
Alterations in Resting-State Activity Relate to
Performance in a Verbal Recognition Task
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Abstract

In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not
actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a
verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-
state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We
found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced
alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive
processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance.
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Introduction

Resting-state brain activity is characterized by complex and

highly non-random patterns of intrinsic activity generated while

the brain is not actively involved in a task [1]. Electroencepha-

lography (EEG) oscillatory patterns of resting-state activity are

informative of the functional state of brain networks as well as their

contribution to cognitive and behavioural performance [2,3].

Despite much attention in recent work, a clear characterization of

the links between resting-state before and after cognitive perfor-

mance is lacking.

Task-induced oscillations obtained with EEG show that

frequency-specific activity is associated with cognitive processes,

including attention and memory [4]. Both theta (4–7 Hz) and

alpha (8–12 Hz) power, for instance, have been associated with

working memory processes [5,6,7,8,9] as well as selective attention

[10,11]. In addition, higher alpha power measured at baseline

predicts subsequent learning rate during a game designed to study

training strategies [12]. In a related study, the magnitude of

change in alpha power from pre-task resting activity to task-related

activity predicted episodic memory performance [13].

Findings relating task-induced oscillations to memory and

attention have been complemented by studies examining patterns

of resting-state activity that precede task involvement. Resting-

state theta power, for instance, predicts subsequent verbal recall

and attentional performance [14]. Resting-state alpha-band

power, in comparison, predicts response accuracy in working

memory tasks [15,16] and memory performance during a free

recall task [17]. Finally, higher alpha synchronization prior to

stimulus presentation is predictive of the amplitude of event related

potentials (N100) and is associated with faster reaction times [18].

These results suggest that resting-state activity preceding a task can

be a reliable indicator of subsequent cognitive functions that are

relevant to information processing in the brain.

In addition, resting-state brain dynamics form an ongoing

process that is highly plastic and influenced by cognitive demands

and learning [19,20]. Therefore, in the present study, we

investigated the resting-state activity before and after a task of

verbal recognition. We monitored EEG activity in delta, theta,

alpha, beta and gamma bands before and after the task. We begin

by examining behavioural performance (response times and

accuracy) in relation to pre-task resting-state oscillations. Next,

we compare the power of pre- and post-task resting-state activity,

addressing whether behavioural performance reshapes the statis-

tics of resting-state oscillations.

Methods

Ethics Statement
All participants gave written informed consent and were paid

for their participation. The study protocol was approved by the

Bruyère Research Institute Research Ethics Board and in

accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki).

Participants
Twenty-eight participants were recruited for the study. All

participants were young adults randomly recruited from the

University of Ottawa. Prior to testing, participants completed a

health history questionnaire. All participants were native English

speakers, with good self-reported health, normal or corrected-to-

normal vision, and no neurological or psychiatric history. No
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participant was taking any medications known to affect cognitive

function. Participants were randomly assigned to either an

experimental condition (‘‘Task Group’’) or a control condition

(‘‘No-task Group’’; n = 14 participants per group). Task and no-

task groups did not differ in age or education (average

age = 22.34+/21.78, p..71; average education = 15+/21.61,

p..14).

Task Group
For participants in the Task Group, resting EEG activity was

recorded for 10 minutes immediately prior to performing a verbal

recognition task (see below), during the verbal recognition task

(approximately 5 min in duration), and for 10 minutes immedi-

ately afterwards. During recordings of resting-state EEG, partic-

ipants were instructed to remain relaxed and look at a white

fixation point on black background on a computer screen. They

were instructed to minimize blinking and a research assistant

monitored for excessive blinking or horizontal eye movements by

visual inspection of EEG during recording. Participants were

informed that, in the event of excessive eye movements, the

research assistant would remind them to fixate their gaze on the

fixation cross. Participants were compliant and did not produce

excessive eye movements during recording; reminders were

therefore not employed.
Verbal recognition task. Participants in the Task Group

performed a speeded verbal recognition task in which they viewed

words one at a time on a computer screen and were required to

decide whether or not the word had appeared previously in the

list. The task included a total of 180 words (e.g. money, fruit,

window) divided into 6 blocks (Fig. 1a, bottom). Each block

comprised a list of 30 words, where 10 words were randomly

repeated within the list. Thus, in each block, there were 20 unique

words, and 10 of these words were repeated a second time within

the block. The mean repetition lag for words (i.e. number of words

between the first and second presentation of the repeated words)

was 9 (range: 1 to 20).

