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1. Summary
The start-transition (START) in the G1 phase marks the point in the cell cycle at

which a yeast cell initiates a new round of cell division. Once made, this

decision is irreversible and the cell is committed to progressing through the

entire cell cycle, irrespective of arrest signals such as pheromone. How commit-

ment emerges from the underlying molecular interaction network is poorly

understood. Here, we perform a dynamical systems analysis of an established

cell cycle model, which has never been analysed from a commitment perspec-

tive. We show that the irreversibility of the START transition and subsequent

commitment can be consistently explained in terms of the interplay of multiple

bistable molecular switches. By applying an existing mathematical model to a

novel problem and by expanding the model in a self-consistent manner, we

achieve several goals: we bring together a large number of experimental find-

ings into a coherent theoretical framework; we increase the scope and the

applicability of the original model; we give a systems level explanation of

how the START transition and the cell cycle commitment arise from the dyna-

mical features of the underlying molecular interaction network; and we make

clear, experimentally testable predictions.
2. Introduction
Yeast cells enter the cell division cycle depending on cell mass as well as on

environmental cues such as nutrient availability, and they arrest cycling in

response to factors such as mating pheromone. Signal transduction cascades

interact with and affect the cell cycle control network to either promote or

halt entry into a new round of cell division [1]. The decision to initiate a new

cycle is made at the start-transition (START) in the G1 phase [2]. START is a

point of no return: post-START cells are irrevocably committed to cell division

and will finish the cycle, irrespective of environmental cues. This characteristic

has led to the initial conceptual definition of START as the point in the cell cycle

after which a yeast cell no longer responds with arrest to mating pheromone [3].

Such cells are said to be committed and, despite the presence of pheromone,

progress normally through late G1, S, G2 and M to finally arrest early in G1

of the following cycle, indicating that, at this point, pheromone sensitivity is

restored. Robust decision-making is required to guarantee that the two incom-

patible cell fates—pheromone-induced mating and cell division—are never

realized simultaneously.

At the molecular level, pheromone binds to the receptor Ste2 to initiate a

mitogen-activated protein kinase (MAPK) cascade. The terminal kinase in
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Figure 1. Some important feedback loops in the budding yeast cell cycle
control network. Cln3, Cln2 and Clb2 denote the corresponding Cyclin:Cdk1
complexes. Briefly, Cln3 initiates the cell cycle in a cell-mass-dependent
fashion by activating the transcription factor SBF, which triggers the
expression of Cln2. Cln2 activates its own transcription (Cln-switch). By
inhibiting both Sic1 and Cdh1, Cln2 promotes the activity of Clb2, which self-
activates by further inhibiting Sic1 and Cdh1 (Clb-switch). Once active,
Clb2 represses SBF and blocks Cln2 expression. At late cell cycle stages,
Clb2 induces Cdc20, which triggers Clb2 degradation. A comprehensive
description of the cell cycle control network used for modelling is given by
Chen et al. [19].
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this cascade, Fus3, activates the transcription factor Ste12,

which in turn induces the expression of mating genes. One

of these targets, the Cdk1-inhibitor Far1 [4], pheromone-

dependently interacts with Cln1/2/3:Cdk1 complexes [5] to

inhibit their activity [6], but not to B-type cyclin:Cdk1 com-

plexes. Far1 is crucially involved in arresting cells in

response to pheromone [7] and requires Fus3-dependent

phosphorylation for full activity [8,9]. Transcriptional induc-

tion and activation of Far1 by Ste12 depend on the assembly

of the pheromone-induced MAPK cascade on the scaffolding

protein Ste5, which is recruited to the membrane in response

to pheromone. Membrane recruitment activates Ste5 [10],

whereas phosphorylation by Cln1/2:Cdk1 complexes inacti-

vates the protein, thus blocking Far1 activation, and also

transcriptional activation of other Ste12 targets [11]. In

addition, direct phosphorylation of Far1 by Cln1/2:Cdk1

promotes Far1 degradation [12]. In summary, Cln1/2:Cdk1

complexes inhibit their own inhibitor Far1 in a dual

manner—by blocking its synthesis and activation, and by

promoting its degradation.

