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Abstract

EC coupling is subjected to a mechanical feedback, which originates from physical force-sensing 

ion channels in the pericardium and elsewhere. Reviewed here are the most recent developments 

that greatly advanced our understanding of these mechanosensitive (MS) channels, including 

TRPs and K2p’s. Patch clamp has continued to demonstrate the direct channel activation by 

membrane stretch. Crystallography and cryo-electron microscopy have revealed the structures of 

several MS channels at atomic resolution. Some have been purified to homogeneity, reconstituted 

into lipid bilayer, and still retain their ability to respond to stretch force. A force-from-lipid (FFL) 

theory has been advanced that emphasizes the strong binding between channel proteins and lipids. 

Through these bonds, the sharp lateral tension (akin to surface tension) of the bilayer can transmit 

added force to the channel protein. Like temperature sensitivity, sensitivity to mechanical force is 

far more pervasive than we previously realize, and is especially important to the beating heart.
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1. Introduction

The beating heart is the most obvious mechanical organ. Each systolic-diastolic cycle entails 

large pressure stress and tissue strain. Its apparent clockwork should not obscure the 

sophistication of its intricate internal regulations. Each beat generates a force cycle, which is 

capable of influencing future beats. The electric and Ca2+ events in pace making and EC 

coupling are more thoroughly understood and thus emphasized in current cardiology 

literature. However, the physical stretching or shortening, in turn, controls the 

electrophysiological events, forming an arm of the mechano-electric feedback (MEF) loop 

[1] ,[2,3]. Over-stretching the atrium reshapes the action potential, causing arrhythmia [4]. 

Mechanical aberrations such as ventricular volume or pressure overload can also lead to 

arrhythmias [1], and myocardial hypertrophy as a maladaptive process occurring in response 

to an increased cardiac workload [5] [6] [7] Conversely, a single fist blow at the sternum 

(precordial thump) can sometime restore the normal cardiac rhythm to an arrhythmic patient. 

Though less is known about the MEF arm of the feedback because of experimental 

difficulties in the past, recent technical and conceptual advances promise a much deeper 

understanding. These includes structures at atomic resolutions of heart-relevant MS channel 

proteins and experiments that support a unifying force-from lipid biophysical theory. We 

will summarize these new findings below. The muscle hardware has a build-in response to 
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stretch. A longitudinally stretched myocyte produces proportionally stronger contractive 

force. This is partly explained by reactions of the force generators (actomysin and titin) 

themselves and can be observed after chemical permeabilization of the membrane [8]. 

However, in preparations with intact membranes, stretch also generates electrophysiological 

effects that constitute MEF. An increase in rat atrial pressure strengthens the Ca2+ transient 

and hastens its decay. Myocyte stretching alters the duration of the action potential. These 

effects require the activation of MS channels [9]. See [10], [11], [3] and [12] for recent 

reviews on MEF.

2. Mechanosensitive (MS) ion channels

A mechanosensitive (MS) channel is a transmembrane protein, which uses external 

mechanical force to bias its open probability and therefore the amount of ions it lets through. 

The transduction is direct, i.e. the MS-channel protein itself receives the stretch force and 

not, say, receives a ligand produced by a force-sensing enzyme. Though the physiological 

and pathological concerns are on the whole heart, an intact beating organ makes difficult the 

investigations with fragile glass electrodes. Reduced systems, such as multicellular heart 

tissues hold promise [3]. To date, clearer insights comes from greatly reduced systems such 

as isolated cardiac myocytes or from identified MS channels heterologously expressed in 

cultured non-cardiac cells for molecular investigation. Early on, unitary cation conductances 

were recorded under patch clamp that increase their open probability when a suction was 

applied to stretch the patches of chick embryonic or guinea-pig cardiomyoctes [13]. 

Similarly, patch clamp revealed in rat atrial cells a cation unitary conductance capable of 

passing Ca2+ that can be activated by pipet suction or pressure [14]. This preparation also 

revealed a suction induced K+ conductance, which is also activated by arachidonic acid and 

other lipophilic compounds [15], a hallmark feature of some characterized MS channels that 

respond directly to lipid forces. However, the molecular identities that underlie these 

cardiomyocyte conductances are unknown. On the other hand, an increasing number of 

channels of known protein identities appear to contribute to the mechnosensitivity of the 

heart mostly by indirect criteria. Sixteen are listed in a recent review [11] that includes Ca2+ 

channels, Na+ channels, K+ channels, nonspecific-cation channels, and Cl− channels. Below, 

we will describe and discuss two types of MS channels of known identity, of clear 

biomechanical properties, of resolved atomic structure, and with strong connection to 

cardiac functions: TRPs and K2p’s.

