
Original article

MMP9 protects against LPS-induced
inflammation in osteoblasts

Hongzhe Zhang1, Lingshuang Liu1, Chunmiao Jiang2,
Keqing Pan1, Jing Deng1 and Chunyan Wan1

Abstract

The matrix metalloproteinase (MMP) family is widely involved in the destruction of the pulp and apical tissues in the

inflammatory process. MMP9 is closely related to oral inflammation. Nevertheless, the specific function of MMP9 during

oral inflammation, as well as its mechanism, is not well understood. Our previous studies found that in experimentally

induced apical periodontitis, more severe inflammation occurred in MMP9 knockout mice compared with the wild type

mice. Moreover, the pathology phenomenon of alveolar bone destruction was even more evident in MMP9 knockout

mice compared with the wild type mice. We proposed that MMP9 has “anti-inflammatory” properties. We aimed to

study the effects of MMP9 on inflammatory response as well as on bone formation and bone destruction. We found a

specific relationship between MMP9 and inflammation. qRT-PCR and Western blot revealed that the production of IL-1b,
TNF-a, RANK, RANKL, TLR2, and TLR4 was reduced by MMP9 in LPS-stimulated MC3T3-E1 cells. Meanwhile, the

expressions of OPG and OCN were increased by MMP9 in LPS-stimulated cells. MMP9 plays a protective role in

LPS-induced inflammation, thereby providing new clues to the prevention and treatment of apical periodontitis.
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Introduction

Chronic apical periodontal diseases lead to bone
destruction in the apical region. This is a complex phys-
iological change mediated by multiple inflammatory
factors. Numerous data show that matrix metallopro-
teinases (MMPs) are widely involved and play an
important role in the destruction of the pulp and
apical tissues in the process of inflammation.1–3

MMPs are a family of zinc enzymes responsible for
degradation and remodeling of the extracellular matrix
proteins (ECMs) during normal developmental pro-
cesses, such as organ morphogenesis and angiogenesis
in pathological processes, such as inflammation and
tumor invasion. They are synthesized and secreted in
the cell surface or extracellular matrix when a clear
signal arrives, such as physical agents (heat shock,
UV irradiation) and cell cytokines (IL-1b, TNF-a).
The synthesis stops or falls to a low level when the
signal ceases or negative signal arrives, such as retinoic
acid and TNF-b.4,5 MMPs start the osteoclast resorp-
tion by removing the collagen from the bone surface

before the initiation of demineralization.6 They can
degrade ECM and play subtle roles such as affecting
cell activities by modifying the extracellular environ-
ment.7 Moreover, MMPs are reported to determine
where and when bone resorption will be initiated.
They are required for the recruitment of osteoclast to
a future resorption site.8 Amongst MMPs, MMP9
appears to be a main regulator involved in the invasive
activity of osteoclast.6,9

MMP9 (92 kDa type IV collagenase; gelatinase B)
was discovered by Wilhelm in 1989 and is the largest
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MMP.10 It reportedly binds to its substrates, namely,

type IV collagen, gelatin, and laminin.11 MMP9 is

mainly secreted by neutrophils and macrophages,12,13

and it regulates inflammation in tissues and dis-

eases.12,14–19 MMP9 is also closely related to periodon-

tal inflammation. Significant elevation of MMP9

expression was observed in chronically infected areas

in apical periodontitis.20–24 Overexpression of MMP9

attenuated osteoclast formation and inhibited pro-

inflammatory cytokines secretion.25 MMP9 initiates

osteoclasts by removing collagen from the demineral-

ized bone, which is essential for resorption.26

Therefore, its role is to mediate and promote bone

destruction. However, MMPs may have “anti-inflam-

matory properties.” When the expression of MMPs

was inhibited by chemical substances, the periapical

lesions were significantly aggravated, and the necrosis

rate is increased.27 Our previous work showed that

MMP9 knockout mice developed larger periapical

lesions with greater inflammatory response compared

with the wild type mice.28 This finding suggests that the

role of MMP9 in bone destruction is complex and

diverse. Therefore, the effects of MMP9 on inflamma-

tion require further investigation.
The aim of this investigation was to clarify the effects

of MMP9 on inflammatory response and on bone for-

mation and destruction in apical periodontitis. We

found a specific relationship betweenMMP9and inflam-

mation. We analyzed the expression levels of receptor

activator of NF-jB (RANK), receptor activator of

NF-jB ligand (RANKL), osteoprotegerin (OPG),

osteocalcin (OCN), TNF-a, and IL-1b by Western blot

and quantitative real time PCR (qRT-PCR).

