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ABSTRACT
Objectives Juvenile idiopathic arthritis (JIA) is an 
autoimmune disease and a common cause of chronic 
disability in children. Diagnosis of JIA is based purely 
on clinical symptoms, which can be variable, leading 
to diagnosis and treatment delays. Despite JIA having 
substantial heritability, the construction of genomic 
risk scores (GRSs) to aid or expedite diagnosis has not 
been assessed. Here, we generate GRSs for JIA and its 
subtypes and evaluate their performance.
Methods We examined three case/control cohorts 
(UK, US- based and Australia) with genome- wide single 
nucleotide polymorphism (SNP) genotypes. We trained 
GRSs for JIA and its subtypes using lasso- penalised 
linear models in cross- validation on the UK cohort, and 
externally tested it in the other cohorts.
Results The JIA GRS alone achieved cross- validated 
area under the receiver operating characteristic curve 
(AUC)=0.670 in the UK cohort and externally- validated 
AUCs of 0.657 and 0.671 in the US- based and 
Australian cohorts, respectively. In logistic regression 
of case/control status, the corresponding odds ratios 
(ORs) per standard deviation (SD) of GRS were 1.831 
(1.685 to 1.991) and 2.008 (1.731 to 2.345), and 
were unattenuated by adjustment for sex or the top 10 
genetic principal components. Extending our analysis to 
JIA subtypes revealed that the enthesitis- related JIA had 
both the longest time- to- referral and the subtype GRS 
with the strongest predictive capacity overall across data 
sets: AUCs 0.82 in UK; 0.84 in Australian; and 0.70 in 
US- based. The particularly common oligoarthritis JIA also 
had a GRS that outperformed those for JIA overall, with 
AUCs of 0.72, 0.74 and 0.77, respectively.
Conclusions A GRS for JIA has potential to augment 
clinical JIA diagnosis protocols, prioritising higher- risk 
individuals for follow- up and treatment. Consistent 
with JIA heterogeneity, subtype- specific GRSs showed 
particularly high performance for enthesitis- related and 
oligoarthritis JIA.

INTRODUCTION
Juvenile idiopathic arthritis (JIA) is an autoimmune 
disease that comprises all forms of arthritis arising 
before the age of 16 years and persisting for more 
than 6 weeks.1 JIA has a significant impact on quality 
of life, physical function and future development, 
and its prevalence is estimated at 0.07 to 4 per 1000 
children of European descent.2–4 The International 
League of Associations of Rheumatology (ILAR) 

classification system recognises seven subtypes of 
JIA based on the number of joints affected, age 
of onset and other features.5 The aetiology of JIA 
is not well understood and its diagnosis remains 
purely dependent on clinical presentations, which 
can be highly variable between patients. Currently, 
there are no sensitive or specific tests available to 
assist clinicians in making the diagnosis.

Early diagnosis and treatment of JIA is critical as 
delays increase the risk of prolonged and uncon-
trolled disease, with consequent poorer long- term 
outcomes.6–9 However, in most cases, general prac-
titioners and paediatricians have limited experience 
in recognising and diagnosing JIA. This affects time 
to diagnosis and causes delays in referral and treat-
ment (figure 1). Furthermore, symptomatic children 
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assist clinicians in making the diagnosis.

 ► JIA has similar genetic architecture to other 
autoimmune diseases and a strong association 
with the human leukocyte antigen (HLA) locus.

What does this study add?
 ► Demonstrates genomic machine learning can 
yield predictive genomic risk scores (GRSs) for 
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How might this impact on clinical practice or 
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 ► These GRSs have the potential to augment 
current JIA diagnosis protocols, prioritising 
higher- risk individuals for follow- up and 
treatment and reducing delays.

 ► Subtype- specific analyses highlight the potential 
for genetic studies to better understand 
heterogeneous diseases such as JIA, potentially 
paving the way for better disease subtype 
prediction in general.
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who turn out not to have JIA may be inappropriately referred to 
paediatric rheumatologists for management,10–12 putting undue 
pressure on clinics and waiting lists. A study in the UK found 
that the average time from symptom onset to first paediatric 
rheumatology assessment was ~7 months, with significant vari-
ation among JIA subtypes (range of median interval from 6 to 
60 weeks), which was due to complex pathways of referral and 
inappropriate invasive investigations.13 Therefore, there is an 
urgent need for tools that assist clinicians in assessing children 
who may be JIA cases, and thus reduce the risk of disease compli-
cations and poorer long- term health outcomes.