3. Transient receptor potential channels (TRPs)

The name of this superfamily of channels was coined upon its first discovery from a mutant 

blind fly, the electroretinogram of which shows a receptor potential not sustained during 

light pulse [16]. TRPs are found in all eukaryotes including yeasts [17]. In mammals, there 

are over 33 genes that encode TRP subunits, which form a superfamily of channels, 

classified by sequence similarity into TRP-C, -V, -M, -P, -ML, -N and -A subfamilies [18]. 

They have wide tissue distributions and serve varied functions. As channels, they pass 

cations, including the functionally important Ca2+. As transducers, they are polymodal, each 

responding to multiple stimuli. Perhaps the best know is TRPV1, (TRP vanilloid type 1), the 

“pepper channel” that activates at temperature above 42°C [19]. As an example of 
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polymodality, TRPV1 is also activated by low pH, endocannabinoid, polyunsaturated acid, 

and other proinflammatory agents. Phosphoinositides, including PIP2 desensitizes it. TRPV1 

has been purified and reconstituted into lipid bilayer devoid of other proteins. The 

reconstituted channels retained the properties described above, indicating that these 

properties originate from this protein and the surrounding lipids alone, with no need of other 

co-factors, big or small [20]. TRP channel has a general structure similar to voltage-gated 

K+-, Na+−, or Ca2+-specific channels, each comprising four subunits. In Kv, each subunit 

includes six transmembrane α helices called S1 through S6. S1-S4 form a peripheral domain 

with a main function of a voltage sensor. S5 and S6 form the core domain, which houses the 

ion filter towards the outer side and the inner gate at the inner end, resulting from the 

convergence of the four S6’s. An atomic structure of TRPV1 with a 3.4 Å resolution of the 

transmembrane portion has recently been obtained by cryo-electron microscopy [21]. 

Among other differences from the canonical voltage-gated K+ channel are elaborations of 

structures around the inner gate. The long S4-S5 linker between the voltage sensor and the 

pore domain lies nearly flat. The pore’s inner helix, S6, is immediately followed by the 

amphipathic “TRP-domain” helix, which bonds to both the S4-S5 linker and the pre-S1 

helix. This entire assembly is located at the level of the inner hydrophobic-polar interface of 

the lipid bilayer, at which the innate lateral tension is focused. (See below). The basic 

structures of other TRP channels are expected to be similar. For a review of the involvement 

(direct or indirect) of various MS TRP channels in cardiovascular physiologyand pathology 

see [22].

4. TRPV4 (TRP Vanilloid Type 1)

Over ten types of putative MS TRP channels are expressed in the heart [22]. Their effects 

may or may not be direct. For example, trpV1−/− knock-out mice seem to be protected from 

cardiac hypertrophy due to pressure overload [23]. Here, the protective effects are likely the 

downstream consequence of complex events with TRPV1 being one of the many 

participants. TRPV4, however, responds directly to physical force.

TRPV4 is broadly expressed [24] and there are human TRPV4 mutants with bone-

development or other phenotypes [25]. It clearly functions in the heart. For the 

mechanoelectric feedback (MEF), the stretch of the heart must be detected by nerve that 

attaches to it. In a recent study, Shenton and Pyner (2014) [26] examined atrial endocardium 

using anti-synaptophysin antibody to mark the nerve endings and also immune-labeled nine 

different known MS-channel proteins of the ENaC/ASIC or the TRP family. They found 

only the immunoreactivity of TRPV4 and TRPC1 (another MS channel, see below) to 

precisely coincide with that of synaptophysin. This coincidence strongly suggests that 

TRPV4 and TRPC1, and not other putative MS channels, transmit the information of 

endocardial stretch to nerve endings.

Vasoconstriction is a major mechanism that controls blood pressure. The smooth muscle of 

the blood vessels constrict or dilate according to the forces of flowing blood detected by the 

endothelium. A phenomenon known as “flow-mediated dilation” [27] relates the shear stress 

on the endothelium to smooth-muscle dilatation through two classes of mechanisms: (1) the 

release of local regulators such as nitric oxide and prostacyclin to relax the smooth muscle, 
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and (2) hyperpolarization spreading from the endothelium to muscle through gap junction 

[28]. This flow-mediated dilation is greatly reduced in trpV4−/− mice [29]. Current notion is 

that shear on the endothelial cells mechanically open channels, including TRPV4, to let in 

Ca2+, which causes the endothelium to release soluble factors to hyperpolarize the 

membrane of the adjacent vascular smooth muscle cells [30]. In rat carotid artery endothelial 

cells, a TRPV4-specific agonist, 4αPDD, causes robust endothelium-dependent 

vasodilatation [31]. The Ca2+ entered through the MS TRPV4 can activate Ca2+-dependent 

K+ channels (IK, SK) and cause an endothelial hyperpolarization, which can spread 

electrically through gap junction to the neighboring smooth-muscle cells. Sonkusare et al. 