While the topologies of the molecular interaction networks

of both the cell cycle engine and of pheromone signalling are

becoming increasingly well-defined, the fundamental ques-

tions of how the molecular interaction network gives rise to

robust decision-making and to commitment have only recently

begun to be addressed [13,14]. From a dynamical systems point

of view, the irreversible START transition can be explained by

the presence of a positive feedback loop in the under-

lying biochemical control network [13], which can cause

switch-like behaviour [15,16]. However, additional negative

feedback loops counteract these self-enhancing processes

[17,18]. How cells balance these contradictory forces remains

poorly understood.

Here, we address these issues by analysing and expanding

the model of Chen et al. [19] (hereafter ‘Chen’s Model’), the

most comprehensive mathematical model of the yeast cell

cycle to date. This model combines an ambitious scope with

extremely careful validation against a large number of datasets

from a large number of cell cycle mutants, and is thus well con-

strained. By integrating a large proportion of the available

knowledge on the interactions in the budding yeast cell cycle,

its original parametrization successfully captures the behav-

iour of more than 130 mutant strains. Chen’s model has

never been analysed from a commitment perspective, and we

first use the model in its original form and parametrization

to simulate and corroborate recent experimental findings. We

showcase that a published model can be successfully applied

to novel problems, and can be expanded in its scope in a self-

consistent manner. In doing so, we hope to encourage a

wider use of existing mathematical models both by experi-

mentalists (to predict the outcomes of experiments) and by

modellers (to use newly available datasets to challenge and

improve published models).

Our simulations explain the notion that Cln2 auto-

activation is important for a robust START transition [13]

at the level of the comprehensive cell cycle control system.

We demonstrate that cell cycle commitment is a systems

property and propose that commitment emerges from

the cooperation of several bistable switches in the underly-

ing, feedback-controlled reaction network. We go on

to demonstrate that commitment is maintained by two

fundamentally distinct mechanisms, depending on the

post-START cell cycle stage.
Two mutations in components of the pheromone path-

way (Far1-S87P and Ste5-8A) have been described, which

both render the respective protein resistant to the inhibitory

effect of Cln1/2:Cdk1-dependent phosphorylation; however,

they differ in their phenotypes. Only our theoretical results

are not only consistent with the observed differential behav-

iour of these mutants, but in addition make a testable

prediction as to how the abnormal cell cycle arrest, which is

observed in a fraction of Ste5-8A cells, could arise.
3. Results
For simplicity, ‘Cln2’ and ‘Clb2’ are used throughout as

shorthand for Cln1/2:Cdk1 complexes and Clb1/2:Cdk1

complexes, respectively. Chen’s model explains cell cycle

dynamics in budding yeast in terms of interconnected posi-

tive and double-negative feedback loops, which can act as

bistable switches (figure 1). Cln2 activity is controlled by a

positive feedback loop: Cln2 phosphorylates and induces

the nuclear export of Whi5 to activate the transcription

factor SBF [20,21], which in turn promotes the expression of

CLN2 and also of CLN1 [22,23]. We refer to this positive feed-

back loop as the ‘Cln-switch’. By contrast, Clb2 is controlled

by double-negative feedback loops: Clb2 inactivates its stoi-

chiometric inhibitor Sic1 [24] as well as the anaphase-

promoting complex (APC) component Cdh1, which targets

the cyclin-component of Clb2 (and also of Clb1) for degra-

dation. We refer to these double-negative feedback loops as

the ‘Clb-switch’. These network motifs interact with each

other, the Cln-switch activating the Clb-switch and the

Clb-switch inhibiting the Cln-switch in a negative feedback

loop [17]. For a detailed description of the considerably

more complex full model network, the model assumptions,

the parameter values, etc., refer to the original publication

of Chen’s model [19] or the model webpage (the URL is

given in §5.4).
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3.1. Chen’s model captures novel experimental results
Our first goal was to test whether Chen’s model in its original

form and parametrization could explain novel experimental

findings that were unknown at the time of model conception.

