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ABSTRACT
For reasons that remain unclear, endogenous synthesis 
and tissue levels of coenzyme Q10 (CoQ10) tend to 
decline with increasing age in at least some tissues. When 
CoQ10 levels are sufficiently low, this compromises the 
efficiency of the mitochondrial electron transport chain, 
such that production of superoxide by site 2 increases 
and the rate of adenosine triphosphate production 
declines. Moreover, CoQ10 deficiency can be expected 
to decrease activities of Sirt1 and Sirt3 deacetylases, 
believed to be key determinants of health span. Reduction 
of the cytoplasmic and mitochondrial NAD+/NADH ratio 
consequent to CoQ10 deficit can be expected to decrease 
the activity of these deacetylases by lessening availability 
of their obligate substrate NAD+. The increased oxidant 
production induced by CoQ10 deficiency can decrease the 
stability of Sirt1 protein by complementary mechanisms. 
And CoQ10 deficiency has also been found to lower mRNA 
expression of Sirt1. An analysis of the roles of Sirt1/Sirt3 
in modulation of cellular function helps to rationalise 
clinical benefits of CoQ10 supplementation reported 
in heart failure, hypertension, non-alcoholic fatty liver 
disease, metabolic syndrome and periodontal disease. 
Hence, correction of CoQ10 deficiency joins a growing 
list of measures that have potential for amplifying health 
protective Sirt1/Sirt3 activities.

SUBOPTIMAL COENZYME Q10 (COQ10) STATUS 
MAY DIMINISH SIRT1 ACTIVITY BY MULTIPLE 
MECHANISMS
The physiologically essential cofactor 
CoQ10 functions to transport elections from 
site 1 and 2 in the mitochondrial electron 
transport chain (ETC) to site 3. Although 
CoQ10 can be synthesised within mito-
chondria, certain rare genetic variants of 
genes required for this synthesis are asso-
ciated with effective CoQ10 deficiency and 
clinical syndromes.1 2 However, even in the 
majority of individuals lacking such vari-
ants, suboptimal CoQ10 levels—impairing 
the efficiency of the ETC—may develop in 
specific tissues with ageing.3 4 CoQ10 defi-
ciency may be said to exist when this ineffi-
ciency leads to an increased backup of elec-
trons at sites 1 and 2; this has been shown to 
increase superoxide generation at site 2 and 
is also associated with reduced efficiency 

of adenosine triphosphate (ATP) genera-
tion.5 This increased production of reactive 
oxygen species (ROS) and associated reduc-
tion in ATP levels can evidently compromise 
the function of affected tissues.

Moreover, there is reason to believe that 
Sirt1 and Sirt3 activity will be impaired in 
CoQ10-deficient cells. First, their activities 
will be decreased by the decline in NAD+/
NADH ratio, both in the cytoplasm and in 
mitochondria, that results from the backup 
of electrons in the proximal portion of the 
ETC.6 7

Second, the elevation of ROS associ-
ated with such deficiency can be expected 
to decrease Sirt1 protein expression by 
increasing its proteasomal degradation. 
Oxidant stress, in part via activation of 
apoptosis signal-regulating kinase 1, tends 
to promote activation of the stress-activated 
mitogen activated protein (MAP) kinases: 
c-Jun N-terminal kinase (JNK) and p38.8–10 
The former confers a phosphorylation on 
Ser47 of Sirt1 that prepares it for ubiquitina-
tion and subsequent proteasomal degrada-
tion.11 This effect is however opposed by the 
widely expressed deubiquitinase USP22.12–14 
Transcription of the USP22 gene is inhib-
ited by binding of Sp1 transcription factor 
to the proximal promoter of this gene and 
phosphorylation of Sp1 by p38 MAP kinase 
enables Sp1 to bind to this promoter.15–17 
Hence, p38 activation decreases synthesis 
of an enzyme that impedes the proteasomal 
degradation of Sirt1. In this way, the activa-
tion of JNK and p38 stemming from CoQ10 
deficiency can collaborate to accelerate the 
proteasomal destruction of Sirt1.

