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A Cell-Based Assay to Assess Hemichannel 
Function
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Activation of connexin hemichannels is involved in the pathophysiology of disorders that include 
deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. 
Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their 
translational application. The absence of a battery of useful inhibitors is due in part to the absence of 
simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that 
we have recently developed to assess hemichannel function. The assay is based on the expression of 
functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These 
modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels 
allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-
throughput multi-well platforms.
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INTRODUCTION

Membrane proteins correspond to ~30 percent of 
genomes and are frequently expressed at low levels [1]. 
However, they are the targets of the majority of drugs cur-
rently on the market and drug transporting membrane pro-
teins are also important targets to affect pharmacokinetics 
[2,3]. Ion channels constitute a subgroup of membrane 
proteins characterized by their conductance, gating, and 
selectivity. When open, ion channels form a hydrophilic 
pathway across the membrane through which ions flow 
at a high rate by electrodiffusion, determining their con-
ductance, whereas the relative permeability of different 
ions, due to differences in charge and/or size, determines 
selectivity. Finally, factors such as voltage, ligands, and 
post-translational modifications produce conformational 

changes that open and close the channels (gating). Some 
ion channels are highly selective (e.g., voltage-gated K+ 
channels), while others are not. The latter group includes 
gap-junction channels (GJCs†) and hemichannels (HCs) 
formed by connexins.

There are 21 human connexin isoforms, with lengths 
between 226 and 543 amino acids [4,5]. Connexins can 
oligomerize to form homomeric or heteromeric HCs (Fig-
ure 1) of varying permeability properties, regulation, and 
associations with other proteins [4,6]. Each connexin has 
four transmembrane helices (M1 to M4), two extracellu-
lar loops, and cytoplasmic hydrophilic regions (N- and 
C-terminal regions and intracellular loop) (Figure 1) [4-
6]. Sequence analysis shows that the intracellular regions 
are poorly conserved, whereas the M1-extracellular loop 
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1-M2 sequence is well conserved, especially the M1 se-
quence [5]. Six connexins subunits assemble as hexamers 
to form HCs [6], and head-to-head docking of HCs from 
adjacent cells forms GJCs (Figure 1) [6].

Because of their large pore size, GJCs are perme-
able to small hydrophilic molecules of up to 400-800 
Da (including many second messengers) [6]. Therefore, 
they not only mediate cell-to-cell electric coupling, but 
are involved in chemical coupling between neighboring 
cells. The general properties of GJCs and HCs in terms 
of pore size and selectivity are quite similar [6,7], with 
the pore formed by M1 and M2, and the narrowest region 
of the pore near the extracellular side of the membrane 
[4,8,9]. Since uncharged hydrophilic molecules can dif-
fuse through GJCs and HCs, they are often referred to as 
channels, as opposed to ion channels.

CONNEXINS IN HEALTH AND DISEASE

HCs are mostly closed under normal conditions, 
but they play an important role in autocrine and para-
crine signaling, by mediating the transmembrane fluxes 
of signaling molecules/metabolites such as ATP, NAD+, 
glutamate, glutathione, PGE2, and glucose [10]. Cx43, 
a 382-amino acid connexin, is expressed in parenchy-
mal cells of a variety of organs, such as cardiac muscle, 
brain and kidney, as well as in capillary endothelial cells 
[11]. Connexins are abundantly expressed in the exci-
tation-conduction system and in the contractile myocar-