Materials and methods

Cell culture

The mouse osteoblastic cell line MC3T3-E1 cells were

obtained from HYcell Biotechnology (Wuhan, China)

and were cultured in a-MEM (Hyclone, USA) contain-

ing 10% FBS (Hyclone, USA) plus penicillin (100 U/

ml) and streptomycin (100 mg/ml) (Hyclone, USA) at

37�C in a humidified atmosphere containing 5% CO2

and 5% air. The medium was refreshed every 2 d.

Culture of Porphyromonas endodontalis and

preparation of LPS

P. endodontalis (ATCC35406) was obtained from

BIOBW (Beijing, China) and was cultured anaerobical-

ly at 37�C. LPS was extracted by the hot phenol-water

method as previously described.29 The bioactivity of

purified P. endodontalis LPS was measured with the

limulus amoebocyte lysate (LAL) endotoxin assay kit
(GenScript, USA).

Cell transfection

MC3T3-E1 cells were seeded onto 24-well plates and
allowed to proliferate until 70–90% before DNA trans-
fection. Cells were then transfected with pCMV3-SP-
N-His (pCMV3, control group) (Sino Biological,
Beijing, China) or pCMV3-MMP9 (MMP9 overexpres-
sion group) (Sino Biological, Beijing, China) at a final
concentration of 0.8lg/ml by Lipofectamine 2000
(Thermo, USA). After 48 h, cells were stimulated
with different concentrations of P. endodontalis LPS
for the indicated time. The total RNA and protein
extracted from both groups were used for qRT-PCR
and Western blot assay.

MC3T3-E1 cells were seeded onto 24-well plates and
allowed to proliferate until 30–50% before siRNA
transfection. Cells were transfected with si-MMP9-1
(Ribobio, Guangzhou, China), si-MMP9-2 (Ribobio,
Guangzhou, China), si-MMP9-3 (Ribobio,
Guangzhou, China), and a negative control siRNA
(Ribobio, Guangzhou, China) at a final concentration
of 50 nmmol/l using Lipofectamine 2000 (Thermo,
USA) according to the manufacturer’s instructions.
After 48 h, cells were stimulated with different concen-
trations of P. endodontalis LPS for the indicated time.
Total RNA and protein extracted from both groups
were used for qRT-PCR and Western blot assay.

qRT-PCR analysis

Total RNA was extracted using TRIpure total RNA
extraction reagent (ELK Biotechnology, Wuhan,
China). First-strand cDNA synthesis was performed
using the reverse transcription system (ELK
Biotechnology) according to the manufacturer’s
instructions. qRT-PCR was performed with the
StepOneTM real-time PCR system (Life Technologies,
USA). The following genes were quantified: MMP9,
IL-1b, TNF-a, RANK, RANKL, OPG, OCN, TLR2,
and TLR4. GAPDH was used as the internal normal-
ization control. Primer sequences are shown in Table 1.
The expression of each gene was calculated using the
2�DDCT methods. The gene expression ratio was shown
as mean�SD from three independent experiments.