Third, the synthesis of Sirt3—a key factor 
in control of oxidative stress within the mito-
chondrial matrix18–21—is promoted by Sirt1 
activity, and hence will be compromised by 
CoQ10 deficiency. Sirt3 synthesis is driven 
by a complex between PPARγ coactivator-1α 
(PGC-1α) and the transcription factor 
estrogen-related receptor-α; as is well known, 
Sirt1 activity plays a key role in both the acti-
vation and the expression of PGC-1α.22–24
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Finally, there is evidence that CoQ10 status can regu-
late Sirt1 expression at the mRNA level, at least in the 
context of diabetes. In rats rendered diabetic by strep-
tozotocin administration, hepatic Sirt1 mRNA declines; 
this effect is reversed by CoQ10 administration.25 The 
mechanistic basis for this effect remains unclear. Certain 
microRNAs that downregulate Sirt1 are reported to be 
upregulated in diabetic rodents and in cell lines exposed 
to hyperglycaemic.26–29

PHYSIOLOGICAL IMPLICATIONS OF DIMINISHED SIRT1/SIRT3 
ACTIVITY
The consequences of decreased Sirt1/Sirt3 activity can 
include:

	► Decreased mitophagy and mitochondrial biogen-
esis—effects which can evidently amplify the oxidant 
stress and diminished ATP production associated 
with CoQ10 deficiency.30–32 CoQ10 deficiency can 
however be associated with increased mitophagy, 
likely owing to oxidant-mediated damage to the mito-
chondrial inner membrane detected by the Pink/
Parkin system.33 34 In other studies, added CoQ10 has 
enhanced mitophagy, possibly owing to enhanced 
Sirt1/Sirt3 activity.35 36

	► Increased activity of the proinflammatory transcrip-
tion factor nuclear factor kappa beta (NF-kappaB), 
the activity of which Sirt1 represses via deacetyla-
tion.37 38

	► Decreased activity of the Nrf2 transcription factor—
activated by Sirt1-mediated deacetylation37 38—which 
promotes expression of a range of antioxidant 
enzymes and also boosts synthesis of the key intracel-
lular antioxidant glutathione.39

	► Decreased activation of AMP-activated kinase 
(AMPK), reflecting the fact that Sirt1 activity stabi-
lises and promotes appropriate intracellular localisa-
tion of its upstream activating kinase LKB1.40 AMPK 
promotes autophagy;41–43 it also enhances utilisation 
of free fatty acids as fuel, an effect which opposes 
development of obesity and lipotoxicity.44

	► Decreased synthesis of the KLF2 transcription 
factor.45 46 Within endothelial cells, KLF2 exerts 
important anti-inflammatory and antithrombotic 
effects, and also promotes transcription of endothe-
lial nitric oxide synthase (eNOS), of vital importance 
to healthful endothelial function.47 48

	► Decreased activity of eNOS, as Sirt1-mediated 
deacetylation of this enzyme boosts its activity.49

	► Upregulation of apoptosis and senescence, owing 
to the fact that Sirt1 promotes efficient DNA repair, 
while inhibiting the proapoptotic activity of p53 and 
FOXO factors by deacetylating them.50–54

	► Increased hepatic de novo lipogenesis, owing to the 
fact that Sirt1 activity, via deacetylation of the tran-
scription factor sterol response element binding 
protein-1c (SREBP-1c), decreases the expression of 
enzymes catalysing lipogenesis.55

	► Decreased adipocyte production of adiponectin. A 
complex of FOXO1 and C/enhancer-binding protein 
a forms on the promoter of the adiponectin gene 
to drive its transcription; deacetylation of FOXO1 
by Sirt1 is required for formation of this nuclear 
complex.56–58

ENHANCED SIRT1 ACTIVITY MAY EXPLAIN SOME BENEFITS OF 
COQ10 SUPPLEMENTATION
The implications of cellular CoQ10 deficiency can thus 
extend far beyond ATP deficit and increased mitochon-
drial ROS generation. The clinical consequence will 
hinge on the specific types of cells in which CoQ10 is 
deficient.