JIA is a complex disease14 and susceptibility is due to a complex 
interaction between genetic and environmental factors. It has 
been shown that JIA is heritable and that it possesses a genetic 
architecture similar to other autoimmune diseases, including 
shared susceptibility genes, mainly in the human leukocyte 
antigen (HLA) region.15–17 For first cousins the recurrence risk 
has been estimated to be 5.8- fold and for siblings, it has been 
estimated to be 11.6- fold.18 Taken together, it is apparent that 
genetics have an important aetiological role in JIA, and may have 
utility in risk prediction, potentially via stratification of JIA cases 
from non- cases to aid clinical diagnosis.

Genetics is increasingly used to aid risk prediction, diagnosis 
and earlier treatment of human diseases, with HLA testing for 
various immune disorders being an example. More recently, the 
clinical utility of genetic and polygenic risk scores for diverse 
aetiologies, from coeliac disease to cardiovascular diseases, has 
come under intense investigation.19–23 In coeliac disease, research 
has shown that a genomic risk score (GRS) based on genome- 
wide genetic variation (SNPs (single nucleotide polymorphisms)) 
can accurately predict cases from controls with high specificity 
and sensitivity, compared with other approaches.22 Furthermore, 
array technologies are relatively affordable with genotyping only 
needing to be performed once at any point in the lifetime of 
an individual. GRSs themselves are quantitative measurements 
of the likelihood that an individual of unknown phenotype has, 
or will have, a particular disease. Thus, GRSs provide poten-
tial advantages in terms of flexibility for clinical translation, as 
compared with other tests which are temporally variable or offer 
only a binary ‘susceptible/not susceptible’ output.

This study aims to create a GRS which in- principle could 
be used to support the current clinical JIA diagnosis practice. 
We used three large- scale independent cohorts of European 
ancestry to develop and test a GRS for JIA. Furthermore, we 
extended the GRS approach to design JIA subtype- specific 

GRSs, which we externally tested to quantify their potential 
relative clinical value in supporting each JIA subtype's time to 
diagnosis.

METHODS
Phenotype and clinical data
The ILAR classification system5 provides generally- accepted 
guidelines for researchers and clinicians to delineate the seven 
mutually- exclusive categories of JIA based on the dominant clin-
ical and laboratory features. In this work, the JIA diagnosis for 
three cohorts (UK, US- based and Australia) was made according 
to the ILAR revised criteria, and the age of onset of all cases was 
<16 years old. In the UK cohort,15 the JIA cases were obtained 
from five sources: The British Society for Paediatric and Adoles-
cent Rheumatology National Repository of JIA; a group of UK 
cases with long- standing JIA described previously;24 a cohort 
collected as part of the Childhood Arthritis Prospective Study;10 
a cohort of children recruited for the SPARKS- CHARM (Child-
hood Arthritis Response to Medication);25 and an ongoing 
collection of UK cases from the UK JIA Genetics Consortium. 
The controls were population- based from the shared UK 1958 
Birth cohort and UK Blood Services Common Controls, geno-
typed as part of the Wellcome Trust Case Control Consortium 
(WTCCC).26

In the US- based cohort, from the Children’s Hospital of Phil-
adelphia (CHOP),17 27 the JIA cases were collected from the 
electronic health records (EHR) completed by the paediatric 
rheumatology specialist within the Division of Rheumatology 
and abstracted into a JIA Registry maintained within the Center 
for Applied Genomics (CAG) at CHOP. Controls were unrelated 
and disease- free children recruited by the CAG team within 
the CHOP Healthcare Network. In addition, controls had no 
history of JIA or other chronic illnesses and were screened as 
negative for a diagnosis of autoimmune diseases, based on data 
from CHOP’s EHR and by intake questionnaires obtained by the 
recruiting staff from the CAG at CHOP.