Western blot analysis

Cells were harvested, lysed with lysis buffer (ASPEN,
Wuhan, China), and centrifuged at 16,200 g for 10 min.
Total proteins in the supernatant were measured using
a BCA protein assay kit (ASPEN, Wuhan, China).
Total proteins were extracted from MC3T3-E1 cells.
The protein at 30 mg was resolved by 10% SDS-
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PAGE gels (ASPEN, Wuhan, China). After electro-

phoresis, the proteins were transferred onto nitrocellu-

lose membrane (Millipore, USA). The membranes were

blocked with 5% nonfat milk (ASPEN, Wuhan, China)

at room temperature for 1 h. The samples were probed

with anti-GAPDH (1:10,000; Abcam, UK), anti-IL-1b
(1:1000; Abcam, UK), anti-TNF-a (1:500; Abcam,

UK), anti-RANK (1:1000; Abcam, UK), anti-

RANKL (1:500; Novusbio, Shanghai, China), anti-

OPG (1:1000; Abcam, UK), anti-OCN (1:500;

Abcam, UK), anti-TLR2 (1:1000; Abcam, UK), and

anti-TLR4 (1:500; Abcam, UK) Abs. HRP-

conjugated goat anti-rabbit IgG (1:10000; ASPEN,

Wuhan, China) was used for detection.

Statistical analysis

The data are presented as the mean� SD. Statistical

analysis was performed with SPSS15.0. Differences

between individual groups were analyzed by Student’s

t-test (two-tailed) with subsequent Bonferroni correc-

tion. The statistical significance was determined at

P< 0.05 or P< 0.01. All experiments in this study

were independently repeated at least thrice.

Results

MMP9 expression was increased by MMP9

DNA transfection

Plasmid DNA pCMV3 or pCMV3-MMP9 was trans-

fected into MC3T3-E1 cells. After 48 h, MMP9 expres-

sion was examined by Western blot and qRT-PCR.

MMP9 production in the MMP9 overexpression

group was significantly higher than in the control

group at both mRNA and protein level (P< 0.01)

(Figure 1a to c).

MMP9 expression was inhibited by MMP9 siRNAs

MC3T3-E1 cells were transfected with si-MMP9-1,

si-MMP9-2, si-MMP9-3, or control siRNA for 48 h.

MMP9 expression was detected by Western blot and

qRT-PCR. MMP9 expression was inhibited by

si-MMP9-1, si-MMP9-2, or si-MMP9-3 at mRNA

and protein levels. MMP9 expression in the

si-MMP9-3 group was the lowest both at mRNA and

protein levels (P< 0.01) (Figure 1d to f).

LPS regulated IL-1b expression

MC3T3-E1 cells were treated without or with different

concentrations of LPS (1, 5, 10, 20, and 50mg/ml) for

24 h. qRT-PCR and Western blot were conducted to

determine if LPS regulated IL-1b expression. qRT-

PCR and Western blot results showed that IL-1b
expression slightly decreased after the cells were treated

with LPS at 1 and 5mg/ml compared with the control

group (P> 0.05). IL-1b expression increased signifi-

cantly after treatment with LPS at 10 lg/ml (P< 0.01)

and peaked at 20 lg/ml (P< 0.01), followed by a slight

decrease at 50lg/ml (P< 0.01) (Figure 2a to c).
MC3T3-E1 cells were then treated with 20 lg/ml

LPS at different time points (0, 6, 12, 24, and 48 h).

The IL-1b expression was detected by qRT-PCR and

Western blot. IL-1b expression peaked at 12 h

(P< 0.01), afterwards it decreased at 24 h and 48 h

(Figure 2d to f). LPS regulated IL-1b expression in

a time- and dose-dependent manner.

MMP9 inhibited LPS-induced IL-1b and TNF-a
expression

After the MC3T3-E1 cells were pretreated with MMP9

DNA or si-MMP9-3 for 48 h, 20 lg/ml LPS was added

to the culture medium for another 12 h. qRT-PCR and

Western blot were performed to detect IL-1b and

TNF-a expressions. At mRNA level, MMP9 sup-

pressed LPS-induced IL-1b (P< 0.05) and TNF-a
(P< 0.05) expressions. Moreover, pre-treatment with

MMP9 siRNA-3 increased the LPS-induced

IL-1b (P< 0.01) and TNF-a (P< 0.05) expressions.