(2012) [32] expressed the genetically encoded Ca2+ biosensor, GCaMP2, exclusively in 

vascular endothelium, and found that TRPV4-specific agonists GSK1016790A and 4αPDD 

to trigger fluorescent “sparklets” (elementary unitary Ca2+-induced fluorescent signals). 

Patch-clamp experiments showed that the agonist-induced currents in these endothelial cells 

are blocked by toxin targeting IK or SK. In short, recent findings indicate shear stress 

mechanically open TRPV4, through which the entered Ca2+ initiates outward current that 

spreads into and helps relax the neighboring smooth muscle.

When expressed in Xenopus oocyte, bath hypo-osmolarity swells the oocyte and activates 

the macroscopic current of TRPV4. Inside-out patches excised from such oocytes show that 

the open probability of the 98-pS unitary conductance of TRPV4 increases directly with 

pipet suction (Fig. 1) [33]. An earlier model states that hypo-osmolarity activates enzymes 

(phospholipase A2 and P450 epoxygenase), producing a special polyunsaturated fatty acid 

(PUFA), called 5’6’-epoxyeicosatrienoic acid, which opens TRPV4 [34], [35]. This may be 

an amplification loop since Ca2+-entered through TRPV4 can activate phospholipase A2 and 

PUFAs alter the force distribution within the bilayer (see below). Interestingly, rat TRPV4 

can be expressed in the budding yeast and still activates upon hypo-osmolarity [36]. Since 

attaching the rat channel to toad or yeast cytoskeleton is unlikely, the gating force for 

TRPV4 most likely comes from the membrane.

Of the six members of the TRPV family, TRPV4 show highest sequence homology to 

TRPV1, of which we now have atomic structures. This makes hopeful the sub-molecular 

understanding on how mechanical force operates the TRPV4 protein.

5. TRPC’s (“TRP Canonical”s)

Several members of the TRPC family channels, especially TRPC1, TRPC3, and TRPC6, are 

considered mechanosensitive and relate to cardiac function [11] [10]. Maroto et al. (2005) 

[37] detergent-solubilized frog oocyte membranes and followed MS-channel activities in 

fractions upon reconstitution into liposome. They identified fractions enriched with TRPC1. 

Further, human TRPC1 expressed in Xenopus oocytes markedly increases stretch-induced 

current under patch clamp. Although not without controversy [38] [39], TRPC1 remains an 

important target in the study of cardiac physiology and pathology. In an induced rat-heart 

hypertrophy model, the expression of TRPC1 rises in the hypertrophic myocardium. The up-

regulation of TRPC1 appears to contribute through its mechanosensitivity [40]. 

Furthermore, deletion of the trpc1 gene in mice led to protection from cardiac hypertrophy, 

which is surprising given that the mouse heart expresses at least four other TRPC channels. 
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However, because of its feature of stretch activation it is likely the TRPC heterotetrameric 

complexes present in the mouse heart require at least a single TRPC1 subunit [5]. As 

described above, a most recent report shows that TRPC1 and TRPV4, but not other putative 

MS channels reside at the endings of the nerves that innervate the atrial endocardium [26].

TRPC6 has apparently a role in sensing intravascular pressure. Antisense oligonucleotides to 

TRPC6 attenuate arterial smooth muscle depolarization and constriction caused by elevated 

arterial pressure [41]. TRPC6 channels expressed in HEK cells are activated by hypo-

osmolarity. Those in patches excised from expressing cells are activated directly by pipet 

suctions, which can be blocked by the spider toxin GsMTx-4, known to act on the lipid-

channel interface [42]. That the expressed TRPC6 can be activated by induced 

phospholipase C (PLC) activity or by addition of the membrane-permeable diacylglycerol 

(DAG) analog OAG further support the notion that TRPC6 receives mechanical force from 

the lipid bilayer [43].