Stimuli in each list were controlled for length and frequency

using norms from the Celex database [21]. Participants indicated

whether they had seen each word previously in the list or not by

pressing a button on the computer keyboard (the ‘‘l’’ key for ‘‘yes’’

responses and the ‘‘a’’ key for ‘‘no’’ responses). Participants kept

their hands on the keyboard and used their left hand to press for

‘‘a’’ and their right hand to press for ‘‘l’’. Each word appeared at

the center of the screen in black bold 18-point Courier New font

on a white background with 100 ms inter-stimulus interval (Fig. 1a,

top). Words remained on the screen until the participant provided

a response. After this response, a 100 ms inter-stimulus interval

preceded the onset of the next stimulus. The task took

approximately 5 minutes to complete and was run using E-prime

(Psychological Software Tools, Inc., Sharpsburg, Pennsylvania).

No-task Group
Testing was identical for participants in the No-task Group

(control condition), except that rather than completing the word

recognition task, they were instructed to relax and remain seated

for a 5-minute interval corresponding to the duration of the task.

Data Acquisition and Pre-processing
EEG signals were recorded continuously from six midline sites

and 23 lateral sites according to the international 10–20 system of

electrode placement using a nylon EEG cap containing tin

electrodes (Electro-Cap International, Inc., Eaton, OH, USA). A

cephalic (forehead) location was used as a ground and all active

sites were referenced on-line to linked ears using Scan 4.3

computer software (Neuroscan, El Paso, TX, USA). We recorded

the horizontal electro-oculogram (EOG) as bipolar channels from

electrodes placed at the outer canthi of both eyes and the vertical

EOG from electrodes placed above and below the left eye. EEG

signals were amplified using Neuroscan NuAmps (Neuroscan, El

Paso, TX, USA) and acquired at a sampling rate of 500 Hz in a

DC to 100 Hz bandwidth with electrical impedances ,8 kV.

Vertical EOG artefacts were corrected off-line using a spatial filter

(Neuroscan, EDIT4.3) and trials with horizontal EOG artefact

exceeding peak amplitudes of 50 mV were excluded. EEG trials

containing deflections exceeding 100 mV were also excluded.

Finally, EEG recordings were visually inspected and trails

containing movement artifacts were manually removed. After

removal of eye blinks and artifacts during resting state, an average

8 minutes of EEG recording remained for each participant.

Data Analyses
Behavioural data analyses. Mean accuracy and reaction

time were calculated for each participant. Behavioural trials where

performance accuracy and reaction time were identified as outliers

were removed on a participant-by-participant basis. This was done

by calculating the mean accuracy and reaction time for each

participant. Outliers, defined as trials where the response time

and/or accuracy was greater than 2.5 standard deviations from

the participant’s mean, were removed (an average of 1.5 trials per

participant were removed, over a total of 180 trials).

EEG data analyses. All EEG data were analyzed using

custom software written in the Matlab language (Mathworks Inc.,

Natick, Massachusetts). Since an average of 8 minutes of resting

state activity remained after artifact removal, each participant was

left with different durations of resting activity. To insure that the

same amount of resting state data were considered for each

participant, we restricted our FFT analysis to the last 5 minutes of

data for each participant and each recording period (pre- and post-

task). After removal of movement artifact, segments of different

lengths (over the last 5 minutes of data) were used to compute

EEG power (mv2).

For each electrode, the mean power spectrum across partic-

ipants was normalized between 0–1 [22]. Power was then

averaged across delta (1–3.5 Hz), theta (4–7.5 Hz), alpha (8–

12.5 Hz), beta (13–29.5 Hz) and gamma (30–100 Hz) bands

(Fig. 1b).