Finally, in the Australian cohort, from the ChiLdhood Arthritis 
Risk factor Identification sTudY (CLARITY),28 29 all the cases 
were JIA diagnosed by a paediatric rheumatologist. Incident 
cases were defined as children recruited within 6 months of diag-
nosis and prevalent cases were defined as those children diag-
nosed more than 6 months before recruitment and since 1997. 
Controls were recruited through the Royal Children’s Hospital 
Day Surgery Unit. Exclusion criteria for cases and controls were 

Figure 1 Schematic of a typical clinical path from first symptoms to JIA diagnosis and treatment. Potential informative points are included for JIA 
genomic risk scores to prioritising higher- risk individuals for referral, follow- up and treatment. GRS,genomic risk score; JIA, juvenile idiopathic arthritis.
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the presence of major congenital abnormalities or illness that 
would forgo school attendance in the year prior to recruitment.

Genotype data and quality control
All genotypes included in each cohort were aligned to the 
GRCh37/hg19 assembly build and passed stringent quality 
control (QC) measures. Additionally, the QC cohorts were 
imputed to harmonise and maximise the genetic information 
across them. All the individuals considered were of European 
descent and outliers from each cohort were removed to achieve 
more homogeneous samples.

The initial UK cohort consisted of 2758 cases and 5187 
controls. Controls were obtained from the WTCCC, which 
have been demonstrated to be well- matched to the UK JIA 
cases,15 30 and were genotyped on the Illumina HumanOmniEx-
press array. For the UK JIA cases, 1670 were genotyped on the 
Illumina HumanOmniExpress array and 1088 on the Illumina 
HumanCoreExome array. The CHOP cohort consisted of 1229 
cases from the USA and Norway, and 5512 paediatric controls, 
all recruited from within the CHOP Healthcare Network, and 
genotyped on the Illumina HumanHap550 or Human610- 
Quad arrays.28 Lastly, CLARITY29 consisted of 558 cases and 
704 controls collected from the Royal Children’s Hospital and 
Monash Medical Centre in Melbourne. All controls and 406 
cases were genotyped on the Illumina HumanCore array, with the 
remaining 152 cases genotyped on the Illumina HumanHap550 
array.16 17

We applied consistent QC procedures across all the genotyped 
cohorts. The CLARITY cohort was genotyped in three batches 
and we performed QC separately in each. The QC was performed 
using plink1.931 32 and included: removing non- autosomal SNPs, 
SNPs with minor allele frequency (MAF) <1%, SNPs and indi-
viduals with missingness >10%, and SNPs with deviations from 
Hardy- Weinberg equilibrium in controls (p<10-3). Additionally, 
using KING V.2.1.5,33 we identified and randomly removed one 
of two individuals with a second or higher degree relatedness 
within the cohorts. The resulting genotyped and QC cohorts are 
described in the online supplementary table S1.

For genotype imputation of our QC cohorts, we used the 
Michigan Imputation Server34 with Minimac3 and the 2016 
Haplotype Reference Consortium (HRC) as the reference panel. 
After imputation, we merged all the CLARITY batches into a 
single set. Then, for each consolidated cohort (UK, CHOP and 
CLARITY), we removed multi- allelic and duplicated SNPs, SNPs 
with imputation r2 <0.5 and MAF <1%, SNPs deviating from 
the Hardy- Weinberg equilibrium in controls (p<10-3) and those 
with ambiguous strand (A/T or C/G alleles).

Next, we performed principal component analysis (PCA) 
using FlashPCA235 36 over the filtered samples (online supple-
mentary figures S1–S3). For each cohort, we selected the largest 
homogeneous subset of individuals based on visual inspection 
of the top five principal components (PCs) within each cohort. 
The UK cohort was kept in its entirety, while in CLARITY and 
CHOP, 168 and 3228 individuals were removed, respectively. 

Table 1 shows the final cohorts used in this work and online 
supplementary figures S4–5 show the PCA for these subsets. For 
the analysis, we used the n=5 545 761 genotyped and imputed 
SNPs which were available post- QC on all three cohorts.

Development and validation of the genomic risk score
The UK cohort was used to train our models as it was the most 
homogeneous cohort with the largest case sample size (2324 
cases, 5181 controls). To account for potential confounding by 
the case/control genotyping batch in the UK cohort, we used 
logistic regression of case/control status on sex and the first 10 
genetic PCs. The PCs were computed over a subset of the SNPs 
of UK, excluding the HLA region as well as known or putative 
JIA risk loci15 (defined here as SNPs with p<10-5 and all SNPs 
within 1 Mb of the former). The residuals from the regression 
were then used as the phenotype for constructing the GRS.