The “C” in “TRPC” stands for “canonical”, meaning that it represents the founding member 

of the entire TRP superfamily. As stated above, the founding member was discovered by 

tracing the molecular defect of a blind fly [16]. Mutations of other blind flies revealed the 

key role of lipid metabolism in fly phototransduction. One key gene encodes phospholipase 

C (PLC), which hydrolyses PIP2 into diacylglycerol (DAG) and IP3. Neither IP3 nor DAG, 

however, can be shown to activate the TRP channels as ligands, however. Instead, Hardie 

and Franze (2012) [44] showed that light induces a micrometer shrinkage of each unit of the 

compound eye, which contains thousands of microvilli housing the phototransduction 

complexes. Apparently, these canonical TRP’s are MS channels, responding to the sum of 

the mechanical changes upon the beheading of PIP2 into DAG in the inner leaflet of the 

bilayer. These authors coined the term “photomechanical responses”. Such responses have 

their counterparts in mammalian photosensitive ganglion cells, and possibly even in 

melanocyte or keratinocyte (See [45] [46]for reviews). Suffice it to say here that bilayer-

based force transmission to the heart-relevant TRPC1, TRPC6, and TRPV4 has deep 

evolutionary roots.

6. Two-pore-domain K+ channels (K2p’s)

Over ten types of K+ channels are expressed in different parts of the heart. Since K+ efflux 

accounting for the down stroke of action potential is well known, voltage-gated K+ channels 

have been the center of attention in cardiology. More recently, two other types of K+ 

channels have entered the picture: Ca2+-activated K+ channels (Kca’s) and the two-pore 

domain K+ channels (K2p’s ) [47].

In general, K2p’s are considered the background leak K+ channels that determine cell’s 

resting potentials. mRNAs of six subtypes of K2p’s are found in the heart. K2p3.1 (TASK-1/

KCNK3) is a current research focus because K2p3.1−/− knockout mice or knockdown 

zebrafish produce ventricular or atrial phenotypes [48]. Further, several K2p3.1-specific 

inhibitors are available to be developed into antiarrhythmic drugs [47]. Interestingly the 

K2p3.1−/− mice, besides having a prolonged QT interval, also have a diminished baroreflex 

[49]. Baroreflex is a negative feedback that makes short-term adjustment of blood pressure, 
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which is monitored by stretching the mechanosensitive nerve endings (baroreceptors) in 

major arteries.

K2p2.1 (TREK-1) is expressed in both the atria [50] and ventricles [51]. Extensive research 

has shown that TREK-1 and threlated TRAAK are mechanosensitive [52] [53]. In excised 

patches, TREK-1 is opened by either pipet suction or pressure, indicating that it is the lateral 

stretch of the patch that activates. It is also activated by lysophospholipids, PUFAs, PIP2, 

and various lipid-soluble anesthetics [52] [53]. Immunohistochemistry and patch-clamp 

experiments showed that TREK-1 is expressed in cardiomyocyte membrane and may 

contribute to mechanoelectric feedback and arrythomogenesis [54]. Though the matters 

seem complex, down regulating K2p2.1 in right atrial tissue in a porcine model correlates 

with atrial fibrillation and heart failure [47].

The simplest K+ channels are tetramers of subunits with a S1-P-S2 arrangement. Others, 

however, are tetramers of S1-S2-S3-S4-S5-P-S6 subunits, where the S’s are transmembrane 

helices and P the filter structure. K2p’s, however, comprises two S1-P1 -S2-S3-P2-S4 subunits 

and therefore has a 2-fold instead of 4-fold symmetry. The two S2’s and the two S4’s encase 

the filter and line the ion pathway. The crystal structures of two K2p channels have recently 

been solved [55,57]. The one of TRAAK, resolved at 2.75 Å, is of particular interest here 

(Fig. 2) [55], [58]. TRAAK is similar to TREK-1 in sequence and is known to be 

mechanosensitive [59]. Among the unique features of TRAAK are the two S2 helices, which 

are long and each has a kink that makes the lower portion lying almost flat. This portion is 

clearly amphipathic with hydrophobic residues facing the membrane interior and 

hydrophilic basic amino acids facing the membrane-cytoplasm interface. This is the level at 

which the bilayer’s innate lateral tension is focused (see below). The inner half of TRAAK, 

unlike most other K+ channels, is fenestrated, meaning that the ion pathway is not 

completely enclosed with peptides, allowing bilayer lipids direct access to that pathway.