In order to estimate changes in EEG power between pre- and

post-task recordings, we computed, for the Task and No-task

groups separately, the best-fitting linear regression relating the

average band-specific power (mean power over all electrodes) for

each participant for pre- vs. post-task resting periods. We did this

in the following way: first, we computed the mean alpha power

across electrodes for each participant within a given group.

Second, we fitted a regression line relating pre- and post-task

power across all participants of the group. Third, we computed the

residual error of the linear regression for each participant. This

provided us with an estimation of change in alpha power (Dalpha)

between pre- and post-task periods that removed linear drifts

known to occur in EEG activity over time, an analysis that is

analogous to linear detrending [23]. Linear detrending, however,

is typically performed on a per-subject basis, whereas the Dalpha

analysis is performed at the group level.

A paired t-test was used to compare Dalpha for the Task vs. No-

task groups (statistical criterion of a= .01). In a follow-up analysis,

we calculated Dalpha for each electrode individually in order to

show the topographic distribution of alterations in alpha power.

Finally, we performed correlations between Dalpha for each
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electrode and performance accuracy using the surrogate data

approach (see surrogate subsection for details).

Surrogate data approach. Electrode-by-electrode analyses were

conducted to relate resting-state EEG power to measures of task

performance. We implemented an approach based on surrogate

data in order to identify electrodes whose band-delimited power

correlated with task performance [24]. The goal of this approach is

to compare Pearson correlations between EEG power and task

performance with correlations obtained using random EEG data

that share basic properties of the original data (in terms of mean,

variance, and Fourier spectrum). Higher correlations in the

original data compared to those of random data are considered

statistically above-chance. This approach allows for the estimation

of correlation values that would occur by chance merely due to the

high number of comparisons being carried [25]. Values above the

chance correlation threshold that is obtained by our surrogate

approach are considered statistically significant.

Formally, we can represent a given measure of EEG oscillations

(e.g., alpha power) as a matrix of size MxN where M is the number

of electrodes and N is the number of participants, while

performance can be represented as a row vector y = 1,…,N

containing a single value (e.g., average accuracy) per participant:

X~

x1,1 x1,j x1,N

xi,1 xi,j xi,N

xM,1 xM,j xM,N

2
64

3
75 y~ y1,yj ,yN

� �
: ð1Þ

A series of correlations are performed between y and rows of X

in order to compare alpha power and task accuracy for each

individual electrode:

c~ corr X1,1...N ,yð Þ corr X2,1...N ,yð Þ corr X3,1...N ,yð Þ½ �, ð2Þ

where corr :ð Þ denotes Pearson correlation.

We wish to establish a statistical criterion for each element of c
that will identify above-chance correlations between power and

task performance. Here, we compute this statistical criterion

independently for each electrode using a method of surrogate data.

The goal of this method is to generate artificial EEG data (herein

referred to as surrogate data) that share properties of the original

data (including mean, variance, and Fourier spectrum) but is

otherwise random. The correlation between artificial EEG data

and participants’ task performance is informative of the magnitude

of random effects, and can be employed to derive a statistical

criterion as described below.

Surrogate EEG data were generated using the amplitude

adjusted Fourier transform (AAFT) algorithm [26]. This algorithm

examines the original EEG data and outputs random EEG data

that closely approximates the mean, variance, and Fourier

spectrum of the original data. The AAFT algorithm works as

follows. Let ~xx be an EEG timeseries for a single electrode with

elements t = 0,…,N-1. First, a Gaussian timeseries ~zz is produced,

where each element is independently drawn from a Gaussian

distribution with m = 0 and s= 1. Then, the vector~zz is reordered

so that the ranks of ~xx and~zz agree. In other words, if ~xxt is the nth

smallest value in~xx, then~zzth will be the nth smallest value in~zz. As a

result, both time series will follow each other and their amplitude

will follow a Gaussian distribution.

Given a timeseries~zz, data surrogates~zz’ are generated as follows.

First, an unwindowed Fourier transform is computed for positive

and negative frequencies f = 0,1/N,2/N,…,1/2. Second, the phase

of the timeseries is randomized by multiplying the complex

amplitude at each frequency by eiQ, where the phase Q is chosen

independently for each frequency from the interval [0,2p]. Third,

the phases are symmetrized so that Q(f ) = –Q(–f ). Finally,

surrogate data ~zz’ is generated as the inverse Fourier transform.

