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Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with

endogenous hormonal systems at various levels, resulting in adverse health effects.

EDCs belong to diverse chemical families and can accumulate in the environment,

diet and body fluids, with different levels of persistence. Their action can be mediated

by several receptors, including members of the nuclear receptor family, such as

estrogen and androgen receptors. The G protein-coupled estrogen receptor (GPER), a

seven-transmembrane domain receptor, has also attracted attention as a potential target

of EDCs. This review summarizes our current knowledge concerning GPER as amediator

of EDCs’ effects.
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ENDOCRINE-DISRUPTING CHEMICALS

According to a general definition, endocrine-disrupting chemicals (EDCs) are exogenous
compounds that interfere with the endogenous hormonal axes at any level (1). This includes
synthesis, metabolism, transport and delivery of hormones, and also perturbation of the
expression of hormone receptors as well as with the downstream signals they convey. EDCs
comprise compounds that can promote or restrict a hormonal signal (acting as agonists or
antagonists, respectively). Under this broad definition, EDCs include natural molecules such as
the phytoestrogens (e.g., genistein, which is abundant in soy) that modulate estrogen signaling and
also synthetic compounds intended for therapeutic purposes, such as the ones used as adjuvant
therapy in breast cancer. Examples of the latter category include inhibitors of aromatase used to
reduce the endogenous synthesis of 17β-estradiol (E2) or tamoxifen that act as an antagonist of the
estrogen receptor in mammary tumors.

EDCs also comprise chemicals that are produced for various industrial purposes, being used as
components of several products (plastics, paints, flame retardants, herbicides, pesticides. . . ), that
exert unintended impacts on hormonal signaling. The number and variety (in terms of chemical
structure) of molecules that display suspected or validated endocrine disrupting effects increased
since years (1). Furthermore, these compounds often display high levels of resistance to natural
degradation leading to their accumulation in the environment as well as in body fluids [see (2–
4) for examples]. Adverse effects of EDCs have been reported in domains covering all fields
related to hormonal signaling, including metabolism, reproduction, induction and progression of
hormone-sensitive cancers and neurodevelopment (1).

To investigate the effects of EDCs, it is essential to identify the receptors that mediate their
action as well as the downstream cascades they elicit. Given that EDCs largely impact the male and
female reproductive axes, it was initially suspected that their effects were largely mediated by the
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sex steroid receptors (5). These include the estrogen receptors
(ERs) and the androgen receptor (AR), which are members of
the nuclear receptor (NR) family and act as transcription factors.
In line with this, several EDCs were demonstrated to modulate
the activities of these NRs. However, at least in some cases, such
as that of the paradigmatic EDC Bisphenol A (BPA), the affinity
of these compounds for ERα appeared far lower than that of
their natural ligand (6), suggesting the existence of other proteins
acting as EDC receptors. Consistently, it was shown that BPA
binds to ERRγ, an orphan NR which does not recognize E2,
and induces its downstream activities (7, 8). As far as we are
aware, the capacity of ERRγ to serve as a receptor for EDCs other
than bisphenols has not been published. In contrast, an array
of publications suggests that the G protein-coupled receptor
(GPER) may serve as a receptor for a vast spectrum of EDCs. The
purpose of this review is to (non-exhaustively) summarize what
we currently know concerning the relationships between GPER
and EDCs.

GPER, AN ALTERNATIVE ESTROGEN
RECEPTOR

GPER (initially referred to as GPR30) has been identified as a
membrane associated estrogen receptor 15 years ago (9, 10). This
seven-transmembrane domain receptor is broadly expressed and
has been detected in several sub-cellular localizations, including
in internal membrane compartments, such as the endoplasmic
reticulum, nucleus and even as a chromatin binding protein
under certain circumstances (11). It is expected that different
molecular functions could be exerted by GPER, depending
on its sub-cellular localization (summarized on Figure 1).
Indeed, membrane activation of GPER was shown to rapidly
promote intracellular calcium mobilization, cAMP production
and to induce a phosphorylation cascade in particular involving
ERK1/2, PKA, and PI3K (9, 10, 12–14). On another hand,
chromatin binding of GPER leads to direct transcriptional
activation of target genes (11).

GPER cross-talks with different receptors to convey its
downstream effects. For instance, functional interactions with
the aryl-hydrocarbon receptor (AhR) or EGF receptors (EGFR)
are instrumental for the activation of downstream MAPK
activation (12, 15). GPER also functionally interacts with nuclear
receptors at various levels. For instance, GPER is required for
the effect of aldosterone mediated by the mineralocorticoid
receptor (MR) in breast cancer cell lines (16). A more indirect
level of cross-talks can be illustrated by the regulation of the
circulating level of thyroid hormone which in turn modulates
embryonic heart rate in a thyroid hormone receptor-dependent
manner (17). Functional interactions between GPER and ER
have been abundantly documented, may depend on the cell
type considered and may lead to congruent or opposing effects
[reviewed in (18)]. For example, in ovarian cancer cells, both
GPER- and ER-mediated signals are involved in the activation
of ERK1/2 leading to increased c-fos expression and induction
of proliferation (19). On another hand, at least in ER-positive
breast cancer cells, tamoxifen acts as an ER antagonist, but as

a GPER agonist (9). Altogether, this shows that GPER displays
a wide array of molecular functions and interactions with other
signaling pathways. Given its broad expression spectrum and its
described pathophysiological functions, GPER has emerged as a
factor of clinical importance [reviewed in (20)].