7. The Force-From-Lipid (FFL) paradigm (Fig. 3)

For some 25 years, there have been two models on how physical force opens MS channels: 

First, based entirely on biophysical properties and not on biochemical material, the 

vertebrate hair-cell transduction channel has early on been modeled to be like a trapdoor. To 

explain compliance, the trapdoor is modeled to have a mechanical gating spring, which 

maps to the anatomically visible tip link [60]. More recently, the tip-link proteins 

(cadherin-23 and protocadhedrin-15) and other accessories have been substantiated, but the 

identity of MS transduction channel itself remains elusive, despite several false starts [61], 

[62]. Some other eukaryotic models may also employ external and/or internal tether to 

transmit force. The touch receptor channel of the worm C. elegans, for example, has been 

modeled to use cytoskeletal microtubules to transmit force. Yet genetically removing the tip 

link or the microtubules greatly reduces but does not remove the MS channel’s response to 

force [63,64]. External or internal tethers may be amplification devices. They may tense up 

the membrane around the MS channel by pulling on the channel or the membrane. See [46] 

for a review.
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The second model began with the discovery of MS channels of E. coli [65]. The pentameric 

membrane protein MscL, made up of five 136-amino-acid subunits, has repeatedly been 

purified to homogeneity and reconstituted into bilayers of known lipids and found to retain 

its mechanosensitivity [66,67]. The reductive nature of such experiments leaves the lipid 

bilayer as the only possible source of mechanical force. Further, amphipaths that 

preferentially intercalate into one of the leaflet can activate MscL and its functional analog 

MscS [68] [69] [70]. Crystal structures, genetic dissections, spectroscopy and other physical 

analyses made MscL and MscS the key models for detailed mechanistic understanding of 

molecular mechanosensitivity [69,71]. However, MscL and MscS are often viewed as 

bacterial specialization. This view is now challenged by the recapitulation of the same 

reductive experiment with two vertebrate MS channels. Berrier et al. (2013) [72] have 

reconstituted an enriched fraction of the mouse TREK-1 into liposome and showed the K+ 

unitary conductances to respond to force under patch clamp. In a set of more rigorous 

experiments, Brohawn et al. (2014) [56] purified zebrafish TREK-1 and human TRAAK to 

homogeneity and reconstituted them to azolectin bilayers. So treated, these channels in 

excised patches continue to respond to bilayer tension. Note that TRAAK is now of known 

molecular structure (see above and Fig. 2). It is therefore at an experimentally advantageous 

position that parallels those of MscL and MscS.

To see how lipids gate MS channels, one begins with the structure of the bilayer, which is 

not derived from genetic information, but by thermodynamics. To avoid the energy cost of 

entering the non-polar region, the polar moieties (water, ions, etc.) congregate at any water-

lipid interface and try to minimize its area, thus resulting in a surface tension. A similar 

lateral tension develops in the bilayer at the level of the lipid neck between the polar heads 

and the non-polar tails. Bilayer is a self-assembled stable structure, and the area compaction 

is stopped when this lateral tension is balanced by repulsions elsewhere at the head and the 

tail regions (Fig. 3). Any material, such as membrane proteins, embedded in the bilayer, is 

subjected to these forces, the sharp lateral tensions in particular. At equilibrium, an 

embedded protein will be at a conformation, say, the channel closed state, presenting a shape 

and a surface polarity that optimally matches this profile. Added external forces can stretch 

and thin and/or bend the bilayer, changing the force profile. Adding lipids or amphipaths, 

especially asymmetrically into one leaflet, will also change this profile [70]. The protein 

may no longer match the new profile and is therefore energetically driven to a better-

matched conformation, say, the open state (Fig. 3B), typically complying in the direction of 

the net force. MscL opens by outward movement and the leaning of its helices, increasing its 

lateral area about twice, and resulting in a much thinner ring, as if to meet a thinned bilayer 

[70]. In detail, residues or local domains differ in their affinity to different lipids at the 

interface [73], and the binding of lipids will likely distort the bilayer arrangement [74]. 

Regardless of details, added force, such as a stretch, will change the magnitude and direction 

of the force vectors acting on the protein through the bonds at the interface. For more 

detailed explanation of the force-from-lipid (FFL) principle, see [75] [76] [46]. All cells are 

wrapped in membranes comprising lipids, the assembly of which is driven by 

thermodynamics. One would therefore expect FFL-based mechanosensitivity to have arisen 

near the beginning of life and therefore likely to underlies all forms of force sensitivities and 

sensations evolved later [76].
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8. Extension and conclusion

The increasing number of crystal or cryo-electron microscopic structures of membrane 

proteins has greatly increased our knowledge. Because of the dynamic liquid nature of 

biological membranes and because detergents instead of lipids are used to purify these 

proteins, these structures usually only show the amino acids. This can be misleading. When 

lipids are included in the crystal, as in the case of the voltage-gated K+ channel [74], some 

are clearly bound to the amino acids, held tight enough to be seen at atomic resolution. 

