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Simple Summary: Erwinia amylovora and E. pyrifoliae cause Erwinia blight, which damage pome fruits,
and are highly contagious. We propose the use of bacteriophages to control these two pathogens
simultaneously. Many drugs have been used in South Korea for the quick control of blight disease
caused by both these species. This can result in antibiotic resistance; hence, phage cocktails have
been suggested as an alternative. In this study, we observed that phage cocktails, including four
isolated phages, exhibited extensive strain spectra and potential for rapid bacterial control. This study
demonstrated the potential of a phage cocktail to replace antibiotics as biocontrol agents against
Erwinia blight.

Abstract: The recent outbreak of blight in pome fruit plants has been a major concern as there are
two indistinguishable Erwinia species, Erwinia amylovora and E. pyrifoliae, which cause blight in South
Korea. Although there is a strict management protocol consisting of antibiotic-based prevention,
the area and the number of cases of outbreaks have increased. In this study, we isolated four
bacteriophages, pEp_SNUABM_03, 04, 11, and 12, that infect both E. amylovora and E. pyrifoliae
and evaluated their potential as antimicrobial agents for administration against Erwinia-originated
blight in South Korea. Morphological analysis revealed that all phages had podovirus-like capsids.
The phage cocktail showed a broad spectrum of infectivity, infecting 98.91% of E. amylovora and
100% of E. pyrifoliae strains. The antibacterial effect was observed after long-term cocktail treatment
against E. amylovora, whereas it was observed for both short- and long-term treatments against E.
pyrifoliae. Genomic analysis verified that the phages did not encode harmful genes such as antibiotic
resistance or virulence genes. All phages were stable under general orchard conditions. Collectively,
we provided basic data on the potential of phages as biocontrol agents that target both E. amylovora
and E. pyrifoliae.

Keywords: Bacteriophage; Erwinia blight; pome fruit; phage cocktail; agriculture

1. Introduction

A major pathogenic bacterium of the pome fruit plant, Erwinia amylovora, has re-
cently been introduced into South Korea [1–4]. E. amylovora has been reported to result
in symptoms indistinguishable from those of E. pyrifoliae, an endemic pathogen in South
Korea [5–8]. Both pathogens cause blight disease with the blackening of leaves, stems, and
immature fruits, starting with flower infection [9–13]. As E. amylovora is regulated by law,
the disease management protocol should be performed in a different way compared to E.
pyrifoliae outbreaks [14]. Therefore, strict regulations are applied to E. amylovora outbreaks,
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with orchards being forcibly closed at 5% outbreak rates (or less) at the discretion of the
government plant-disease control agent [15,16].

Periodic surveillance and prevention-based disease control programs must be per-
formed to prevent the spread of these two pathogens [17]. The general protocol for fire
blight prevention consists of three antibiotic administrations (once before flowering and
twice during the flowering period). To prevent black shoot blight, antibiotics are admin-
istered twice after full bloom [15,18]. Despite the intensive disease control program and
antibiotics for Erwinia-associated blight, the outbreak of fire blight has been on the rise,
with an increased possibility of the evolution of antibiotic resistance among pathogenic
strains [19,20]. Therefore, it is necessary to develop more effective agents other than
antibiotics for the treatment of pathogenic Erwinia species [21–23].

Bacteriophages (phages) have been used as effective antimicrobial agents for the treat-
ment of fire blight worldwide [24–26]. Phages are “smart biocontrol agents” as they replicate
at the targeted infection site, enabling prolonged antimicrobial effects on-site [27,28]. The
infection specificity of phages allows specific pathogens to be targeted while maintaining
beneficial microbes in the environment [29,30]. To maximize the antimicrobial effects of
phages, a combination of phages with different host spectra is used to exert antimicrobial
effects over a wider range of pathogens; this pret-a-porter approach is one of the main
paradigms for therapeutic phage preparation [31–33]. Furthermore, cocktail phage therapy,
which is a combinatorial strategy, has been reported to have a synergistic effect [34–38].