To create the GRS we used SparSNP,37 which is an efficient 
implementation of a lasso- penalised linear model previously 
shown to outperform other methods when there are known to be 
strong effects within regions of complex linkage disequilibrium 
(LD), such as the major histocompatibility complex (MHC).38

SparSNP considers all post- QC SNPs in the training cohort 
for the construction of the model, but the final number of SNPs 
receiving a non- zero weight varies depending on the value of 
the penalties used, which were tuned via 10 repeats of 10- fold 
cross- validation. The optimal number of SNPs selected in the 
chosen model was decided based on the model with the highest 
average area under the receiver operating characteristic curve 
(AUC) across the replications (online supplementary material).

Once a model was chosen, we computed the GRSs for each 
of the test cohorts (CHOP and CLARITY). Assuming that the 
number of SNPs is m , then the GRS  gi  for a new individual with 
genotypes  xi  is

 
gi =

m∑
j=1

xijβ̂j

  
where βj are the SNP weights obtained from the model. Subse-

quently, in order to validate the GRS, we evaluated it using 
logistic regression in CHOP and CLARITY, adjusting for sex and 
first 10 genetic PCs of each test set.

RESULTS
Training and external validation of the JIA genomic risk score
An overview of our study design is given in figure 2. We used 
10×10- fold cross- validation to tune the penalised model and 
estimate the AUC in the UK cohort, achieving a maximum 
AUC=0.671 (95% CI 0.668 to 0.674) and selecting 26 SNPs in 
the model (online supplementary figure S6). The small number 
of SNPs selected is consistent with the strong HLA association 
of JIA (confirmed in a genome- wide association study (GWAS) 
of the UK cohort, online supplementary figure S7), and the way 
that SparSNP assigns weights to SNPs taking into account the 
correlation between them.38 The final model (SNP weights) was 
held fixed for external validation.

Table 1 Cohort characteristics after imputation and quality control

Total individuals SNPs
Number
of cases

Number
of controls Number of males Number of females

UK 7505 6 029 891 2324 5181 3433 4072

CHOP 3513 6 338 131 559 2954 1671 1842

CLARITY 940 5 743 016 362 578 460 480

CHOP, Children’s Hospital of Philadelphia; CLARITY, ChiLdhood Arthritis Risk factor Identification sTudY; SNP, single nucleotide polymorphism.

https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
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https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
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Before computing the GRSs, we estimated the SNP heritability 
of JIA in our cohorts using GCTA V.1.91.739 40 and adjusted for 
first 10 PCs together with an assumed JIA population prevalence 
of 1/1000. The estimated SNP- heritabilities (on the liability scale) 
were h2

SNP=0.25 (SE 0.02) for the UK, h2
SNP=0.37 (SE 0.13) for 

CLARITY and h2
SNP=0.51 (SE 0.07) for CHOP. We corroborated 

these estimates using LDAK V.5.141 (online supplementary table 
S2). Of the three estimates, the UK is likely the most reliable one 
due to its size and homogeneity, while CLARITY and CHOP 
were likely too small to derive reliable estimates. For compar-
ison, we also derived the total narrow- sense heritability h2 based 
on the sibling recurrence risk and population prevalence;42 a 
sibling recurrence risk of 11.618 and a prevalence K=1/1000 
are compatible with JIA narrow- sense heritability of 0.54 (for 
K=0.07/1000 and 4/1000, h2=0.35 and 0.73, respectively).

We computed the GRS for CLARITY and CHOP, and evalu-
ated the model in terms of AUC and ORs (table 2). Overall, the 
GRS showed highly consistent performance across both valida-
tion cohorts. The associations of the GRS with JIA status were 
unattenuated when adjusting for the top 10 genetic PCs and 
sex. Furthermore, we compared the GRS model with a model 
restricted to known SNPs previously shown to be associated with 
JIA.15 Using this restricted model, we achieved AUC of 0.614, 
0.642 and 0.648 for the UK, CHOP and CLARITY, respectively, 
showing that the unrestricted GRS model was a stronger risk 
predictor.