Similarly, at protein level, MMP9 suppressed LPS-

induced IL-1b (P< 0.01) and TNF-a (P< 0.01) expres-

sions. Pre-treatment with MMP9 siRNA-3 increased

the LPS-induced IL-1b (P< 0.01) and TNF-a
(P< 0.05) expressions (Figure 3).

Table 1. Oligonucleotide primer sequences used in qRT-PCR.

Gene Sequence (50-30) Size

GAPDH Forward TGAAGGGTGGAGCCAAAAG 227

Reverse AGTCTTCTGGGTGGCAGTGAT

MMP9 Forward AAGGGTACAGCCTGTTCCTGGT 149

Reverse CTGGATGCCGTCTATGTCGTCT

IL-1b Forward TCATTGTGGCTGTGGAGAAGC 164

Reverse AATGGGAACGTCACACACCAG

RANKL Forward CAGGACTCGACTCTGGAGAGTG 152

Reverse AACCATGAGCCTTCCATCATAG

TNF-a Forward TCCCCAAAGGGATGAGAAGTT 298

Reverse GAGGAGGTTGACTTTCTCCTGG

RANK Forward CTTGGACCAACTGCACCCTC 201

Reverse CCTTCCTGTAGTAAACGCCGA

OPG Forward GGAGGAAGACATTGTGTGTCCC 157

Reverse TCCTCACACTCACACACTCGGT

OCN Forward GCAGGAGGGCAATAAGGTAGTG 165

Reverse CCATAGATGCGTTTGTAGGCG

TLR2 Forward ACGTTTGCTATGATGCCTTTGT 109

Reverse AGACACAGCTTAAAGGGCGG

TLR4 Forward ACACTTTATTCAGAGCCGTTGGT 297

Reverse CAGGTCCAAGTTGCCGTTTC
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MMP9 inhibited LPS-stimulated RANKL and

RANK expression while increased OPG and

OCN expression

After pretreating MC3T3-E1 cells with MMP9 DNA

or si-MMP9-3 for 48 h, 20 lg/ml LPS was added to the

culture medium for another 12 h. qRT-PCR and

Western blot were conducted to detect RANKL,
RANK, OPG, and OCN expression. Treatment with
LPS (20lg/ml) increased RANKL expression. MMP9
suppressed the LPS-induced RANKL expression at
both mRNA level (P< 0.05) and protein level
(P< 0.05). Moreover, pre-treatment with MMP9
siRNA-3 increased the LPS-induced RANKL
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Figure 1. Effect of MMP9 overexpression plasmid and MMP9 siRNAs on MMP9 expression. MC3T3-E1 cells were stimulated with
pCMV3-SP-His-mMMP9 plasmid for 48 h. cDNA and protein were analyzed by RT-PCR (a) and Western blot (b), respectively. The
cells were treated with the three different MMP9 siRNAs for 48 h.MMP9 expression was detected by qRT-PCR (d) and Western blot
(e). Target sequences: si-m-Mmp9-1: GACTTGCCGCGAGACATGA, si-m-Mmp9-2: GCGCTCTGCATTTCTTCAA, si-m-Mmp9-3:
GGAACTCACACGACATCTT. (c, f) Quantification of protein expression was normalized to GAPDH using a densitometer (imaging
system). The data are representative of three independent experiments and expressed as the mean� SD. **P< 0.01.
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expression at both mRNA level (P< 0.05) and protein
level (P< 0.01) (Figure 4a to c).

Similarly, treatment with LPS (20 lg/ml) increased
RANK expression. MMP9 suppressed the LPS-
induced RANK expression at both mRNA level

(P< 0.05) and protein level (P< 0.01). Pre-treatment
with MMP9 siRNA-3 increased the LPS-induced
RANK expression at both mRNA level (P< 0.05)
and protein level (P< 0.05) (Figure 4d to f).