When a channel, such as Kv, opens, the free energy change in rearranging the lipids in the 

bilayer is estimated to be comparable to that of the voltage-dependent part of the total gating 

energy [77]. In situ, each membrane protein has strongly bonded annulus lipids and the 

entire ensemble is re-configured during a conformational change.

We have reviewed the bilayer, its standing force profile, and the FFL principle of MS-

channel gating above. Given the view that a channel, or any membrane protein, is in fact a 

protein-lipid ensemble, does that mean they all feel the bilayer force? The answer, which 

may surprise some, is yes. Yet, to state that all membrane proteins are mechanosensitive 

should not be more surprising than to say all proteins, indeed, all material, are heat-sensitive. 

While such universal mechano- or heat-sensitivity is a physical truism, whether they are 

used biologically is a different matter.

By various criteria, many channels, including K+-, Na+-, Cl−-,or ion-nonspecific channels, 

known to be gated by voltage, by Ca2+, or by other means, have been reported to also be 

sensitive to mechanical or osmotic forces. Some of them clearly function in the heart. See 

[75] for a list. In a set of careful experiments and analyses, the canonical voltage-gated K+ 

channel is found to behave drastically differently in on-cell patches, where the bilayer is 

restrained by cortical cytoskeleton, in excised patches, where the cytoskeleton is detached, 

and after reconstitution into bilayer, which is pre-stretched by the lipid-glass adhesion [78], 

[79]. The different behavior is clearly correlated to membrane stretch force. Kinetic analyses 

showed that the tension-sensitive step is at the point of channel expansion, after all four 

voltage sensors have moved. Quantitative comparison shows that Kv is as much a mechano-

sensitive channel as a voltage-sensitive channel [79]. Our preconceived notion may mislead 

us to regard such channels as primarily voltage-gated channels, but only secondarily 

“modulated” by mechanical force. A recent report shows that prodding certain dorsal-root-

ganglion neurons activates a K+ current through channels containing Kv1.1 subunits. Such 

an outward current seems to act as a brake against the touch-induced inward currents 

through other MS channels. Interestingly, mice expressing a dominant negative Kv1.1 

subunit are pathologically over-sensitive to touch [80]. While this one startling case seems 

clear, it remains to be seen whether the mechanosensitivity of other K+-, Na+-, Cl−-,or ion-

nonspecific channels are physiologically meaningful. Nevertheless, one should not only 

evaluate the mechanical activation of channels in mechano-electric feedback reviewed 

above, but also be prepared to re-evaluate the mechanical activation of those channels 

responsible for pace making and in EC coupling in the constantly beating heart.
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Fig. 1. 
Direct mechanosensitivity of TRPV4 as shown by the activation of the 98-pS unitary 

conductance by membrane stretch under a patch clamp. Rat TRPV4 cRNA was expressed in 

Xenopus oocytes. An excised patch, held at +50 mV, bathed in symmetric K+ solution, was 

subjected to pipet suction, as marked, measured with a manometer. From Loukin et al. 

(2010) [33]
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Fig 2. 
Crystal structure of TRAAK, a mechanosensitive K2p channel. For a description see text and 

Brohawn et al. (2012) [55]. Purified TRAAK, reconstituted into lipid bilayer, retains its 

response to added bilayer stretch (arrows) (Brohawn et al., 2014) [56]. Modified from 

Brohawn et al. (2012) [55].
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Fig 3. 
The force-from-lipid (FFL) principle. (A) Unlike a soluble protein, bombarded by 

neighbors(left), a membrane protein (right) is embedded in the lipid bilayer, which has 

standing internal forces (red arrows). (B) (upper left) The profile of these forces shows 

peaks of lateral tension at the two polar/nonpolar junction, at the level of the lipid neck. At 

rest, a MS channel (upper right) can be in a closed state with its surface residues matching 

this profile. When the bilayer is stretched (broad red arrows, in lower figure) or when 

amphipaths (triangles) are added, the bilayer is deformed (compressed and/or bent), and the 

channel can be energetically driven into the open conformation to better match the lipids. 

From Anishkin et al. (2014) [45].
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