In a series of elegant experiments, Charvin et al. [13] (hereafter

‘Charvin’s experiments’) have recently provided good evidence

for a bistable Cln-switch, which had long been postulated on

theoretical grounds [25], but not been demonstrated exper-

imentally. Briefly, Cln1 and Cln2 were isolated from other

regulatory interactions in the cell cycle machinery using a

strain with the genetic background cln3D bck2D GAL1-SIC1-
4A MET3-CLN2. This strain lacks both Cln3 and Bck2, contains

a galactose-inducible version of the B-cyclin:Cdk1 inhibitor Sic1

(Sic1-4A), which is non-phosphorylatable and thus constitu-

tively active, and a methionine-repressible CLN2. In this

strain, the Clb2 switch is kept in the OFF state by GAL-SIC1-
4A. To determine whether transiently expressed Cln2 would

be sufficient to turn the Cln-switch ON, cells are initially

arrested in early G1 in the presence of galactose and methionine

(no Clb2 activity and no exogenous Cln2 expressed). Transient

methionine removal causes a short pulse of expression of

exogenous Cln2, which activates SBF. SBF then induces the

expression of endogenous CLN1 and CLN2, which are able to

sustain their own expression through SBF. The experiment

demonstrates an irreversible transition brought about by a tran-

sient signal. (In wild-type cells, the activity of Cln2 would be

turned off once B-type cyclins are activated, which in the exper-

imental strain is prevented by Sic1-4A expression, effectively

isolating Cln2 from Clb2.)

To test whether Chen’s model captures this behaviour, we

simulated the experiment (compare the model simulation in

figure 2a with fig. 4j in [13], which shows the accumulation

of a fluorescent reporter protein driven by the CLN2 promo-

ter in cln3D bck2D GAL1-SIC1-4A MET3-CLN2). The model

simulation was carried out with Chen’s standard parameter

set, except for parameters that had to be zeroed to account

for the specific genetic background of the experimental

strain. At simulation time zero, exogenous CLN2 is zero

and the expression of endogenous CLN2 and SBF activity is

at background levels. This corresponds to methionine repres-

sion of exogenous CLN2. In full agreement with the

experiment, a simulated transient expression of ectopic

CLN2 for 15 min starting at time zero is sufficient to activate

SBF and to trigger the sustained expression of the endogen-

ous CLN2 gene. Thus, a simulation using Chen’s original

model ‘predicts’ that a short pulse of CLN2 expression

would be sufficient to irreversibly engage the Cln-switch in

the described genetic background.
3.2. The Cln-switch contributes to the irreversibility of
START-transition also in wild-type cells

In the wild-type situation, the Cln-switch is not isolated as

in Charvin’s experiments, but embedded into the global cell

cycle control network. It is thus difficult to attribute a specific

role to any one network motif, and we argue that the role

of the Cln-switch in the START transition needs to be under-

stood in the context of the global control system. In particular,

Clb2 activation by Cln2 is expected to negatively influence

the Cln-switch in the wild-type, but not in the mutant

strain used in the experiments. Chen’s model is a validated
and exceptionally well-tested tool, which, owing to its com-

prehensiveness, allowed us to simulate the behaviour of

wild-type cells, in which the Cln-switch is embedded

within the global cell cycle control system. In a wild-type

background, Clb2 activity is inhibited by Sic1 early in G1.

Late in G1, high Cln2 activity releases this inhibition, and

Clb2 auto-activation causes the Clb-switch to fire. Figure 2b
shows a time course simulation of a cycling wild-type cell.

In contrast to the mutant strain used in Charvin’s exper-

iments, the wild-type shows typical oscillations of Cln2 and

Clb2 as a function of time. The temporal order of cell cycle

progression arises from Cln2-inducing Clb2 activity, and

Clb2-repressing Cln2 activity. At later stages in the cell

cycle, Clb2 activity decreases mainly owing to Clb1/2

degradation by APC [26], which is initiated by Cdc20 and

sustained by Cdh1. This eventually resets the system to low

cyclin/Cdk1 activity.

To obtain an understanding of the relationship between

the Cln-switch and the Clb-switch, we performed bifurcation

analyses. To illustrate the results, we overlay two one-par-

ameter bifurcation diagrams to obtain a pseudo-phaseplane:

Because the system has many more than two state variables,

a phase-plane analysis is not possible. We can, however, ima-

gine what a phaseplane would look like, if we fix all but two

state variables to their respective steady-state values. To do

this, we first plot a bifurcation diagram using Clb2 as the

only state variable, with Cln2 as a bifurcation parameter

(figure 2c, black curve). All other state variables in the control

system are at steady state (i.e. their differential equations are

set to zero). Similarly, we can plot a one-parameter bifur-

cation diagram using Cln2 as a state variable and Clb2 as a

bifurcation parameter (figure 2c, red curve). In this way, we

obtain two pseudo-nullclines. Although the dynamics of

the system are only approximated by the pseudo-nullclines,

the steady states at the intersections of the Cln2 and Clb2

pseudo-nullclines represent the true steady states of the con-

trol system (figure 2c, green circles).