Surrogate data generated in this way has gaussian amplitude and

matches the Fourier spectrum of the original data. Assignment of

the surrogate timeseries was randomized across participants

(within-group), following the null hypothesis that task performance

across participants was unrelated to their resting EEG activity.

Figure 1. Verbal recognition task and reaction time distribution. a. Top: Illustration of a single word stimulus. A word (e.g.,‘‘table’’) appeared
on the screen and remained there until the participant provided a response. Immediately following the participant’s response, the screen remained
blank for 100 milliseconds before the next word was presented. Bottom: design of a single block in the verbal recognition task. Each block comprised
novel (yellow) and repeated words (gray). The complete task featured 6 blocks of 30 words each (10 novel and 10 repeated words). b. Distribution of
response times across all participants and trials. Arrow: overall mean.
doi:10.1371/journal.pone.0065608.g001
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Surrogate timeseries were obtained for each electrode of each

participant. Alpha power of the surrogate timeseries were

computed, yielding a matrix X̂X that is the random homologue of

X in Eq.1. We then applied Eq.2 after substituting X for X̂X ,

yielding a vector of correlations ĉcbetween surrogate data and

mean task accuracy.

The above process of generating surrogate data and computing

its correlation to task performance is repeated a total of 100 times.

Correlations between surrogate data and mean task accuracy were

stored in a matrix ĈCof size MxQ where M is the number of

electrodes and Q is the number of independently-generated

surrogate datasets.

Finally, we computed a significance threshold for each electrode

j such that its value exceeded that of at least 99% of columns in

ĈCj,1...Q. If this threshold was lower than the correlation between

task accuracy and alpha power in the original data, we considered

that the latter correlation was above chance.

A tutorial and code for surrogate data approach can be found at

https://sites.google.com/site/jpthivierge. Raw EEG data in

Matlab format is available from the corresponding author.

Topographic maps shown in figures 2–3 (described below) were

generated with BrainVision Analyzer 2.0 (Brain Products,

Morrisville, USA) using spline interpolation. These maps show

the correlation values between performance measures and EEG

power for each electrode.

Results

Resting-state Activity Predicts Task Performance
EEG activity was collected before and after the verbal

recognition task. Measures of behavioural performance included

responses times and accuracy in the identification of repeated

words. Response times were similar to previously reported findings

for similar tasks, with a mean reaction time of 823.30 ms (s.d.

109.25 ms) [24] (Fig. 1b). The overall mean accuracy was 88%

(s.d. 4%). The reaction time and accuracy of responses to novel

and repeated words are shown in Table 1. Results revealed that

accuracy was higher for novel than repeated words (one-way

repeated-measures ANOVA, F(1,11) = 1.30, p,.01). In addition,

incorrect answers yielded slower reaction times than correct

answers (F(1,12) = 25.72, p,.001).

The first question we sought to address was whether resting-

state EEG activity immediately preceding the verbal recognition

task was predictive of performance accuracy and reaction time. In

a first series of analyses, we compared the band-delimited power of

resting-state EEG obtained for each participant prior to the task

with their mean reaction time and accuracy.

For each individual electrode, we computed the Pearson

correlation between mean resting-state EEG power and mean

performance accuracy (% correctly identified stimuli as either

repeated or novel) across participants. Correlation values across

electrodes ranged from r = 2.61 to r = .86. The statistical

significance of correlation values was assessed with the surrogate

data approach based on 100 independently-generated surrogate

data sets, each set containing 12 ‘‘surrogate’’ participants (see

Methods). We uncovered a statistically reliable predictor of

accuracy, namely alpha power at posterior midline (parietal)

electrode Pz (r = .86; 99% correlation threshold based on surrogate

data: r = 6.74). We also found a strong link between both beta and

gamma power at Pz and task accuracy (See Table 2).