dium, and Cx43 GJCs mediate the cell-to-cell conduction 
of the electrical impulse generated by the sinoatrial node, 
essential for the coordinated contraction of the heart [12-
16]. Heart disease is the most common cause of death 
in the U.S., and many of these deaths are caused by car-
diac ischemia and arrhythmias. Cx43 GJCs and HCs 
have important roles in the damage of the heart muscle 
elicited by ischemia, and the genesis and maintenance 
of arrhythmias [14,15,17-20]. Cx43 also plays important 
roles in ventricular arrhythmias, including the most lethal 
one, ventricular fibrillation [12,14,15,17,19]. Cx43 HCs 
play a pathophysiological role in ischemic damage of the 
heart (myocardial infarction), brain (stroke), and kidneys 
(ischemic renal tubule necrosis) [17,18,21-26]. The acti-
vation of Cx43 HCs in cardiomyocytes, astrocytes, and 
renal proximal tubule cells under conditions that mimic 
ischemia contributes to the cell damage [17,18,21-26]. 
Under physiological conditions several factors maintain 
the HCs mostly closed. These include normal extracel-
lular Ca2+ in the low millimolar range, the cell-negative 
membrane voltage, and phosphorylation by PKC [11,27-
35]. However, HCs open in ischemia, even in the contin-
uous presence of millimolar extracellular [Ca2+] [11,21-
26,28,30-33,35]. The mechanism is not completely 
understood, but seems to involve changes in post-trans-
lational modifications (decreased phosphorylation due to 
ATP depletion and increased phosphatase activity, and/
or changes in nitrosylation due to the oxidative stress), 
although the increase in cytosolic [Ca2+] can also play a 

Figure 1. Connexin channels and hemichannels. Schematic representation of a connexin subunit (monomer), a he-
michannel (hexamer), and a gap-junction channel (dodecamer). M1 to M4: transmembrane helices. Each monomer is 
depicted as a cylinder in the hemichannel and the gap-junction channel. This figure is reproduced from one originally 
published in the J Biol Chem [30], and is reproduced with permission from the American Society for Biochemistry and 
Molecular Biology.
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role [11,18,22,24,25,33,35-41]. GJCs link the cytoplasm 
of adjacent cells, compartments of very similar compo-
sition, whereas plasma membrane HCs link the intracel-
lular and extracellular fluids, which have very different 
compositions. Abnormal HCs opening can lead to losses 
of metabolites, Ca2+ influx with alterations of signaling 
and protease activation, equilibration of ionic gradients, 
and cell swelling. Therefore, abnormal HC opening can 
result or contribute to cell damage and/or death in a num-
ber of disorders (Figure 2).

Connexin 26 (Cx26) has paramount importance in 
the inner ear. Hearing loss is very common and can oc-
cur at any time from infancy to old age [36,42-47]. Ap-
proximately 1/1,000 infants have profound hearing im-
pairment, and ~50 percent of the cases are due to single 
gene mutations, mostly Cx26 mutations [36,42-46]. In 
addition, a role of Cx26 in non-genetic deafness is also 
likely [42,44,46,48,49]. Cx26, the main connexin in the 
inner ear, is smaller (226 amino acids) than Cx43 (382 
amino acids) and their primary sequences display < 30 
percent amino-acid identity. Cx26 has a very short C-ter-
minal domain (< 20 residues vs. > 150 residues in Cx43). 
Based on their lower permeability to fluorescent dyes and 
metabolites, it seems that GJCs and HCs formed by Cx26 
have a smaller apparent pore size than those formed by 
Cx43 [6].

In the inner ear, the cochlea houses the organ of Cor-
ti, a narrow spiral containing the hair cells that transduce 
sound into electrical impulses. The cochlear gap-junc-
tional communication network is essential for hearing 

[45,46,50]. Cx26 mutations may cause deafness by re-
ducing gap-junctional communication with decreased 
K+ recycling into the endolymph [50,51], a mechanism 
recently questioned [52], or by selectively reducing cell-
to-cell permeability to signaling molecules such as inosi-
tol trisphosphate (IP3) [53-56]. Deafness due to “leaky” 
HCs has also been proposed [43,57,58]; in this case, cell 
damage, with the resulting deafness, would occur as a 
consequence of uncompensated water and solute fluxes 
(Figure 2). In addition, it has been shown that some deaf-
ness-associated mutants display increased Ca2+ permea-
bility, and it has been speculated that the increased Ca2+ 
influx results in apoptosis and death of hair and support-
ing cells [59,60]. Although the detailed mechanisms of 
deafness are not definitively understood, Cx26 HC inhib-
itors are potential therapeutic leads for deafness mediated 
by leaky HCs, including HCs that display increased Ca2+ 
permeability [43,57-62].

There are many additional disorders where targeting 
connexin HCs may prove useful. These include HCs in 
the central nervous system, where under some abnor-
mal conditions activated microglia can release massive 
amounts of glutamate through connexin HCs, which 
damages neural cells. This process could play a major 
role in the neuronal damage of a variety of neurodegen-
erative diseases, and targeting of HCs has been proposed 
for therapy [63-65]. Another potential use of HC inhibi-
tors is for the inhibition of neovascularization in the treat-
ment of cancer [65].