Recent works have shown that a metaGRS approach 
can substantially improve genomic prediction of common 
diseases.20 43 Given the strong pleiotropy across autoimmune 
diseases, we hypothesised that it may be possible to extract more 
predictive signal from GRSs generated for other autoimmune 
diseases, via a meta- analytic strategy to construct a GRS for JIA 
that captures the totality of information from these GRSs into 
a single metaGRS for JIA. Thus, we computed a JIA metaGRS, 
based on a set of related autoimmune disease GWAS summary 
statistics, and compared with the GRS computed using lasso- 
penalised regression (online supplementary material). However, 
the JIA metaGRS’s performance was not significantly better than 
the original JIA GRS, thus subsequent analyses used the original 
model based on JIA alone.

Subtype analysis
We extended our analysis to consider subtypes of JIA and construct 
subtype- specific GRSs thereof. The ILAR recognises seven 
subtypes of JIA: systemic arthritis, oligoarthritis, rheumatoid- 
factor- positive polyarthritis (RF- positive), rheumatoid- factor- 
negative polyarthritis (RF- negative), enthesitis- related arthritis 
(ERA), psoriatic arthritis and undifferentiated arthritis.5 Subtypes 
vary substantially in average age at onset, sex distribution, 
number of joints affected and clinical features (figure 3).44 Of 
particular interest clinically, is the time between onset of symp-
toms to visiting a paediatric rheumatologist, which has been 

Figure 3 Cross- validated AUC achieved by training the seven JIA 
subtype specific models (top), and median time taken by an individual 
with JIA to be referred for first time to a paediatric rheumatologist 
visit (in months; bottom).39 AUC, area under the receiver operating 
characteristic curve; GRS, genomic risk score; JIA, juvenile idiopathic 
arthritis; RF- positive, rheumatoid- factor- positive polyarthritis; RF- 
negative, rheumatoid- factor- negative polyarthritis.

Figure 2 Outline of the study design followed in this work. 
AUC, area under the receiver operating characteristic curve; CHOP, 
Children’s Hospital of Philadelphia; CLARITY, ChiLdhood Arthritis 
Risk factor Identification sTudY; GRS, genomic risk score; JIA, juvenile 
idiopathic arthritis; PCs, principal components; SNP, single nucleotide 
polymorphism.

Table 2 The predictive power of the GRS in the validation sets. 
Based on logistic regression on the test sets, optionally adjusted for 
sex and top 10 genetic PCs. Effect sizes are per SD of the GRS

AUC (95% CI) OR (95% CI)

CHOP

  Sex+PCs 0.677 (0.654 to 0.701)

  GRS 0.657 (0.631 to 0.683) 1.831 (1.685 to 1.991)

  GRS+sex+PCs 0.735 (0.712 to 0.758) 1.838 (1.686 to 2.007)

CLARITY

  Sex+PCs 0.671 (0.636 to 0.706)

  GRS 0.671 (0.635 to 0.706) 2.008 (1.731 to 2.345)

  GRS+sex+PCs 0.738 (0.705 to 0.770) 2.085 (1.773 to 2.471)

AUC, area under the receiver operating characteristic curve; CHOP, Children’s 
Hospital of Philadelphia; CLARITY, ChiLdhood Arthritis Risk factor Identification 
sTudY; GRS, genomic risk score; PCs, principal components.

https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
https://dx.doi.org/10.1136/annrheumdis-2020-217421
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estimated to vary from 11 months (range: 8 to 70 weeks) in the 
case of enthesitis- related JIA to 1 month (range: 2 to 36 weeks) 
for systemic JIA.13 39 The heterogeneity of JIA was reflected 
in our case data; all seven subtypes were present, although at 
frequencies ranging from common (  41% of UK cases were 
oligoarthritis JIA) to relatively rare (  2% of UK cases were 
undifferentiated JIA) (table 3).

For each JIA subtype, we used the UK cohort to train 
subtype- specific GRSs, employing a similar approach as the JIA 
GRS above (Methods). Each subtype GRS was trained on the 
respective subtype’s cases and all controls, excluding other JIA 
subtypes cases from the training and validation cohorts. Online 
supplementary table S7 shows the number of SNPs selected by 
each subtype- specific model, and online supplementary figures 
S12–15 illustrate how the SNPs selected by different subtype- 
specific models correlated between them. In general, we observed 
that the SNPs selected by each model were distinct and few or 
none of them were in high LD with any SNP selected for another 
model, with the exception of the oligoarthritis and RF- negative 
models, which is consistent with previous studies.44 Once we 
computed the subtype- specific GRSs, we externally tested them 
in CHOP and CLARITY.