This study investigated the biological control potential of the newly isolated Erwinia
phages. The biological and genomic characteristics, including morphology, stability, and
antimicrobial potential of four phages that showed infectivity toward both E. amylvoroa
and E. pyrifoliae were examined in this study.

2. Materials and Methods
2.1. Phage Isolation

Water and soil samples were collected near the location where the blight outbreak
occurred in South Korea to isolate phages that infect E. pyrifoliae. Phages were isolated as
previously described [39]. Distilled water (10 mL) was added to the soil samples (1g). The
samples were centrifuged at 10,000× g for 10 min to remove contaminants. A host strain
suspension (1%, v/v) containing E. amylovora (TS3128) or E. pyrifoliae (KACC13945) was
cultured overnight for approximately 18 h at 27 ◦C. The suspension was used to inoculate
the samples and nutrient broth (NB; Difco) for phage enrichment and cultured for 24 h
at 27 ◦C. After enrichment, serial dilutions of the culture broth were transferred onto
bacterial lawns of the E. amylovora (TS3128) or E. pyrifoliae (KACC13945). Phage isolation
was confirmed using a double-layer agar assay. The double-layer agar assay was used to
verify bacteriolysis induced by the inhibition spots of phages. The samples showing plaque
formation were centrifuged at 10,000× g and passed through 0.45 µm syringe filters. Pure
phages were obtained by picking a single plaque and subjecting it to a double layer assay
five times.

2.2. Phage Propagation and Purification

Phage propagation was conducted as previously described [40]. The overnight culture
(1%) was inoculated with different multiplicity of infection (MOIs; 10, 5, 1 and 0.1) of
phages to determine the optimum ratio for phage propagation and cultured for 24 h at
27 ◦C. Phage lysate was centrifuged at 12,000× g for 10 min and the supernatant was
precipitated with 10% (w/v) polyethylene glycol/ 0.5 M NaCl. (final concentration). A
cesium chloride (CsCl) gradient was used to purify the phage suspension [41]. The gradient
layers were ultracentrifuged at 182,000× g for 3 h. Phage precipitation bands were collected
and dialyzed using a dialysis bag (Slide-A-Lyzer™ Dialysis Cassettes, 10,000 MWCO).



Biology 2023, 12, 180 3 of 14

2.3. Transmission Electron Microscopy (TEM)

Purified phage suspensions (10 µL) were mixed with the same volume of uranyl acetate
(2%). The suspensions were incubated on a copper grid for 1 min. The excess sample was
removed and washed with distilled water. Images of the phages were obtained using a
Talos L120C (FEI, Hillsboro, OR, USA) at 120 kV. The dimensions of four independent
phages were determined (n = 5).

2.4. Host Range

All the bacterial strains used in the host range assay were recent isolates from the
blight tissues in South Korea. A total of 116 bacterial strains, including 92 E. amylovora
and 24 E. pyrifoliae strains were spot assayed on nutrient agar (NA; Difco) plates with
serial dilutions (10−1 to 10−8) of purified phage suspension; the plates were incubated
for 24 h at 27 ◦C [40]. Plaque formation on the spot areas resulted in the bacterial strain
being considered susceptible and is represented as “+” in Table S1. The experiments were
performed in triplicates.

2.5. Stability Test

The thermal stability of the phages was evaluated as described by Kim et al. [42].
Phage suspensions (1 mL each, 2 × 108 PFU/mL) were incubated for 60 min at 4 (control),
20, 30, 40, and 50 ◦C. Approximately 100 µL aliquots of each suspension were used to
determine the concentration of phages using a double-layer agar assay. The pH stability of
the phages was evaluated by adjusting the pH of phage suspensions (2 × 108 PFU/mL) to
4.0, 5.0, 6.0, 7.0 (control), 8.0, and 9.0 with 0.1 M HCl and 0.1 M NaOH; each of the phage
suspensions was then incubated for 60 min at 27 ◦C. They were then evaluated using a
double-layer agar assay. All tests were performed in triplicate.