PATHOPHYSIOLOGICAL FUNCTIONS OF
GPER

The functions of GPER have been investigated using in vivo
and in vitro approaches. GPER knocked-out mice [reviewed in
(21)] reproduce normally, indicating that GPER is not absolutely
required for reproduction. However, pharmacological studies
(i.e., using treatments with agonists and antagonists) suggest that
GPER intervenes in uterine epithelial proliferation, suggesting a
subtle impact on reproductive function that may be compensated
for in the absence of the receptor. Other in vivo studies have
indicated that GPER is involved, amongst others, in glucose
and lipid metabolism, bone mass, skin pigmentation, regulation
of heart rate, and immune and neural systems [(17, 22–24),
reviewed in (25)].

The impact of GPER, as a novel estrogen receptor, on cancers
has been extensively analyzed, in particular on hormone-related
cancers (e.g., breast, ovary, and endometrium). Several studies
report a pro-cancer effect of GPER (26, 27). Indeed, high
GPER expression correlates to a poor prognosis in breast and
endometrial carcinoma (28, 29). Consistently, GPER activation
promotes various traits of cancer progression including cell
migration in triple negative breast cancer cells, resistance to
hypoxia and proangiogenic response (30–32). GPER is also active
in cancer-associated fibroblasts (CAFs) where it favors tumor-
promoting activities (33, 34).

In contrast, other studies rather indicate that GPER may
exert anti-cancer roles. For instance, high expression of GPER
has been reported as a factor of favorable prognosis in triple-
negative breast cancers (35). Similarly, low level of GPER protein
expression in the cytoplasm is associated with lower levels of
disease free survival in breast cancer, even when eliminating
potentially confounding factors such as ER/PR/HER2 status
(36). Consistently, reports indicate that GPER activation leads
to cell cycle arrest, apoptosis and cell death in ER-positive
and –negative cell lines (37, 38). Interestingly, an inhibitory
effect of GPER has also been noted in cancers that do not
depend on estrogen signaling. Indeed, GPER inhibits epithelial-
to-mesenchymal transition and cell invasion in prostate and
pancreatic cancer cells (39). Furthermore, tamoxifen-mediated
GPER activation impairs the conversion of pancreatic stellate
cells into myofibroblasts (an equivalent of CAFs in pancreatic
tumors), which in turn leads to reduced cancer cell survival
(40, 41). Moreover, GPER-deficient mice display increased
inflammation in induced liver tumorigenesis resulting in
accelerated tumor growth (42).

To date, the roles of GPER in cancer thus appear unclear.
However, it is possible to propose non-mutually exclusive
hypotheses to solve these apparent contradictions. (i) GPER
sub-cellular localization may impact its prognosis value (and
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FIGURE 1 | Summary of cross-talks, downstream effectors and pathophysiological effects elicited by GPER. See text for definition of abbreviations, details and

references.

its activities). In this respect, in contrast to its detection in the
cytoplasm, the low nuclear expression of GPER does not correlate
to breast cancer aggressiveness (36). (ii) GPER activities may
depend on the tissues in which they are studied. It may indeed
be envisioned that, in pancreas and liver, the anti-inflammatory
effects displayed by GPER in non-cancer cells may overcome its
capacity to promote tumor growth in cancer cells. (iii) GPER
may exert different activities on the various steps of cancer
progression. In a mouse model of mammary cancer, GPER
indeed appears dispensable for cancer initiation but contributes
to the establishment of metastasis (43). (iv) GPER may play
different roles depending on the expression of cross-talking
factor. For example, GPER promotes the growth of ER-negative
SKBr3 cells, but reduces that of ER-positive MCF7 cells (44).

Furthermore, the stimulating effect of GPER on ovarian cancer
cells depends on EGFR (19). More work is obviously required to
refine our knowledge on the impact of GPER on cancers.

IDENTIFYING CHEMICAL MODULATORS
OF GPER ACTIVITIES

GPER was identified as a functional estrogen receptor in ER-
negative cells by a combination of binding and functional studies
(i.e., detection of GPER-dependent calcium mobilization or
adenylyl cyclase activation) (9, 10), suggesting a shared repertoire
between compounds acting on ER and on GPER (summarized on
Figure 2). ER-binding ligands were thus examined and this led to
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FIGURE 2 | Summary of compounds reported to act as GPER- agonists and antagonists. The particular position occupied by nonylphenol reflects contradictory

reports ascribing this compound as GPER- agonist or antagonist. See text for definition of abbreviations, details and reference. Additional references for ER binding: 1:

(45); 2: (46); 3: (47).