There was a high degree of variability in discrimination 
between subtype GRSs, with some subtypes displaying cross- 
validated AUCs greater than the JIA GRS and others not exhib-
iting significantly discrimination compared to random chance 
(AUC=0.5; figure 3). When compared with a previous esti-
mate of the median time for a child with JIA to be referred to a 
paediatric rheumatologist visit,39 we found that the JIA subtype 
(ERA) with the longest time- to- referral (~11 months) also had 
the strongest subtype GRS (AUC=0.82 with 138 SNPs) and that 
the next strongest subtype GRS (AUC=0.71 with 25 SNPs) was 
for oligoarthritis JIA, which has a median time- to- referral of ~3 
months. Since HLA- B27 antigen tests are a component of the 
ERA diagnosis criteria,5 45 we sought to evaluate whether HLA- 
B27 genotypes were predictive of ERA status. The HLA- B27 
model from46 47 was used to classify each individual as HLA- 
B27 positive or negative within each cohort (online supplemen-
tary material). The ERA GRS model's cross- validated AUC was 
higher than the AUC obtained using the HLA- B27 model in the 
UK cohort (AUC=0.82 and AUC=0.79, respectively). This was 
consistent with external validations in CHOP (AUCs 0.698 and 
0.678) and CLARITY (AUCs 0.838 and 0.803); however, the 
differences were not statistically significant using a DeLong test48 
(online supplementary table S5). While the low frequency of 
ERA (CHOP: n=66, CLARITY: n=16) limited the test’s power, 

there was notable consistency of cross and external validation 
performance across all cohorts.

The weakest subtype GRSs were for the undifferentiated 
(AUC=0.542 with 1487 SNPs) and systemic (AUC=0.528 with 
826 SNPs) subtypes. This was not unexpected as these subtypes 
are somewhat different to the other five subtypes. Children are 
diagnosed with the undifferentiated subtype when their symp-
toms do not fit within other subtypes, or meet the criteria for 
multiple subtypes. Systemic JIA is considered an autoinflam-
matory disease with little genetic overlap with the other JIA 
subtypes.49 However, it has been shown that systemic JIA has 
strong genetic signals from the HLA class II molecule encoded 
by HLA- DRB1*11, confirming the role of the adaptive immune 
system.50 To test this, we statistically imputed HLA- DRB1*11 risk 
alleles using HIBAG V.1.2051 52 in the three cohorts, tested the 
predictive power of these genotypes, and compared them with 
our systemic JIA GRS in CHOP and CLARITY (online supple-
mentary table S6). In the UK cohort, the HLA- DRB1*11 model 
was associated with systemic JIA (OR=1.31, 95% CI 1.19 to 
1.43) and had a higher AUC (0.563) than in the cross- validated 
UK systemic JIA GRS model. However, its performance on the 
external cohorts was inferior to using the systemic JIA GRS, as 
the HLA- DRB1*11 frequencies were the same in systemic JIA 
cases and the controls (CHOP:~18%; CLARITY:~25%), unlike 
the UK cohort (~25% in cases and ~12% in controls). Given 
the heterogeneity across cohorts, interpreting these results is 
challenging particularly because systemic JIA is relatively rare, 
and HLA- DRB1 alleles are often less accurately imputed than 
other alleles.51 53

In general, external validation of the subtype- specific GRSs in 
CLARITY showed highly consistent AUC estimates with cross- 
validation performance in the UK, while in the CHOP cohort 
there was somewhat less consistent external validation than 
CLARITY (table 4).

DISCUSSION
The accurate and timely diagnosis of JIA is a currently unmet 
clinical need. In this study, we aimed to address the paucity of 
molecular tools to aid the entirely clinical diagnosis of JIA, by 
leveraging the wealth of human genomic data gathered over the 
last decade, and developing a series of GRSs for JIA. We have 
shown that genomic machine learning can yield predictive GRSs 
for JIA as a composite diagnosis as well as subtype- specific GRSs, 
including the most common clinically reported subtype (oligoar-
thritic JIA),54 as well as enthesitis- related JIA, which can present 
with non- specific pains initially and is therefore more difficult to 

Table 3 Characteristics of JIA subtypes across cohorts, including rate (%) of each subtype among cases of each cohort. Cases with no known 
subtype classification were excluded (n=29 from CLARITY and n=25 from the UK)

