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ABSTRACT The annotated genome of Aspergillus tanneri, a recently discovered drug-
resistant pathogen, was determined by employing the Oxford Nanopore MinION plat-
form and the Funannotate pipeline. The genome size and the number of protein-coding
genes are notably larger than those of the most common etiological agent of aspergillo-
sis, Aspergillus fumigatus.

Two fatal invasive aspergillosis (IA) cases in chronic granulomatous disease (CGD)
patients who failed to respond to aggressive antifungal therapies were caused by

a newly discovered Aspergillus species, Aspergillus tanneri (1), in the Aspergillus taxo-
nomic section Tanneri (2). Mycological characterization and targeted gene identification
of the clinical A. tanneri strains were performed (1).

A. tanneri strain NIH1004 was isolated from a 19-year-old CGD patient who suffered
from fatal aspergillosis. Primary clinical cultures of A. tanneri NIH1004 were grown on
Sabouraud dextrose agar. Isolates were subcultured and incubated for 2 to 3 weeks at
37°C. DNA was isolated from lyophilized mycelium that had been grown in liquid yeast
glucose medium for 36 h at 37°C and was extracted using the cetyltrimethylammonium
bromide (CTAB) method (3) after vigorous mixing with glass beads. Genomic DNA was
sheared and sized for preparation of libraries to sequence on three sequencing
platforms and was quality checked using an Agilent 2100 Bioanalyzer (Santa Clara, CA),
as well as by quantitative PCR (catalog number KK4835; Kapa library quantification kit).
Initial sequencing was performed on the Illumina HiSeq 2500 platform using 100-bp
paired-end reads and 8-kb paired-end 454 reads. The Illumina sequence reads provided
30� genome coverage, consisting of 37,410,025 bp (G�C content, 47.4%). Reads were
assembled de novo using the Celera Assembler (4), which resulted in 870 contigs with
an N50 of 134,193 bp. An improved assembly was obtained using a long-read sequenc-
ing technology. An A. tanneri library was prepared using a ligation sequencing kit
(product number SQK-LSK108; Oxford Nanopore) and was analyzed in an Oxford 9.4.1
flow cell with a MinION device. Assembly was performed using Minimap2 (5) and
miniasm (6), with default parameters. The sequences within the assembled contigs
were error corrected using Racon v1.3.1 (7) and Pilon (v1.22; four rounds) (8). The reads
used for error correcting were generated using wgsim (https://github.com/lh3/wgsim)
to simulate reads based on the Celera Assembler-assembled contigs. We generated 4
million simulated 150-bp paired-end reads with a quality score of 40. The wgsim tool
was modified from the MAQ read simulator by dropping dependencies; wgsim was
originally released in the SAMtools software package. The resulting MinION assembly
consisted of 38,719,388 bp (G�C content, 47.3%). This improved A. tanneri assembly
resulted in 14 contigs, with an N50 of 4,499,170 bp, and is the first published A. tanneri
sequence.

Whole-genome annotation of the A. tanneri assembly was performed using the

Citation Mounaud S, Venepally P, Singh I,
Losada L, Seyedmousavi S, Kwon-Chung KJ,
Nierman WC. 2020. Annotated genome
sequence of Aspergillus tanneri NIH1004.
Microbiol Resour Announc 9:e01374-19.
https://doi.org/10.1128/MRA.01374-19.

Editor Jason E. Stajich, University of California,
Riverside

This is a work of the U.S. Government and is
not subject to copyright protection in the
United States. Foreign copyrights may apply.

Address correspondence to Kyung J. Kwon-
Chung, jkchung@niaid.nih.gov, or William C.
Nierman, wnierman@jcvi.org.

* Present address: Liliana Losada, Division of
Microbiology and Infectious Diseases, National
Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda,
Maryland, USA; Seyedmojtaba Seyedmousavi,
Microbiology Service, Department of
Laboratory Medicine, Clinical Center, National
Institutes of Health, Bethesda, Maryland, USA.

Received 31 October 2019
Accepted 6 December 2019
Published 16 January 2020

GENOME SEQUENCES

crossm

Volume 9 Issue 3 e01374-19 mra.asm.org 1

https://orcid.org/0000-0002-6194-7447
https://github.com/lh3/wgsim
https://doi.org/10.1128/MRA.01374-19
mailto:jkchung@niaid.nih.gov
mailto:wnierman@jcvi.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01374-19&domain=pdf&date_stamp=2020-1-16
https://mra.asm.org


Funannotate pipeline (v1.5.1-93c317b) (9). Initially, following the masking of repeats
identified by RepeatMasker (v1.332) (10) and RepeatModeler (v1.0.11) (10), ab initio
gene models for the contig sequences were predicted using the GeneMark-ES (v4.36)
(11) and AUGUSTUS (v3.2.3) (12) programs. Evidence-based gene models were gener-
ated by aligning the contig sequences from the A. tanneri genome with the combined
protein sequence (UniProtKB) database using DIAMOND (v0.9.21.122) (13) and later
polishing using Exonerate (v2.4.0) (14). EVidenceModeler (v0.1.30) (15) with its weight-
ing algorithm, as implemented in the Funannotate pipeline, was used to select the
consensus models from among the ab initio and evidence-based gene models. Func-
tional annotation of the consensus models was performed after removal of those with
short lengths, gaps, and transposable elements. A total of 11,846 genes were associated
with 64,436 annotations by performing sequence similarity searches against the Pfam
(v32.0) (16), InterPro (v71.0) (17), BUSCO (v2.0) (18), EggNOG (v4.5) (19), MEROPS (v12.0)
(19), and CAZyme (v7.0) (20) databases and using the SignalP secretome prediction
program (v4.1) (21). The tRNA genes were identified by using tRNAscan-SE (v1.23) (22).

The biosynthetic gene cluster (BGC) mining program antiSMASH (v4.1.0) (23), with
its Minimum Information on Biosynthetic Gene cluster (MIBiG) repository of experimen-
tally characterized BGCs (24), was utilized to identify 95 distinct secondary metabolite
BGCs. This number of clusters is considerably higher than those in a set of eight related
aspergilli, with a range from the highest at 68 for A. niger to the lowest at 39 for A.
fumigatus at 39 (25).

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number QUQM00000000. Raw sequence
reads have been deposited in the SRA under accession number SRX4502713.
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