2.6. One-Step Growth Curve

The phage suspension (100 µL) was inoculated onto 10 mL of exponentially growing
host strain culture (2× 108 colony-forming units [CFU]/mL) at an MOI of 0.001 [43].
The phages were allowed to infect the bacterial cells for 10 min and the suspension was
centrifuged at 12,000× g to remove unattached phages. The phage-infected bacterial pellets
were then resuspended in preheated NB (10 mL) and incubated at 27 ◦C with shaking
(150 rpm). Aliquots (100 µL) were collected at 5 min intervals for 50 min; the titers were then
evaluated using a double-layer agar assay. The experiments were performed in triplicate.

2.7. Genome Analysis

Genomic DNA was extracted from phages as described previously [34,39]. Purified
phage suspension (≥1010 PFU/mL) was digested with 10 IU of DNase I and RNase A to
remove nucleotides originating from the hosts. The nucleases were heat-inactivated at
95 ◦C by the addition of EDTA. Proteinase K and SDS (10%) were added to the samples to
degrade structural proteins. DNA was purified with phenol-chloroform-isopropanol and
precipitated with absolute ethanol, followed by two washes with 70% ethanol. The phage
genomic DNA was sequenced using an Illumina HiSeq platform at Macrogen (Seoul, South
Korea). The short reads were assembled into contigs using de bruin graphs in CLC genomic
workbench (v. 6.5.1). Open reading frames (ORFs) were identified using GenMarkS and
Rapid Annotation using subsystem Technology (RAST) [44,45]. The presence of tRNA,
and virulence and antibiotic genes was determined using tRNAscan-SE, VirulenceFinder,
and ResFinder, respectively [46–48]. Comparative genome analysis was performed based
on sequence similarity using tBLASTx [49]. Whole-genome phylogenetic analysis was
performed using the Virus Classification and Tree Building Online Resource (VICTOR)
with the recommended setting for complete nucleotide sequences [50].
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2.8. Antibacterial Activity

The antibacterial effect of pEp_SNUABM_03, 04, 11, and 12 was evaluated over short
(2 h) and long (8 h) periods of time. The assay was performed using two indicator strains,
E. amylovora (TS3128) and E. pyrifoliae (KACC13945). The phage cocktail was prepared by
combining the four phages at equal ratios (1:1:1:1) to obtain 2 × 108 PFU/mL. Exponentially
growing indicator strains were inoculated into fresh NB to obtain 2 × 105 CFU/mL for 8 h
and at 27 ◦C, and the phage suspension was inoculated into the broth at three concentrations
(MOI 5, 1, and 0.1). The mixtures were cultured with shaking at 150 rpm, and CFUs were
determined. The CFU values were determined by preparing serial dilutions in phosphate
buffered saline and plating for the quantification of viable bacteria. All tests were performed
in triplicate.

2.9. Statistical Analysis

Statistical differences were analyzed using Sigmaplot 12.5 (Systat Software Inc., Evanston,
IL, USA) using analysis of variance with the Holm–Sidak test. Statistical significance was
set at p < 0.05.

3. Results
3.1. TEM—Biological Analysis

Morphological observations using TEM revealed four distinct phages that belong to Podoviri-
dae (Figure 1). Structural observations of pEp_SNUABM_03, 04, 11, and 12 revealed short tails
with head diameters of 56 ± 2, 55 ± 3, 56 ± 3, and 63 ± 2 nm (n = 5), respectively (Table 1).
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Figure 1. Morphological observation by transmission electron micrographs of Erwinia
pyrifoliae phages (A) pEp_SNUABM_03, (B) pEp_SNUABM_04, (C) pEp_SNUABM_11, and
(D) pEp_SNUABM_12. Scale bar = 50 nm.

Table 1. Morphological characteristics of Erwinia phages.