UK (2324 cases) CHOP (559 cases) CLARITY (333 cases)

Rate (%) Males Females
Rate
(%) Males Females

Rate
(%) Males Females

Enthesitis- related 7.4 136 37 11.8 40 26 4.4 13 3

Oligoarthritis 41.1 299 657 36.3 39 164 43.9 42 117

RF- negative 23.8 144 408 24.2 34 101 20.7 23 52

RF- positive 5.5 13 115 5.2 1 28 3.0 1 10

Psoriatic 5.9 50 86 7.2 11 29 5.0 12 6

Undifferentiated 2.1 21 28 4.7 8 18 7.5 13 14

Systemic 13.2 142 164 10.6 24 36 7.5 12 15

CHOP, Children’s Hospital of Philadelphia; CLARITY, ChiLdhood Arthritis Risk factor Identification sTudY; JIA, juvenile idiopathic arthritis; RF- negative, rheumatoid- factor- negative 
polyarthritis; RF- positive, rheumatoid- factor- positive polyarthritis.
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diagnose clinically. Given the cost effectiveness of a genotyping 
array and the time- invariant properties of germline DNA, these 
JIA GRSs hold promise for rapid clinical translation as means 
of diagnosis and risk stratification. At- risk children can be non- 
invasively stratified as high- risk much earlier in the diagnostic 
pathway, and children with low risk non- inflammatory disease 
can be appropriately triaged and managed earlier. To facili-
tate translation and clinical uptake, we have made the genetic 
variants and weights of our JIA GRSs publicly available via the 
Polygenic Score (PGS) Catalog (http://www. pgscatalog. org/ pgs/ 
PGS000114/).

A strength of this study is that the JIA GRS was developed 
on a UK data set and externally validated in two independent 
studies in Australia and the USA, indicating the robustness of 
the score. Despite having used the largest JIA cohorts available 
currently, the scores developed here only partially explained the 
genetic variability in JIA. Future improvements in predictive 
power will likely come with larger cohorts, particularly for less- 
common subtypes. In the case of the ERA subtype, we found 
that the GRS AUC was greater than the HLA haplotype in the 
UK, Australian and US- based cohorts. However, we caution that 
larger cohorts will be necessary for powerful statistical testing 
and assessment of clinical utility of GRS as compared with HLA 
typing for both ERA and systemic JIA. Furthermore, given the 
genetic heterogeneity of JIA subtypes, our study demonstrates 
that adding genomics to the ILAR classification has potential to 
increase the efficiency of classification, and may in turn inform 
the refinement or even redefinition of JIA subtype classification. 
However, we also caution that a limitation of the current study 
is that the participants in our cohorts were of European descent 
and we were unable to assess the performance of the JIA GRS in 
individuals of non- European ancestries,55 which will be crucial 
for wide- spread clinical deployment of such scores.

In both primary and tertiary healthcare settings, it is often 
challenging to recognise and diagnose JIA in children, as there 
are many non- inflammatory conditions that are common to 
children that present with musculoskeletal pain mimicking JIA. 
Difficulty in discriminating between these cases causes delays 
in accessing vital care, due to the multitude of investigations 
and assessments that need to be done first. Moreover, accessing 
paediatric rheumatology specialist services is difficult, as waiting 
lists are usually lengthy and access to care is problematic due to 
workforce shortages worldwide.56 Currently, there are no sensi-
tive or specific tests available to assist clinicians in making the 
diagnosis of JIA. In a well- resourced setting, a clinician will typi-
cally use a combination of history, examination, blood tests such 
as inflammatory markers, rheumatoid factor (positive in 7%), 
HLA- B27 (varying on subtype but present in between 10% to 
74% cases); or medical imaging, such as X- ray, ultrasound or 
MRI. The potential burden of such repeated testing on children 
and their families can be high, both in a socioeconomic sense and 
psychological sense. Therefore, in the hands of a primary care 
doctor a diagnostic algorithm based on a JIA- GRS may provide 
a more timely, accessible and reliable means of assessing chil-
dren with musculoskeletal symptoms who may be JIA cases, thus 
enabling appropriate triage and referral, facilitating early access 
to appropriate care, and reducing the pain, complications of the 
disease and poor long- term health outcomes, due to delayed 
diagnosis and treatment.
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