Conversely, treatment with LPS (20lg/ml)
decreased OPG expression. OPG expression increased
after MMP9 overexpression compared with the
LPS-stimulated group (P< 0.05). OPG expression
decreased after MMP9 was inhibited by MMP9

siRNA-3 (P< 0.01). qRT-PCR and Western blot anal-
ysis showed the same results (Figure 4g to i).

Treatment with LPS (20 lg/ml) inhibited OCN

expression. OCN expression increased after MMP9
over-expression compared with the LPS-stimulated

group (P< 0.01). OCN expression decreased after

MMP9 was inhibited by MMP9 siRNA-3 (P< 0.01).

qRT-PCR and Western blot analysis showed the same

results (Figure 4j to l).

MMP9 inhibited LPS-induced TLR2 and

TLR4 expression

After the MC3T3-E1 cells were pre-treated with

MMP9 DNA or si-MMP9-3 for 48 h, 20 lg/ml LPS

was added to the culture medium for another 12 h.

qRT-PCR and Western blot were performed to detect

TLR2 and TLR4 expressions. At mRNA level, MMP9

suppressed LPS-induced TLR2 (P< 0.05) and TLR4

(P< 0.05) expressions. Moreover, pre-treatment with

MMP9 siRNA-3 increased the LPS-induced TLR2

(P< 0.05) and TLR4 (P< 0.05) expressions. At protein

level, MMP9 suppressed LPS-induced TLR2 (P< 0.01)

and TLR4 (P< 0.01) expressions. Pre-treatment with
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Figure 2. Effect of different concentrations and different time points of LPS stimulation on IL-1b expression. MC3T3-E1 cells were
treated with or without LPS at different concentrations (1, 5, 10, 20, and 50 lg/ml) for 24 h. DNA samples were analyzed by qRT-PCR
(a), and protein samples were analyzed by Western blot (b). The cells were then treated with 20 lg/ml of LPS at different time points
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Figure 3. Effect of MMP9 on LPS-induced expression of IL-1b and TNF-a. MC3T3-E1 cells were pre-treated with MMP9 over-
expression plasmid or si-MMP9-3 (target sequences: GGAACTCACACGACATCTT) for 24 h. The 20lg/ml LPS was added to the
culture medium for another 12 h. qRT-PCR and Western blot were performed to detect IL-1b (a–c) and TNF-a (d–f) expressions.
Quantification of protein expression was normalized to GAPDH using a densitometer (imaging system). The data are representative
of three independent experiments and expressed as the mean� SD. *P< 0.05 vs. LPS; **P< 0.01 vs. LPS.
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Figure 4. Effect of MMP9 on LPS-induced expression of RANKL, RANK, OPG, and OCN. MC3T3-E1 cells were pre-treated with
MMP9 overexpression plasmid or si-MMP9-3 (target sequences: GGAACTCACACGACATCTT) for 24 h. The 20 lg/ml of LPS was
added to the culture medium for another 12 h. qRT-PCR and Western blot were performed to detect RANKL (a–c), RANK (d–f),
OPG (g–i), and OCN (j–l) expressions. Quantification of protein expression was normalized to GAPDH using a densitometer
(imaging system). The data are representative of three independent experiments and expressed as the mean� SD. *P< 0.05 vs. LPS;
**P< 0.01 vs. LPS.
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Figure 5. Effect of MMP9 on LPS-induced expression of TLR2 and TLR4. MC3T3-E1 cells were pre-treated with MMP9 over-
expression plasmid or si-MMP9-3 (target sequences: GGAACTCACACGACATCTT) for 24 h. The 20 lg/ml LPS was added to the
culture medium for another 12 h. qRT-PCR and Western blot were performed to detect TLR2 (a–c) and TLR4 (d–f) expressions.
Quantification of protein expression was normalized to GAPDH using a densitometer (imaging system). The data are representative
of three independent experiments and expressed as the mean� SD. *P< 0.05 vs. LPS; **P< 0.01 vs. LPS.
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MMP9 siRNA-3 increased the LPS-induced TLR2
(P< 0.01) and TLR4 (P< 0.01) expressions (Figure 5).