Because both Clb2 and Cln2 are bistable variables, both

curves are S-shaped and have two stable branches connected

by one unstable branch. The system has three steady states:

one stable and two unstable (figure 2c, solid and faint

green circles, respectively). A cycling cell follows the blue tra-

jectory. The cell cycle starts close to the origin, where all

cyclins are low (early G1 phase). If the cell has become big

enough, Cln3 and Bck2 start to activate Cln2, and the

system moves to the right. Once the Cln-switch engages

and Cln2 activates itself through SBF, the trajectory shoots

over a threshold determined by the Clb2 bifurcation curve,

towards very high Cln2 activity. This, however, induces

Clb2 activity through Cln2-dependent inhibition of Sic1 and

Cdh1, which allows Clb2 to increase, causing the trajectory

to turn upwards, and, because Clb2 inhibits SBF (and thus

Cln2), also to the left. The trajectory is attracted by the only

stable steady state, which is found at high Clb2 and low

Cln2 activity (Clb-switch ON, Cln-switch OFF). In wild-

type cells, this stable steady state is, however, never reached,

because later events in the cell cycle, such as degradation of

Clbs by the APC, cause the trajectory to bend down (not

shown) and to eventually return to its origin. The cell cycle

is completed.

In the wild-type situation, the Cln2 bifurcation curve crosses

the abscissa only once, namely at high Cln2 (figure 2d, red

curve; same as figure 2c, red curve). Thus, in the absence of
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Figure 2. Dynamical systems analysis of START. (a) Time course simulation of Charvin’s experiment. Fifteen minutes of expression of ectopic Cln2 in a cln3D bck2D
GAL1-SIC1-4A MET3-CLN2 background is sufficient to activate SBF, which induces self-sustained expression of endogenous Cln2; compare fig. 4j in [13]. Because
Clb2 is kept inactive by Sic1-4A in this particular strain, Cln2 remains high. (b) Time course simulation of a wild-type cell. Cln2 expression precedes Clb2 expression.
This temporal order is a consequence of Cln2-activating Clb2, and Clb2-inhibiting Cln2. Completion of the cell cycle is achieved by downregulation of Clb2 at
later stages of the cell cycle, which resets the system to its original state. (c) Bifurcation analysis of a wild-type cell. Two one-parameter bifurcation curves are
plotted on the same diagram ( pseudo-phaseplane). Both the Cln2 bifurcation curve (red, Cln-switch) and the Clb2 bifurcation curve (black, Clb-switch) are bistable.
The Clb-switch engages at a threshold concentration of Cln2 and is self-sustaining. This transition is irreversible (black curve). Cln2 activity (red curve) is inhibited by
Clb2 activity and is high only if Clb2 is low. The time trajectory of the system (blue curve) starts from G1 with low levels of both Cln2 and Clb2 activity; the
system moves in an anti-clockwise direction. As the Cln-switch engages, the trajectory shoots towards the stable upper branch of the Cln2 curve. High Cln2 activity
triggers firing of the Clb-switch, which feeds back negatively to repress Cln2 activity, and the trajectory moves to the upper left towards the system’s only stable
steady state (green circle). This steady state is not reached, however, because processes at later stages of the cell cycle, such as Cdc20 activation, inactivate Clb2,
which would cause the trajectory to move down to eventually reach its origin (not shown). (d ) Bifurcation analysis. In cln3D bck2D cells (green curve), the
system is bistable even at zero Clb2 activity. This is the situation in Charvin’s experiment. In wild-type cells, by contrast (red curve, identical to the red curve in (c)),
a finite Clb2 activity is required to allow bistability. If such activity is absent, the steady state corresponding to low Cln2 activity is lost. The Cln-switch is stuck
in the ON state.
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any Clb2 activity, as would be the case in Sic1-4A cells, Cln2 is