To further control for differences in the number of trials

separating two repeats of the same word, we performed the

following analysis. First, we divided trials involving repeated word

into repeated words with short lags (i.e., between 1 and 9 trials

between two repeats of the same word) and repeated words with

long lags (i.e., between 10 and 20 trials). Next, we computed

separate Pearson correlations to compare EEG activity with either

(1) mean accuracy on trials with short lags between repeated

words; or (2) mean accuracy on trials with long lags. We focused

these analyses on resting state alpha power at electrode Pz.

Results showed that, on trials with a short lag between repeated

words, accuracy was positively correlated with pre-task resting

state activity at Pz (r = .72, p,.009). Similarly, on trials with a long

lag between repeated words, accuracy was positively correlated

with pre-task resting state activity at Pz (r = .73, p,.007). These

results support our above finding that resting state alpha power at

Pz correlates with performance accuracy and argue that resting

Figure 2. Relationship between pre-task resting-state alpha activity and task accuracy. a. Topographic map showing electrode-by-
electrode correlation values between alpha power (mv2) and mean performance accuracy (% correct responses) averaged over all participants (spline
interpolation between sites). Gray circle: electrode Pz showing highest correlation value. b. Positive correlation between pre-task alpha power
(electrode Pz) and percentage accuracy (r = .86, p,.0001). Black dots show individual participants. Dashed line is the best-fitting (least squares) linear
regression.
doi:10.1371/journal.pone.0065608.g002
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state predicts performance accuracy for trials with both short and

long delays between repeated words.

These results support a link between posterior parietal resting-

state activity and performance accuracy, as participants with

higher resting-state alpha power attained higher levels of accuracy.

The relation between pre-task resting-state EEG and reaction

times was evaluated using a similar analysis as above. No

statistically significant correlation was found between resting-state

EEG power and reaction times in any of the frequency bands

considered (delta, theta, alpha, beta, or gamma), suggesting that

pre-task resting-state EEG is not a strong predictor of response

times. This finding is robust to changes in the statistical criterion

(95%, 98%, or 99% threshold based on surrogate method), as all

correlation values were markedly low (correlation values ranging

from r = 2.06 to r = .24).

Taken together, the above results suggest a link between resting-

state alpha power at posterior sites and accuracy in the verbal

recognition task. Next, we consider whether resting-state activity

undergoes any systematic changes following the verbal recognition

task, and whether these changes are related to performance on the

task.

Alterations in Subsequent Resting-State Activity Related
to Task Performance

A 262 ANOVA with Resting period (two levels: pre-task and

post-task) and Group (two levels: task and no-task) as factors was

first performed. Results of this analysis revealed no significant

interaction between Resting period and Group (F(1, 24) = 2.34,

p..14). There was also no significant main effect of Resting period

(F(1, 24) = 3.11, p..09) or Group (F(1, 24) = .14, p..70). Upon

further inspection, we found that, following the task, alpha power

decreased for some participants, and increased for others.

ANOVA may not detect a consistent trend if alterations in EEG

did not occur in the same direction across participants. Given this

variability, we performed a second series of analyses as follows. To

examine alterations in resting-state activity after completion of the

task, we computed a measure of Dalpha, which estimates changes

in alpha power between pre- and post-task resting-state periods

(see Methods). Values of Dalpha were compared between

participants who performed the verbal recognition task (Task

group) and a control group that did not perform the task (No-task

group).

Participants in the Task group exhibited markedly higher values

of Dalpha than participants in the No-task group (paired sample t-

test, t(11) = 3.28, p,.0007) (Fig. 3a). This effect was largest at

central parietal electrode CPz (Fig. 3b). Mean alpha values for CPz

in Fig. 3c.

The above analysis comparing Dalpha for the Task versus No-

task groups was repeated for all frequency bands tested (delta,

theta, beta, and gamma), using Bonferroni-corrected paired

sample t-tests (statistical criterion of a= .05/5 = .01 corrected for

multiple bands). No significant differences between the Task and

No-task groups were found for bands other than alpha (see

Table 3). Task-related alterations in resting-state activity were thus

specific to alpha power.