Phage Capsid (nm) Tail Length (nm) Virus Family

pEp_SNUABM_03 56 ± 2 17 ± 2 Podoviridae
pEp_SNUABM_04 55 ± 3 16 ± 2 Podoviridae
pEp_SNUABM_11 56 ± 3 18 ± 1 Podoviridae
pEp_SNUABM_12 63 ± 2 17 ± 1 Podoviridae

3.2. Stability Test

The test was conducted under normal-orchard environmental temperature and pH condi-
tions (Figure 2). Thermal stability tests showed that pEp_SNUABM_03 and 11 were stable at
4 (control), 20, 30, 40, and 50 ◦C for 1 h, and virions of pEp_SNUABM_04 were vulnerable to
high temperature (50 ◦C; P < 0.05). The phage pEp_SNUABM_12 was sensitive to temperature
changes (P < 0.05). The pH stability test revealed that pEp_SNUABM_04, 11, and 12 were all
stable, whereas the stability of pEp_SNUABM_03 decreased at pH 9 (P < 0.05).
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Figure 2. Stability of phages pEp_SNUABM_03, pEp_SNUABM_04, pEp_SNUABM_11, and
pEp_SNUABM_12 at thermal (A) and pH (B) stresses. Phages were incubated for 1 h under each
condition and the phage titer was determined on the host strain. One-way ANOVA with Holm–Sidak
tests were performed to determine significant differences (p < 0.05; n = 3).

3.3. One-Step Growth Curve

All four phages exhibited similar biological characteristics. Hence pEp_SNUABM_03
was used as a representative phage for one-step growth analysis (Figure 3). After the
10-min latent period, the first burst size of the phage growth was 76.83 PFU per bacterial
cell for pEp_SNUABM_03.
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3.4. Genome Analysis

The general characteristics of phages pEp_SNUABM_03, pEp_SNUABM_04, pEp_SNU
ABM_11, and pEp_SNUABM_12 are listed in Table 2. A total number of reads 3,864,800
(pEp_SNUABM_03), 3,730,842 (pEp_SNUABM_04), 3,426,138 (pEp_SNUABM_11),
3,818,762 (pEp_SNUABM_12) were obtained from the Illumina sequencer, which was
assembled into the single contig. The circular genomes of phages pEp_SNUABM_03,
pEp_SNUABM_04, pEp_SNUABM_11, and pEp_SNUABM_12 contained 39,879, 39,649,
39,626, and 39,980 bp with GC contents of 52.13%, 52.19%, 52.10%, and 51.19%, respec-
tively (Table 2). A total of 52, 52, 49, and 50 ORFs were identified in the genomes of
pEp_SNUABM_03, pEp_SNUABM_04, pEp_SNUABM_11, and pEp_SNUABM_12, respec-
tively. The function of the predicted ORFs was categorized into five groups: structural
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and packaging proteins, nucleotide metabolism-related proteins, lysis proteins, additional
function proteins, and hypothetical proteins (Figure 4).

Table 2. General genomic features of Erwinia phages.

Phage Genome Size
(bp) ORFs GC Content

(%)
DNA

Circularity
Accession
Number

pEp_SNUABM_03 39,879 52 52.13% circular MT822284.1
pEp_SNUABM_04 39,649 52 52.19% circular MT822285.1
pEp_SNUABM_11 39,626 49 52.10% circular MT822287.1
pEp_SNUABM_12 39,980 50 51.19% circular MT822288.1
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The phylogenetic positions of phages pEp_SNUABM_03, pEp_SNUABM_04, pEp_SNU
ABM_11, and pEp_SNUABM_12, which have the morphology of podovirus, were analyzed
using the complete genome sequences of closely related phages infecting Enterobacterales
(Erwinia, Dickeya, and Pectobacterium). All phages were classified under the subfamily
Studiervirinae in the family Autographiviridae (Figure 5). Phage pEp_SNUABM_12 clustered
with Ningirsuvirus and the dickey phage Ninurta, whereas the other three phages were
unclassified. Phages pEp_SNUABM_03, 04, and 11 were clustered with Erwinia phage
vB_EamP-L1 belonging to Elunavirus. This cluster was most closely related to FE 44, another
Erwinia phage belonging to Berlinvirus. Two clusters of the newly isolated phages branched
from a common ancestor.