high and mono-stable. In Charvin’s experiment, which uses

Sic1-4A cells, the Cln2 switch is kept bistable only by the

additional lack of Cln3 and Bck2: in cln3Dbck2D, the Cln2 bifur-

cation curve is shifted downwards, because Cln3 and Bck2

cannot support the ON state of the Cln-switch. The saddle

nodes of the Cln2 nullcline are thus shifted to lower values of

Clb2 and Cln2 can be bistable even in the absence of Clb2

(figure 2d, green curve). Thus, Charvin’s experimental evidence

suggests that, if experimentally isolated from other events, the

Cln-switch is the predominant contributor to the irreversible

START transition. Our theoretical analysis of START, per-

formed in the context of a full cell cycle control system rather

than an isolated switch, confirms the importance of the Cln-

switch for the START transition, but additionally highlights

how the function of the Cln-switch depends on the state of
the Clb-switch. Our findings suggest that a robust START tran-

sition is an emergent property of several interacting network

motifs rather than the consequence of any one such motif.
3.3. Commitment is initiated by the interaction of two
bistable switches

Having analysed the START transition within the compre-

hensive framework of Chen’s model, we focused our

attention on a related set of problems, namely how cell

cycle commitment (i.e. pheromone resistance) is initiated

and maintained once START has been passed. The main

link between pheromone signalling and the cell cycle

engine is Far1 [7], which interacts with the cell cycle control-

ler Cln1/2:Cdk1 in a double-negative feedback loop. Far1
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inhibits Cln1/2/3:Cdk1 complexes [21,27], while Cln1/2:Cdk1

complexes inhibit Far1 by enhancing its degradation [7,12], and

by preventing both Far1 synthesis and activation (figure 3a)

through phosphorylation and inhibition of the upstream scaf-

folding protein Ste5 [11].

On the basis of the well-studied mutual antagonism

between Cln2 and Far1, we propose the existence of

an additional bistable switch, which we refer to as the

Far1-switch. The differential response of pre-START and

post-START cells to pheromone suggests that Far1 interacts

differentially with the cell cycle engine at different stages of

the cell cycle. We aimed at explaining these phenomena in

terms of the Cln-switch, the Clb-switch and the proposed

Far1-switch (figure 3b).

After incorporation of Far1 into Chen’s model (for details,

see §5.6 and table 1), we first tested how the pseudo-phase-

plane shown in figure 2c would change in the presence of

pheromone (figure 4a). Because Far1 inhibits Cln2, the Cln-

switch is impaired and it is easier for Clb2 to turn it OFF.

The saddle nodes of the Cln2 bifurcation curve are thus

shifted to lower Clb2 values by pheromone, whereas the

Clb2 bifurcation curve is unaffected. As a consequence, a

stable steady state emerges at low Cln2/Clb2 levels (compare

figure 4a with figure 2c). In cells with low Cln2 levels, the

system will be attracted by this steady state, which corre-

sponds to the experimentally observed G1 arrest of pre-

START cells with low Cln2 and low Clb2. A cell with suffi-

ciently high Cln2 activity, by contrast (i.e. a post-START

cell), will be initially attracted by the stable branch of the

Cln2 bifurcation curve found at high Cln2 levels, following

a trajectory similar to the one shown in figure 2c. Despite

the presence of pheromone, such a cell is committed to

finish the on-going cycle to eventually settle in the only

steady state—it will arrest in G1 of the following cycle.

In summary, our dynamical systems analysis of the inter-

action of the Cln-switch and the Far1-switch visualizes how

pheromone blocks the START transition, and why cells are

resistant when Cln2 activity is high. One apparent problem
remains, however—at later stages of the cell cycle, Cln2

is repressed by negative feedback from the engaging

Clb-switch, which should restore Far1 activity. How is

commitment to cell division maintained at this later stage?
3.4. Distinct modes of resistance to pheromone sustain
commitment

In the framework of Chen’s model, the answer is simple:

