
(PT3/M-Z8, Thorlabs, Germany) and scanned through the beam
in 10-μm steps. The imaging path provides a small magnification
of ×1.2 onto a camera sensor (1800 U-2050m, Allied Vision), and
the emitted light is separated by a longpass filter with a cutoff wave-
length of 550 nm. Lenses L5 and L6 are achromatic doublets with
100- and 120-mm focal lengths, respectively. All lenses, filter, and
pinhole were purchased from Thorlabs. During the scan, the stage
pauses at each step until an image is taken and stored on a computer.
The resulting image stack is then processed through ImageJ to re-
construct the 3D object.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S3
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