the surprising finding that tamoxifen and ICI182, 780 (two ER-
antagonist used in adjuvant breast cancer therapy) actually acted
as GPER-agonists. Furthermore, EDCs, acting as xenoestrogens
on ER, including genistein, BPA, and DDT derivatives also
impacted GPER, as shown by binding assays coupled to
functional signaling assays (48). Although the affinity of these
compounds for GPER is less than that of E2, they broadly display
similar binding constants as those displayed on ER. However, the
repertoires of compounds bound by GPER and ER are not strictly
similar. For instance, the potent ER-agonist DES does not bind

GPER (10). Moreover, functional screening identified specific
synthetic GPER ligands (i.e., not recognizing the nuclear estrogen
receptors) that act as agonist (G-1) or antagonists (G-15 and
G-36) for GPER [reviewed in (49)]. Altogether, this shows that
GPER and ER display both overlapping and distinct repertoires
of compound recruitment. Furthermore, molecular modeling
and in silico docking studies indicated that GPER offers several
cavities to accommodate large volume ligands and suggested a
broad number of possible binding compounds (50, 51). Indeed,
competition assays and measurement of cAMP accumulation
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revealed that organochlorides, such as polychlorinated biphenyls
(PCBs) and kepone (aka chlordecone), act (amongst others) as
GPER agonists (48).

The GPER-dependent consequences of EDC exposure in
terms of molecular outcomes, as well as at the cellular,
phenotypical levels have also been studied. The pesticide atrazine
does not transactivate ER but induces GPER-dependent ERK
activation in ovarian cancer cells and CAF, leading to increased
proliferation and migration (52).

BPA induces proliferation and migration of ER-negative
breast cancer cells and CAFs in a GPER-dependent manner
(53, 54). Proliferation of mouse spermatogonial and Sertoli
cells has also been shown as induced by BPA through GPER
(55, 56). Intriguingly, analysis of the dose-response indicated a
non-monotonous effect in form of an inverted U-shaped curve.
Other bisphenols, used as substitutes for BPA and found in high
concentrations (similar to or higher than those of BPA) in the
environment and body fluids (57) have also been tested. As
compared to BPA, some of these analogs, such as BPAF and BPB,
display comparable binding affinities to GPER (as determined
by E2 displacement), GPER activation capacities (as assessed
by calcium mobilization and cAMP production) and, GPER-
dependent induction of cell migration (58). Intriguingly, BPF did
not display such activities although other studies indicated that
its effects on hormonal axes was comparable to those of BPA
[reviewed in (59)]. Other compounds such as polybrominated
diphenyl ether (PBCE, used as flame retardant additives) that, as
BPA, display a diphenyl core, also display GPER binding with an
affinity in the micromolar range (60). These compounds induce
cAMP accumulation, calcium mobilization and cell migration in
ER-negative breast cancer cells.

Nonylphenol (NP) induces cardiac contractility in a non-
monotonic manner (61). The effect at low doses is antagonized
by G-15, suggesting that NP acts as a GPER agonist. Such an
effect of NP has also been suggested on human ER-negative
cells (48) as well as on zebrafish oocyte maturation, where
this compound (as well as other alkylphenols, including BPA)
blocks oocyte maturation, as does G-1 (62). In contrast, NP has
been shown to counteract the action of G-1 as a moderator
of asthma symptoms in mouse models (63), suggesting that
this compounds acts as a GPER-antagonist. Whether these
apparent discrepancies originate from the differences in the
pathophysiological situations that are analyzed remains to
be established.

CONCLUDING REMARKS

GPER is a promiscuous receptor displaying a broad spectrum
of compound recognition, including toward EDCs. There

is however a specificity of GPER-recognition within given
chemical families, as exemplified by the bisphenol derivatives.
It should be noted that most if not all of the studies
examining the effects of EDC on GPER have been performed
using cell cultures systems and seldom in vivo. In vitro
cell models provide irreplaceable tools for their capacity
to be experimentally manipulated. However, comparing the
effects of EDCs in wild type and GPER-inactivated animals
will greatly increase our understanding of the action of
these compounds.

Although several of the compounds impacting on GPER
have also been demonstrated to bind ERs, there is a level of
selectivity, discriminating these receptors. Various levels of cross-
talks have been demonstrated between GPER and other proteins
such as ERs, EGFR, or AhR. Whether or not these cross-
talks are effective in a given cellular system and may influence
the outcome of GPER activation is not always understood.
It will thus be of interest to assess the effects of EDCs as
GPER modulators under conditions where these cross-talks
are controlled.

GPER exerts a large array of pathophysiological functions. A
level of overlap between these functions and the perturbations
induced by exposure to EDCs is worth noting. Together, this
places GPER as a strong candidate to mediate, at least part,
of the adverse effects displayed by EDCs. As discussed above,
the exact role of GPER in cancer initiation and progression
is a matter of debate and may depend on the considered
tissue and/or disease stage. How the modulation of GPER
activities by EDCs impact cancer features is thus unclear
but should be an important field of investigations in the
near future.
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