Comparative genome analysis supported the genomic distance between phages in
the two clusters. The genomes of three unclassified phages, pEp_SNUABM_03, 04, and 11,
showed highly conserved synteny revealing around 98% of nucleotide identity among them
(thick blue), whereas the similarity level was low (nucleotide identity: around 70%; pale
blue) with the closest neighbor, vB_EamP_L1 (Figure 6; Table S2). Phage pEp_SNUABM_12
showed high synteny with Ninurta (nucleotide identity: 94.66%), another member of
Ningirsuvirus (Figure 6; Table S2) and genetic distance with pEp_SNUABM_03, 04, and
11. The three unclassified Autographiviridae phages shared more than 47 core genes, which
accounted for more than 90% of their genes (Table S3). The shared genes among the four
phages isolated in this study decreased to only 37 genes, as revealed by the comparative
blast analysis (Tables S4–S7).
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3.5. Host Range

Host range analysis was performed against 116 Erwinia strains including 92 Erwinia
amylovora and 24 Erwinia pyrifoliae (Table 3). pEp_SNUABM_03 and 04 showed broad-host-
spectrum infectivity to both E. amylovora (98.91%, 91/92; 97.83%, 90/92) and E. pyrifoliae
(91.67%, 22/24; 95.83%, 23/24) strains, respectively. Although pEp_SNUABM_11 had a
relatively narrow host range compared to pEp_SNUABM_03 and 04, it was highly infective
(E. amylovora: 76.09%, 70/92; E. pyrifoliae: 79.17%, 19/24). Phage pEp_SNUABM_12 showed
specific infectivity in E. pyrifoliae (95.83%, 23/24). pEp_SNUABM_12 was able to infect only
two E. amylovora strains (2.17%, 2/92). The phage cocktail infected almost all E. amylovora
(98.91%, 91/92) and E. pyrifoliae (100%, 24/24) strains.

Table 3. Host range analysis of individual and combined Erwinia phages, alone and as and the
combined cocktail.

Bacteria pEp_SNUABM_03 pEp_SNUABM_04 pEp_SNUABM_11 pEp_SNUABM_12 Cocktail Phage

E. amylovora 98.91%
(91/92)

97.83%
(90/92)

76.09%
(70/92)

2.17%
(2/92)

98.91%
(91/92)

E. pyrifoliae 92.00%
(22/24)

95.83%
(23/24)

79.17%
(19/24)

95.83%
(23/24)

100.00%
(24/24)

3.6. Antibacterial Activity of Phages on E. amylovora

The antibacterial efficacy of the newly isolated phages was evaluated at three concen-
trations (MOI 0.1, 1, and 5) over short (2 h) and long (8 h) time periods (Figure 7). Phages
pEp_SNUABM_03, 04, 11 and 12 co-cultured with E. amylovora TS3128 at an MOI of 0.1
resulted in a slight inhibition of bacterial growth in the short term; pEp_SNUABM_04
showed significant inhibition after administration (p < 0.05). In the long term, the antibacte-
rial effect was significant for all phages (p < 0.001), pEp_SNUABM_03 (−4.03 logCFU/mL),
04 (−3.70 logCFU/mL), 11 (−3.14 logCFU/mL), and 12 (−2.37 logCFU/mL). At an MOI
of 1, all phages showed a significant inhibitory effect against TS3128 after short-term
administration (p < 0.05). In the long term, all phages showed a significantly increased
antibacterial effect, pEp_SNUABM_03 (−4.24 logCFU/mL), 04 (−3.78 logCFU/mL), 11
(−2.86 logCFU/mL), and 12 (−3.18 logCFU/mL) (p < 0.001). Phages pEp_SNUABM_03, 04,
11 and 12, were co-cultured with TS3128 at an MOI of 5 and exhibited significant inhibition
of bacterial growth in the short term for all phages (p < 0.05). In the long term, there were no-
table reductions in bacterial counts for all phages; pEp_SNUABM_03 (−4.24 logCFU/mL),
04 (−3.97 logCFU/mL), 11 (−2.77 logCFU/mL), and 12 (−3.29 logCFU/mL) (p < 0.001).