Are the above changes in subsequent resting-state alpha power

related to task performance? To address this question, we began

by computing the correlation between Dalpha at each electrode

and performance accuracy (percentage of words correctly identi-

fied as either repeated or novel). We then evaluated the statistical

significance of the resulting correlation values with the surrogate

data approach (see Methods). Performance accuracy was robustly

correlated with Dalpha at central parietal electrode CPz (r = .81,

correlation threshold based on surrogate data: r = 6.72), suggest-

ing that alterations in resting-state alpha power at CPz are related

to performance accuracy (Fig. 3d). The correlation between

Dalpha and accuracy seemed strongly driven by the two

participants with highest values of Dalpha. A follow-up correlation

excluding these participants, however, still yielded a robust

correlation between alpha-band alterations and task accuracy

(r = .67, p,.03). These results provide supporting evidence for

task-related changes in the statistics of resting-state activity. More

pronounced alterations in central parietal alpha power (as

measured by Dalpha) were associated with higher performance

accuracy.

In summary, participants’ resting-state alpha power was altered

after performing the task. These alterations were markedly greater

than in those participants who entered the control condition and

hence did not perform the task. This result was specific to alpha

power, and was not replicated for other frequency bands. Lastly,

the degree of alteration in alpha power at electrode CPz was

strongly associated with response accuracy, with more pronounced

alterations in participants who correctly identified a larger number

of words.

Table 1. Mean reaction time and accuracy during the verbal recognition task.

Stimulus Type Mean Reaction Time in ms (s.d.) Mean % Accuracy (s.d.)

Correct Answers

Novel Words 811.97(128.97) 93(4)

Repeated Words 820.84(110.52) 78(13)

Incorrect Answers

Novel Words 1407.73(443.28) ––

Repeated Words 1110.38(450.33) ––

doi:10.1371/journal.pone.0065608.t001

Table 2. Correlations at electrode Pz for each frequency
band.

Frequency Bands Correlation (r)
Surrogate
threshold p-value

Delta (1–3.5 Hz) .50 6.72 .1

Theta (4–7.5 Hz) .62 6.81 .03

Alpha (8–12.5 Hz) .86 6.74 .0001

Beta (13–29.5 Hz) .74 6.73 .005

Gamma (30–100 Hz) .75 6.68 .004

doi:10.1371/journal.pone.0065608.t002

Alteration in Resting-State Relate to Performance
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Discussion

Our goal was to investigate the relationship between resting-

state EEG and performance during a verbal recognition task in

which participants identified repeated and novel words. Partici-

pants whose pre-task alpha-band resting-state activity was higher

attained greater accuracy in verbal recognition and this effect was

topographically delimited to a central-posterior (Pz) site.

We also investigated resting-state activity immediately following

task execution and found marked alterations in alpha power that

were positively linked to performance: participants with larger

alterations in alpha power (localized to central parietal site CPz)

responded with greater accuracy.

Alterations in Alpha Activity are Related to Behavioural
Performance

Our results go beyond previous work linking resting-state alpha

activity with heightened performance [27]. We show that resting-

Figure 3. Alterations in resting-state alpha power following the verbal recognition task. a. Average change in alpha power (Dalpha)
between pre- and post-task resting-state periods (see Methods). Vertical bars = SEM. *p,.001. b. Topographic distribution of Dalpha values, showing
that posterior parietal electrodes had strongest alterations in alpha power between pre- and post-task resting-state periods. Colorbar indicates mean
Dalpha power values (in mv2) averaged over participants. Gray circle: electrode CPz (highest Dalpha value). c. Mean alpha power pre- and post-task for
the Task and No-Task groups at electrode CPz. Vertical bars = SEM. For the No-task group, ‘‘post-task’’ activity refers to resting-state activity recorded
after a 5 min waiting period corresponding to the duration of the task. d. Positive correlation between mean accuracy (% correct responses) and
change in alpha power (Dalpha) for site CPz. Black dots show individual participants. Dashed line is the best-fitting (least squares) linear regression.
doi:10.1371/journal.pone.0065608.g003

Table 3. Mean fluctuation values (D) values for the Task and
No-Task Group in each frequency band.