Figure 2. Activation of Cx43 hemichannels under ischemic conditions. Activation of Cx43 hemichannels (HCs) partic-
ipates in the damage of cardiomyocytes, glia and renal tubule cells in ischemia. The pathways of activation have not 
been clearly defined, but there is evidence for all those indicated in the figure.
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used to assess the function of HCs. There are many HC 
assays based on methodologies such as dye uptake and 
electrophysiology [6,10], but complexity and cost make 
their adaptation for HTS of large chemical libraries costly 
and difficult.

EXPRESSION OF HUMAN CONNEXIN HEMI-
CHANNELS IN BACTERIA

Studies with isolated systems where experimental 
conditions are controlled are important to understand the 
bases of normal function and the molecular mechanisms 
of diseases. Recombinant connexins for research studies 
are generally expressed in mammalian cells, insect cells 
or frog oocytes. Until our recent report, the insect cell/
baculovirus expression system was the only available 
system that yielded purified connexins in the amounts 
necessary for detailed biochemical and biophysical stud-
ies [8,31,69-73]. In our recent report, we developed and 
optimized an Escherichia coli-based expression/purifica-
tion system that yields milligram amounts of functional 
human Cx26 HCs [74]. Bacteria were transformed with 
a plasmid containing E. coli-optimized DNA for the ex-
pression of human Cx26 with a C-terminal poly-His tag 
preceded by a protease cleavage site (TEV protease) to 
remove the tag after purification. Cx26 was purified by 
immobilized metal affinity chromatography based on 
the affinity of the Cx26 poly-His tag for Co2+, followed 
by size-exclusion chromatography. The highly-purified 
Cx26 formed very stable HCs in detergent [74]. The hu-

HIGH-THROUGHPUT ASSAYS TO ASSESS 
GAP-JUNCTION CHANNEL FUNCTION

Dye transfer experiments have been traditionally 
used to assess GJC functionality and have been recent-
ly exploited for high-throughput screening (HTS) assays 
aimed at discovering GJC inhibitors. These assays are 
based on the transport from donor to acceptor cells via 
GJCs. In one assay, donor cells were loaded with calcein, 
a fluorescent probe, and its transfer to acceptor cells was 
imaged using automated fluorescence microscopy [66]. 
Another assay was based on the permeability of GJCs to 
Ca2+ [67]. Donor cells co-expressing Cx43 and α1A ad-
renergic receptors were paired with acceptor cells co-ex-
pressing Cx43 and aequorin, a Ca2+-sensitive luminescent 
protein. Activation of α1A receptors led to Ca2+ waves 
that spread to the acceptor cells via GJCs and were de-
tected by the increase in aequorin luminescence. A rather 
similar principle was used in another assay, where do-
nor cells co-expressed a I- transporter and connexins, the 
acceptor cells co-expressed connexins, and a yellow flu-
orescent protein variant whose fluorescence emission is 
quenched by the anion [68]. In this assay, influx of I- into 
the donor cell is followed by diffusion through GJCs into 
the acceptor cell, where it quenches the yellow fluores-
cent protein emission. In all these assays, changes in the 
signal that reflect decrease donor/acceptor transport were 
used to identify new GJC inhibitors [66-68]. These as-
says have been proven useful, but have limitations such 
as the relative complexity of sample preparation and data 
analysis. They are also focused on GJCs and cannot be 

Figure 3. Growth complementation by expression of Cx26 HCs in LB2003 cells. (a) Schematic representation of the 
LB2003 cells. (b) Growth complementation by Cx26 shown as percent of the maximal growth in the Cx26-expressing 
cells. Data are means ± SEM. Adapted from J Biomol Screen [79] with permission from SAGE Publications. See [79] 
for details.