Biology 2023, 12, 180 9 of 15 
 

 

antibacterial effect was significant for all phages (p < 0.001), pEp_SNUABM_03 (−4.03 log-
CFU/mL), 04 (−3.70 logCFU/mL), 11 (−3.14 logCFU/mL), and 12 (−2.37 logCFU/mL). At an 
MOI of 1, all phages showed a significant inhibitory effect against TS3128 after short-term 
administration (p < 0.05). In the long term, all phages showed a significantly increased 
antibacterial effect, pEp_SNUABM_03 (−4.24 logCFU/mL), 04 (−3.78 logCFU/mL), 11 
(−2.86 logCFU/mL), and 12 (−3.18 logCFU/mL) (p < 0.001). Phages pEp_SNUABM_03, 04, 
11 and 12, were co-cultured with TS3128 at an MOI of 5 and exhibited significant inhibi-
tion of bacterial growth in the short term for all phages (p < 0.05). In the long term, there 
were notable reductions in bacterial counts for all phages; pEp_SNUABM_03 (−4.24 log-
CFU/mL), 04 (−3.97 logCFU/mL), 11 (−2.77 logCFU/mL), and 12 (−3.29 logCFU/mL) (p < 
0.001). 

The phage cocktail consisted of an equal ratio of the four phages, resulting in the 
same overall concentration as solely administered phages. Although one-fourth of each of 
the phages were combined, the antibacterial effect of the cocktail phage suspension ad-
ministered over the long term, −3.42 logCFU/mL (MOI 0.1), −3.93 logCFU/mL(MOI 1), and 
−4.23 logCFU/mL (MOI 5), was higher than the average CFU reduction exhibited by indi-
vidual phages, which is indicative of a synergistic effect. 

 
Figure 7. Evaluation of antibacterial activity of phages on Erwinia amylovora. The assay was per-
formed at an MOI of 0.1 (A), 1 (B), and 5 (C). Statistical significance was calculated using a one-way 
analysis of variance (ANOVA) with Holm-Sidak tests (p < 0.001). 

3.7. Antibacterial Activity of Phages on E. pyrifoliae 
The antibacterial effects of the four phages were evaluated at three concentrations 

(MOI 0.1, 1, and 5) over short (2 h) and long (8 h) periods of time (Figure 8). All phages 
showed rapid antibacterial effects against E. pyrifoliae. When E. pyrifoliae KACC13945 and 
phages pEp_SNUABM_03, 04, 11, and 12 were co-cultured at an MOI of 0.1, bacterial 
growth was inhibited in the short term, with pEp_SNUABM_11 showing significant inhi-
bition (p < 0.05). In the long term, the antibacterial effect significantly decreased for all 
phages (p < 0.001), pEp_SNUABM_03 (−5.17 logCFU/mL), 04 (−5.27 logCFU/mL), 11 (−4.43 
logCFU/mL), and 12 (−5.10 logCFU/mL). At an MOI of 1, all phages rapidly inhibited bac-
terial growth after short-term administration and showed a significant inhibitory effect 
against KACC13945 (p < 0.001). In the long term, the antibacterial effect was sustained in 
all phages; pEp_SNUABM_03 (−5.33 logCFU/mL), 04 (−5.20 logCFU/mL), 11 (−3.19 log-
CFU/mL), and 12 (−5.07 logCFU/mL) (p < 0.001). Phages pEp_SNUABM_03, 04, 11, and 12 
co-cultured with KACC13945 at an MOI of 5 showed considerable reductions in bacterial 
counts in the short term for all phages (p < 0.001). In the long term, the antibacterial effect 
was maintained, and the bacterial counts were significantly reduced for all phages (p < 
0.001); pEp_SNUABM_03 (−5.43 logCFU/mL), 04 (−5.17 logCFU/mL), 11 (−2.31 log-
CFU/mL), and 12 (−5.03 logCFU/mL). 