Discussion

We previously found that the loss of MMP9 induced a
great inflammation response in experimentally induced
mouse apical periodontitis.28 This finding suggested the
important role of MMP9 in the host’s immune and
inflammatory response to pulp and periapical infection.

P. endodontalis is considered an important member
of the Gram-negative anaerobic microorganisms
involved in infected root canals and apical periodonti-
tis.30,31 A primary virulence factor of P. endodontalis is
LPS. Certain studies have reported that P. endodontalis
LPS play a critical role in initiating inflammation,
thereby resulting in the synthesis and release of cyto-
kines and inflammatory mediators.32,33 IL-1b is an
important pro-inflammatory cytokine which is mainly
expressed in macrophages and neutrophils. It is a crit-
ical cytokine associated with the initiation and the per-
sistence of inflammation.34,35 We first confirmed LPS’
regulatory function on pro-inflammatory factor IL-1b
by stimulating MC3T3-E1 cells with different concen-
trations at different time points. LPS induced the IL-1b
mRNA and protein expressions in a time- and dose-
dependent manner. IL-1b expression peaked after
stimulation with LPS at 20 lg/ml for 12 h. MMPs can
mediate neutrophil response to inflammation.12,36

MMP9 is closely related to inflammation development
and can mediate the recruitment of pro-inflammatory
cells to the inflammatory zone.37,38 We found
that MMP9 inhibited the LPS-induced IL-1b
up-regulation in MC3T3-E1 cells in the subsequent
detection. TNF-a is also a potent pro-inflammatory
cytokine that plays an important role in immunity
and inflammation.39,40 TNF-a expression decreased
following MMP9 over-expression, thereby indicating
that MMP9 can protect against LPS-induced
inflammation.

LPS administration induces inflammation and
osteoclastic bone resorption.41,42 We next examined
the RANKL-OPG bi-molecular system. By activating
the cognate RANK receptor on the surface of pre-
osteoclasts, it triggers their differentiation into mature
osteoclasts, thereby activating bone resorption.43 The
action of RANKL can be blocked by OPG, which
has structural homology to RANK. By binding to
RANKL, OPG prevents further interaction with
RANK and indirectly protects bone from resorption.44

In this study, RANKL and RANK expressions were
decreased by MMP9. Conversely, OPG expression was
increased after MMP9 over-expression. Thus, MMP9
might inhibit bone resorption by down-regulating
RANKL and RANK and by up-regulating OPG.

We then examined a marker gene for osteogenesis,
OCN, which can regulate bone mineralization and
bone turnover.45,46 OCN is synthesized by osteoblastic
cells and is the most abundant non-collagenous pro-
tein.47 LPS down-regulated osteogenic differentiation
by inhibiting OCN expression in MC3T3-E1 cells.48

OCN expression increased in MMP9 over-expressed
cells, which indicated that MMP9 might stimulate
bone formation in LPS-induced inflammation.

Our study showed that under the stimulation of
P. endodontalis LPS, MMP9 inhibited IL-1b, TNF-a,
RANKL, and RANK expressions and increased OPG
and OCN expressions. In order to explore the mecha-
nism of MMP9’s regulation of the cells’ responses to
LPS, we examined the expressions of TLR2 and TLR4.
Previous studies reported that LPS triggered inflamma-
tion response through its binding with the cell mem-
brane receptor, TLR4.49–51 There is also work
indicating TLR2 being involved in mediating responses
to LPS.52,53 We found that MMP9 inhibited the LPS-
induced TLR2 and TLR4 expression.

In summary, the findings of this study showed that
MMP9 is a potent inhibitor of LPS-induced IL-1b and
TNF-a production. It regulates osteogenesis/osteolysis
by inhibiting bone resorption and promoting bone for-
mation. This “anti-inflammation” effect of MMP9 is
consistent with the hypothesis we proposed in our pre-
vious study.28 Furthermore, the regulatory effects of
MMP9 are found to be associated with TLR2 and
TLR4. However, more researches are needed to explore
the regulatory mechanism of MMP9.
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