Cln2 causes the Clb-switch to fire. Because Clb2 self-activates,

this process is irreversible; Cln2 activity is no longer requi-

red for Clb2 activity. Thus, cell cycle progression becomes

independent of Cln2 and is driven by Clbs only. The Clb

self-activation seems strong enough to maintain cell cycle

progression even in the presence of pheromone signalling

[28]. Time course simulations using Chen’s modified model

reveal a three-stage response to pheromone, depending on

the cell cycle stage. If pheromone is added prior to the

START transition when Cln2 is still low, Far1 becomes acti-

vated immediately upon pheromone addition and prevents

the Cln-switch from firing. The cell stably arrests in G1

(figure 4b). If pheromone is added after START, however,

our simulations reveal two time windows with qualitatively

different responses, depending on the post-START cell cycle

stage: In the first phase, when Cln2 activity is still high

(figure 4c), addition of pheromone has no immediate effect

on Far1, because Cln2 efficiently blocks Far1 activation. The

cell is resistant to pheromone and remains committed to

cell division. In the second, later phase, however, the Clb-

switch has engaged and has inhibited Cln2 activity, which

is now low. Pheromone addition at this late stage thus acti-

vates Far1 immediately (figure 4d ), similar to the situation

in pre-START cells, which also have low Cln2 activity. How-

ever, because cell cycle progression at this stage is no longer

driven by Cln2, but by Clb2, which is not inhibited by Far1,

the cell proceeds and finishes its cycle to finally arrest in the

G1 phase of the next cycle.
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This second mechanism of pheromone resistance has

potential biological implications, especially for large mother

cells. After cell division, the mother cell experiences only a

very short G1 phase, because it is nearly big enough to

start another cycle. We propose that firing of the Far1-

switch already prior to the completion of cell division gives

Far1 a head start over Cln2 activity, and thus ensures

robust arrest in G1 in the presence of pheromone. Without

this head start, the outcome of the mutual antagonism

between Far1 and Cln2 activity would be uncertain,

potentially jeopardizing robust G1 pheromone arrest.
3.5. Far1-S87P and Ste5-8A compromise the
Far1-switch in distinct ways

To address the behaviour of mutant cells, in which Far1 inhi-

bition by Cln2 is compromised, we analysed the Far1

network motif in greater detail. Interestingly, Cln2 inhibits

Far1 through two arms, preventing Far1 production on the

one hand, and promoting Far1 degradation on the other

(figure 5). Two mutants have been described that disrupt
either one or the other arm of Cln2-dependent Far1 inhi-

bition: non-phosphorylatable Far1-S87P, also known as

Far1-22p, which is resistant to Cln2-induced degradation

[12]; and Ste5-8A, which lacks eight Cln1/2:Cdk1 phos-

phorylation sites and, in the presence of pheromone, is

constitutively active [11].

To understand the effects of these mutants on the Far1-

switch and on commitment, we analysed the Far1/Cln2

module in isolation (for the equations, see table 1). An

illustrative way of looking at the effect of these mutants is

rate plots (figure 5). Production and degradation rates of

total Far1 are plotted as functions of total Far1 concentration.

Steady states are found at the intersections of the two curves.

In the hypothetical case of unregulated Far1 synthesis and

degradation, the synthesis rate is constant and independent

of the total Far1 levels, whereas the degradation rate is

a line for which the slope corresponds to the first-order

degradation rate constant (figure 5a).

In wild-type cells, however, both production and degra-

dation rates are dependent on Cln2 activity, which itself

depends on Far1 levels. Thus, the production and the degra-

dation rates change in a nonlinear manner with increasing
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feedbacks. Cln2 exerts dual control by repressing Far1 activation and promoting Far1 degradation, creating two double-negative feedback loops. Because of the
shapes of the curves, production and degradation rates are highly likely to intersect three times for a wide range of parameters to create two stable (solid green
circles) and one unstable (faint green circle) steady states. This suggests robust bistability in the wild-type case. (c) Far1-S87P with one double-negative feedback
loop. The Far1-S87P degradation rate is not enhanced by Cln2 and is thus directly proportional to the total amount of Far1-S87P (blue-dashed line). The Far1-S87P
production rate is the same as for the wild-type. The shapes of the curves in principle still allow three intersections, albeit only in a restricted range of parameters.
For most parameter sets, the bistability is lost, as is exemplified here. This finding suggests less robust bistability in the Far1-S87P mutant when compared with
wild-type. (d) Ste5-8A with one double-negative feedback loop. In Ste5-8A cells, Far1 production rate is no longer repressed by Cln2 and is constant. The Far1
degradation rate is as in the wild-type. Similar to Far1-S87P, bistability is still possible, but predicted to be less robust.
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concentrations of Far1 (figure 5b). If total Far1 is low, the Far1

production rate is small (figure 5b, solid line), because Cln2 is

active, and phosphorylates and inactivates Ste5, which is

required for pheromone-induced Far1 production. However,

if total Far1 exceeds the level of total Clns, Clns activity

approaches zero, and most Ste5 is in the unphosphorylated,

active form. The Far1 production rate becomes maximal.