If we consider clinical conditions in which supple-
mental CoQ10 has been most often employed with some 
worthwhile efficacy—congestive heart failure, hyperten-
sion, and periodontal disease59–64—measures which posi-
tively modulate Sirt1 activity have been shown to have a 
beneficial influence in rodent models of these syndromes, 
whereas the converse is also true.65–73

The ability of Sirt1 to boost AMPK activity, while dimin-
ishing that of SREBP-1c and NF-kappaB, suggests that 
CoQ10 supplementation might sometimes be useful 
in management of non-alcoholic fatty liver disease—a 
prediction consistent with rodent studies and initial clin-
ical studies evaluating CoQ10 in this disorder.74–77

A recent meta-analysis of CoQ10 supplementation in 
patients with metabolic syndrome reveals that CoQ10 
enhances plasma adiponectin levels while decreasing 
C reactive protein (CRP), fasting glucose and glycated 
haemoglobin levels.78 A key mediator of this effect 
may be adipocytes, as mitochondrial levels of CoQ10 
have been found to be lower in insulin-resistant mouse 
adipocytes and in adipose tissue from insulin-resistant 
humans.5 Also, Sirt1 depletion of adipocytes has been 
shown to sensitise mice to diet-induced insulin resistance; 
this may reflect the fact that, via anti-inflammatory effects 
on adipocyte cytokine production, Sirt1 activity lessens 
the recruitment and M1 polarisation of macrophages 
in adipose tissue.79 This effect might be expected to 
moderate CRP production while aiding maintenance of 
peripheral insulin sensitivity and glycaemic control. Mito-
chondrial oxidant production in CoQ10-deficient adipo-
cytes can itself promote adipocyte insulin resistance, but 
lack of the antioxidant impact of Sirt1 could be expected 
to potentiate this effect.5

REGULATION OF COQ10 LEVELS: MORE QUESTIONS THAN 
ANSWERS
Presumably, CoQ10 will be beneficial primarily in 
circumstances where mitochondrial levels of CoQ10 have 
declined to the point where they are rate limiting for 
ETC electron transport. Why does this happen in specific 
tissues in specific disorders? Although the multiple mito-
chondrial enzymes required for human CoQ10 synthesis 
are being characterised, the mechanisms regulating 
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CoQ10 synthesis are still poorly understood.80 In ageing 
rodents, age-related declines in CoQ10 have been 
observed in heart, kidney and skeletal muscle, whereas 
hepatic levels increase.81 In humans, heart levels of 
CoQ10 peak at about age 20 years and decline by about 
50% at age 80 years.82 In heart failure patients, heart 
levels of CoQ10 decline as the stage of heart failure 
worsens—do the cellular perturbations associated with 
heart failure compromise CoQ10 synthesis?83 And do 
signals that promote mitochondrial biogenesis likewise 
promote CoQ10 synthesis?

One report is of particular interest: PPARα agonists 
were shown to boost CoQ10 levels in the liver, kidney 
and heart of mice via induction of a number of enzymes 
required for CoQ10 synthesis.84 Since the xanthophyll 
carotenoid astaxanthin has been found to function as a 
PPARα agonist, it is conceivable that astaxanthin supple-
mentation—which could also be expected to protect the 
mitochondrial ETC from oxidative damage via its oxidant 
scavenging activity85—could be useful for maintaining 
healthful cellular levels of CoQ10.86–88 PPARα activity also 
promotes expression of mitochondrial enzymes required 
for fatty acid oxidation and ketogenesis.89 90

Treatment with statins or bisphosphonates interferes 
with CoQ10 synthesis by suppressing production of 
isoprenyl group precursors.91 92 Whether CoQ10 supple-
mentation of elderly people treated with these drugs 
might improve their long-term health outcomes is not yet 
clear; however, CoQ10 deficiency does not appear to be 
the primary mediator of statin-induced myopathy.84

Additional nutraceuticals with practical potential for 
boosting Sirt1 activity, as recently reviewed, include ferulic 
acid, melatonin, N1-methylnicotinamide, urolithin A, 
berberine and nicotinamide riboside.93–100 Curiously, 
ferulic acid may mediate much of the health benefit 
associated with ingestion of unrefined whole grains and 
anthocyanin-rich fruits and vegetables, whereas urolithin 
A may mediate the protection afforded by ellagitannins 
present in pomegranates and other foods.101–103
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