Figure 7. Evaluation of antibacterial activity of phages on Erwinia amylovora. The assay was performed
at an MOI of 0.1 (A), 1 (B), and 5 (C). Statistical significance was calculated using a one-way analysis
of variance (ANOVA) with Holm-Sidak tests (p < 0.001).

The phage cocktail consisted of an equal ratio of the four phages, resulting in the
same overall concentration as solely administered phages. Although one-fourth of each
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of the phages were combined, the antibacterial effect of the cocktail phage suspension
administered over the long term, −3.42 logCFU/mL (MOI 0.1), −3.93 logCFU/mL(MOI 1),
and −4.23 logCFU/mL (MOI 5), was higher than the average CFU reduction exhibited by
individual phages, which is indicative of a synergistic effect.

3.7. Antibacterial Activity of Phages on E. pyrifoliae

The antibacterial effects of the four phages were evaluated at three concentrations
(MOI 0.1, 1, and 5) over short (2 h) and long (8 h) periods of time (Figure 8). All phages
showed rapid antibacterial effects against E. pyrifoliae. When E. pyrifoliae KACC13945 and
phages pEp_SNUABM_03, 04, 11, and 12 were co-cultured at an MOI of 0.1, bacterial
growth was inhibited in the short term, with pEp_SNUABM_11 showing significant in-
hibition (p < 0.05). In the long term, the antibacterial effect significantly decreased for
all phages (p < 0.001), pEp_SNUABM_03 (−5.17 logCFU/mL), 04 (−5.27 logCFU/mL),
11 (−4.43 logCFU/mL), and 12 (−5.10 logCFU/mL). At an MOI of 1, all phages rapidly
inhibited bacterial growth after short-term administration and showed a significant in-
hibitory effect against KACC13945 (p < 0.001). In the long term, the antibacterial effect was
sustained in all phages; pEp_SNUABM_03 (−5.33 logCFU/mL), 04 (−5.20 logCFU/mL),
11 (−3.19 logCFU/mL), and 12 (−5.07 logCFU/mL) (p < 0.001). Phages pEp_SNUABM_03,
04, 11, and 12 co-cultured with KACC13945 at an MOI of 5 showed considerable reduc-
tions in bacterial counts in the short term for all phages (p < 0.001). In the long term, the
antibacterial effect was maintained, and the bacterial counts were significantly reduced for
all phages (p < 0.001); pEp_SNUABM_03 (−5.43 logCFU/mL), 04 (−5.17 logCFU/mL), 11
(−2.31 logCFU/mL), and 12 (−5.03 logCFU/mL).
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The antibacterial efficacy of the phage cocktail suspension administered over a short
term was −2.49 logCFU/mL (MOI 0.1), −3.03 logCFU/mL (MOI 1), and −3.77 logCFU/mL
(MOI 5). Whereas the average CFU reduction in each phage, −2.50 logCFU/mL (MOI 0.1),
−3.15 logCFU/mL (MOI 1), and −3.38 logCFU/mL (MOI 5), did not exhibit any synergy
effect of the cocktail phage. However, there was a significant decrease in the bacterial count
in the short-term phage cocktail treatment.

4. Discussion

Erwinia-associated blight disease in rosaceous fruit plants in South Korea is caused by
E. pyrifoliae infection [6]. However, the recent outbreak of fire blight caused by E. amylovora
has rendered the disease management protocol complicated, as a co-outbreak with E.
pyrifoliae was identified [5,51]. In contrast to E. pyrifoliae, fire blight caused by E. amylovora is
registered as a legal communicable disease in plants in South Korea, and there is a distinct
disease management protocol [13,16,52]. To provide an effective control method against
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both pathogens, we isolated and characterized the potential of bacteriophages against
Erwinia-originated blight disease in South Korea.