Krishnan et al.: Hemichannel function assay 91

essary for growth because of its involvement in many 
important cellular processes such as maintaining turgor 
pressure, activation of enzymes and intracellular pH reg-
ulation. We were able to achieve growth of LB2003 cells 
in low-[K+] medium by expressing human Cx26 (Figure 
3), Cx43, or Cx46 [74,79]. On one hand, this phenome-
non of growth recovery (growth complementation) was 
expected because HCs provide a pathway for K+ influx, 
as K+ channels do. On the other hand, HCs are “large” 
and poorly-selective channels that can also have delete-
rious effects on the cells (e.g., depolarization, alterations 
in metabolites homeostasis; see Figure 2). Since there is 
a favorable electrochemical driving force for K+ electro-
diffusion across the E. coli inner membrane, it is expected 
that the increased K+ permeability elicited by HC expres-
sion will produce growth complementation by increasing 
K+ influx and steady-state cytosolic [K+]. In fact, our re-
cent data support such a mechanism by showing that in-
tracellular [K+] is increased by ~30 mM in LB2003 cells 
expressing Cx26 HCs that are grown in 4 mM [K+] [79].

Two sets of results support the notion that growth 
complementation by connexin expression is the result of 
the presence of functional HCs: 1) Growth complemen-
tation was blocked by known HC inhibitors that included 
divalent cations, 2-aminoethoxydiphenyl borate, octanol, 
and aminoglycosides (Figure 4) [74,79]. Inhibitors of 
connexin-formed channels with affinities in the low-nM 
range are not available, but these compounds at the con-
centrations employed are known to inhibit HCs [80-83]. 
Although non-specific, divalent cations are well-known 

man Cx26 HCs purified from bacteria were structurally 
and functionally identical to those purified from insect 
cells and essentially all HCs reconstituted in unilamellar 
liposomes were functional [72,74]. Although differenc-
es between bacterial and mammalian post-translational 
modifications could be an issue, the problem is mini-
mized because there is no evidence of direct regulation 
of Cx26 by post-translational modifications and connex-
ins are not glycosylated. In contrast, phosphorylation of 
the C-terminal domain of Cx43 clearly regulates function 
[11,31,33,35,73], but it is possible to phosphorylate puri-
fied connexins in vitro [31,73]. The bacterial expression 
system has the potential to accelerate the pace of structur-
al and functional connexin research. 

AN ASSAY FOR HEMICHANNEL FUNCTION 
IN BACTERIA

Independently of the usefulness of the bacterial ex-
pression system, our report showed that it is possible 
to express functional human connexin HCs in E. coli 
[74]. We took advantage of that observation to develop 
a new cell-based assay to evaluate the function of hu-
man HCs expressed in bacteria. We used an E. coli strain 
(LB2003) with deletion of three K+ uptake systems (Kdp, 
Kup and Trk) [75,76]. LB2003 cells do not grow in low-
[K+] medium, but grow under conditions where K+ in-
flux and intracellular [K+] are expected to increase such 
as increasing [K+] in the growth medium or expressing 
recombinant K+-selective channels [75,77,78]. K+ is nec-

Figure 4. Effects of HC inhibitors on Cx26-dependent growth complementation. Reduction in growth complemen-
tation by connexin HC inhibitors in LB2003 cells expressing Cx26. Cells were grown without any additions (control, 
not shown), or in medium supplemented with 50 µM 2-aminoethoxydiphenyl borate (APB), 1 mM 1-octanol (Oc), 100 
µM kanamycin A, 1 mM Ca2+ (Ca), 20 mM Mg2+ (Mg), or 100 µM Zn2+ (Zn). Data are means ± SEM. Adapted from J 
Biomol Screen [79] with permission from SAGE Publications. See [79] for details.
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of factors such as limited access to the periplasmic space 
due to the presence of the outer membrane, indirect ef-
fects that need interaction of inhibitors with proteins not 
present in bacteria, and partial HC inhibition that is insuf-
ficient to decrease cell [K+] to impair cell growth.

The HTS HC function assay presented here has the 
potential for screening large chemical libraries to discov-
er new, effective, and specific HC inhibitors for research 
and therapy. To accomplish this aim, scaling up the assay 
from 96-well to 384- or 768-well plates will be desirable. 
Since Cx26 and Cx43/Cx46 are among the most dissimi-
lar connexin isoforms [4-6], it seems likely that our assay 
can be used to assess the function of HCs formed by most 
or all connexin isoforms.
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