Frequency Bands

Fluctuation (D values6e25 in

mv2) p-valuea

Task Group No-Task Group

Delta (1–3.5 Hz) 2.96 (2.81) 7.57(11.8) .17

Theta (4–7.5 Hz) .95 (.88) .63(.58) .28

Alpha (8–12.5 Hz) 1.32(1.18) .18(.19) .0007**

Beta (13–29.5 Hz) .41(.42) .16(.11) .07

Gamma (30–100 Hz) .16(.22) .082(081) .25

aBonferroni corrected statistical criterion of **p = .05/5 = .01.
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state activity does not simply return to baseline levels after task

execution; rather, involvement in the task alters alpha-band

resting-state activity. Furthermore, higher task accuracy is

associated with more pronounced changes in alpha-band activity.

One possible explanation is that alterations in resting-state

dynamics reflect state transitions (i.e., coordinated changes in

activity) triggered by participants’ behavior during the task [28].

Independently of the underlying mechanism, the fluctuations in

alpha power we observed between pre- and post-task periods

clearly suggest that resting-state activity may be modulated by the

demands of a cognitive task.

Recent research has indicated that structural plasticity may

occur after several training sessions [19] or even hours of practice

[29]. However, the changes in resting state activity reported here

may be too rapid to reflect such plasticity. It is also unlikely that

alterations in resting state activity can be accounted for in terms of

spontaneous fluctuations in EEG signals [30] because pronounced

alterations in alpha power were not observed in the control (No-

task) group.

Nevertheless, it is important to acknowledge that alterations

observed in the task group could be related to factors such as

fatigue, the passage of time, and learning the task. It may be

possible to elucidate the causes of change in alpha activity with the

addition of control groups that perform a low/medium demand

task such as merely observing words on the screen or reducing the

repetition lag between words.

Resting-state and Task-related Activity
Research shows that the larger the change in alpha power from

resting to performance during a picture memory task, the better

the performance during recall [13]. Here, we add to such findings

by showing that alpha-band resting-state activity before a verbal

recognition task can predict accuracy during the task. In addition,

we compared alpha resting-state activity pre- and post-task and

found that alterations in resting-state activity also related to

performance accuracy. Studies show that higher alpha power

during task performance is related to event-related potential (ERP)

components that predict sustained attention [31], One promising

avenue would be to examine the link between ERPs and resting-

state activity [27] in a way that would integrate ERP components

related to cognitive operations with band-delimited EEG activity.

Alternative measures of ongoing EEG fluctuations could also be

considered, including coherence both within and across sites [32]

as well as cross-frequency coupling [33]. While our findings did

not find a link between response times and resting-state activity,

perhaps these alternative measures could help draw a more

complete portrait of the complex links between ongoing brain

fluctuations and online behavioural measures.

While the current study examined resting-state EEG with

opened eyes, further work will elucidate whether a stronger link to

accuracy can be obtained with eyes opened. Resting-state EEG

differs between eyes closed and opened conditions [34], with a

stronger relation reported between memory performance and

alpha power with closed eyes compared to opened eyes [17]. It

remains unknown whether these differences will extend to pre-

versus post-task alterations in resting state activity as reported

here.

It is unclear at present whether inter-participant differences in

the statistics of resting-state activity remain stable over repeated

testing sessions. Ongoing alpha activity is known to exhibit

multistable states (consistent fluctuations in patterns of activity)

that continuously alternate between low and high amplitudes [28].

The time course of these states may account for inter-individual

differences before and after task execution. Under this account,

participants in a state of high alpha power at rest would perform

more accurately than participants in a state of low alpha power, as

we found. Alternatively, differences in alpha power across

participants may reflect attributes of brain activity that are stable

over extended time periods, a question that remains to be

addressed.

The ubiquity of resting-state activity across brain states and

anatomical regions suggests that it plays a fundamental role in

brain function and cognitive processes. The present study shows

that resting-state activity predicts performance accuracy during a

verbal recognition task; and that performance during the task

reshapes the patterns of resting-state activity. The presence of a

mutual relationship between cognition, resting-state activity and

alpha power during the task raises fundamental questions about

the emergent nature of mental processes – questions that are

gradually being addressed by exploring the dynamical properties

of ongoing brain networks.
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