The rosaceous fruit plant industry has tried to use phages as biocontrol agents against
E. amylovora outbreaks worldwide [53,54]. A number of phages have been isolated, and
their potential as antimicrobial agents has been confirmed [34,55,56]. A cocktail phage
suspension that combines phages with different infection mechanisms is preferred over
individual phage isolates to minimize resistance and maximize the antibacterial effect for
effective disease control [34,57,58]. As Erwinia bacteriophages have a broad host range,
the major objective of their combined administration is to improve their antimicrobial
potential [36,59]. The four phages used in this study also had a broad host range, except
for pEp_SNUABM_12, which specifically infects E. pyrifoliae (Table 3). Phages use distinct
infection strategies based on their tail structure, and the infectivity of the four phages is
distinct from each other [60,61]. This suggests that they have different infection strategies
that would prevent the prevalence of resistant bacterial strains [28,62].

Several studies have shown that phage resistance in bacterial strains is present in
the form of a trade-off [63,64]; bacteria acquire phage resistance in return for fitness loss,
including growth, virulence, and antibiotic susceptibility [65–67]. Attenuation or loss of vir-
ulence has been observed in several strains of Pectobacterium atrosepticum and Pseudomonas
plecoglossicida resistant against phages PPpW-3 and/or PPpW-4, respectively [68,69]. Im-
paired growth characteristics have been reported in phage-resistant E. amylovora and P.
syringae, which significantly affected their virulence [70,71]. Phage-resistant Escherichia coli,
and E. amylovora strains become more susceptible to antibiotics [34,72]. Furthermore, E.
amylovora bacteriophages showed transient resistance in infected bacterial strains, with
phage infectivity being restored after the phage was eliminated.

Synergism is one of the major incentives for combining several phages in a cocktail
suspension [36,37]. A synergistic effect refers to the antimicrobial potential of cocktail
phages being greater than the sum of the individual phages; an additive effect occurs when
a cocktail phage provides the sum of the effects of individual phages; an antagonistic effect
refers to the antimicrobial potential of the cocktail phages being less than that of the sum
of the individual phages [73]. The best selection for phage cocktail components results in
synergy; as observed in our study (Figure 7), there should be no antagonistic effect between
the cocktail phages. As phages can interrupt secondary infections by closely related phages,
it is recommended that antagonistic phages be excluded at the first selection step.

The stability of phages under environmental stress should be verified before their ap-
plication. The major stress factors expected are acidity, temperature, and UV radiation [74].
Although increased stability of the phages better facilitates their application as biocontrol
agents, there are several ways to bypass environmental stresses (Figure 2). Control agents
can be administered in the morning or encapsulated to minimize exposure to temperature
and light, or acidity, respectively [75,76].

Although the efficacy and stability of phages are guaranteed, safety is a major concern.
Generally, phages with an obligatory lytic life cycle are preferred as biocontrol agents
against Erwinia-originated blight diseases (Figure 4). On the other hand, lysogenic phages
have a greater potential for transducing harmful genes including those associated with
antimicrobial resistance, virulence, and toxins [77]. However, if the transduction issue is
eliminated, lysogenic phages may also be good candidates for controlling fire blight [78].

In the present study, the efficacy of the four phages and the phage cocktail against
Erwinia strains indicates its possible use as a biocontrol agent under field conditions. The
antibacterial effect can be further improved through modifications in the cocktail ratio
as the phages exhibited synergy. To be applied in the actual environment, future studies
should focus on the biocontrol efficacy of optimum phage cocktails in planta and carry out
acute ecotoxic tests in fish to rule out possible environmental health hazards.



Biology 2023, 12, 180 11 of 14

5. Conclusions

We isolated four phages, pEp_SNUABM_03, 04, 11, and 12, effective against both
E. amylovora and E. pyrifoliae pathogens, and investigated their biological and genomic
properties. Phages showed infectivity to both pathogens of Erwinia and were able to control
these pathogens effectively over a long period of time. The cocktail treatment has the
advantage of broadening the host spectrum as well as inducing synergistic effects. In
addition, the stability and safety of phages for use as biocontrol agents were verified. Taken
together, combining several phages that have distinct infection strategies and administering
the cocktail phage suspension would be a remarkable way to control both Erwinia amylovora
and E. pyrifoliae caused blight disease in South Korea. However, intensive verifications
such as combined treatment with conventional agents, antibacterial efficacy in planta, and
field tests, should be performed in further studies.
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