The Far1 degradation rate also shows a nonlinear response

with respect to total Far1 (figure 5b, dashed line): if total

Far1 is smaller than Cln2, Cln2 is able to phosphorylate

Far1 and accelerate Far1 degradation. If total Far1 exceeds

total Cln2, Cln2 activity is negligible and Far1 is degraded

close to the basal first-order rate, directly proportionally to

its concentration. The curves for Far1 production rate and

degradation rate intersect at three points, creating two

stable (solid green circles) and one unstable (faint green

circle) steady states. Thus, Far1 is bistable and, depending

on the state of the system, either high or low. The rate plot

suggests robust bistability in the wild-type case: the curves
can change their positions substantially without losing any

of the steady states. In the mutant cases, however, either

one or the other rate curve becomes linear: the production

rate in the Ste5-8A mutant (figure 5c), or the degradation

rate in Far1-S87P cells (figure 5d ). Three intersections of the

curves (and thus bistability) are still possible in both mutants;

however, the regions in parameter space that yield bistability

are expected to be more restricted than in the wild-type. From

this simple graphical analysis, we hypothesize that the see-

mingly redundant regulation of Far1 by Cln2 (suppressing

Far1 synthesis and enhancing Far1 degradation) contributes

to robust bistability and that disruption of either arm of

this regulation will compromise this robustness.

To corroborate our hypothesis, we first performed a

one-parameter bifurcation analysis (figure 6a). Indeed, the bi-

stable regime is largest for wild-type cells, while both

mutants decrease the bistable regime. If we define as ‘com-

mitment point’ the Cln2 activity at which the cell becomes

resistant to pheromone, the commitment points of both
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case of Far1-S87P than in the case of Ste5-8A. (b,c) The difference in commitment point shift between Far1-S87P and Ste5-8A is a robust system property. (b) Two-
parameter bifurcation diagram for Ste5-8A. The control parameters are the total amounts of Cln2, and the rate constant of the Cln2-dependent Far1 degradation,
kdfar1,pp. High values of kdfar1,pp indicate that Cln2-dependent Far1 degradation is fast. In this case, Ste5-8A and wild-type are very similar, because sufficient mutual
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the reduction of the bistable regime by the Far1-S87P mutation is more pronounced, suggesting higher importance of this arm for bistability.
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mutants are predicted to be shifted to higher Cln2 activity

compared with the wild-type. Moreover, our results suggest

that this effect is more pronounced in Far1-S87P cells than

in Ste5-8A cells: Far1-S87P cells are expected to require

higher Cln2 activity to acquire pheromone resistance and to

commit to division than Ste5-8A cells. Two-parameter bifur-

cation diagrams (figure 6b,c) reveal that these effects are

robust in terms of parameter values and are thus an emergent

property of the specific wiring of the network. Importantly,

this finding is consistent with recently published data,

which defined the commitment point in terms of the degree

of Whi5 nuclear export [14]. In qualitative agreement with

our generic results, these authors found a shift of the commit-

ment point in Far1-S87P cells, but not in Ste5-8A cells, a

situation that happens in our model when Cln2-dependent

Far1 degradation is fast (figure 6b,c). Thus, the experimen-

tally observed behaviour is a particular realization of our

more general description, and is entirely consistent with

our model.

Unexpectedly, in response to pheromone, a significant

proportion of Ste5-8A cells arrest post-START with 2N sets

of chromosomes in a Far1-independent manner [11]. The

arrest at this second block point is reminiscent of the phero-

mone arrest of cells deficient in Clns and overexpressing

Clb5 [29]. We propose that the puzzling phenotype of Ste5-

8A cells is caused by pheromone-dependent reduction of

Clb2 activity. In terms of a dynamical systems analysis, com-

promised Clb2 activity by Ste5-8A is predicted to change

the picture shown in figure 4a as sketched in figure 7. Clb2

inhibition in response to pheromone makes firing of the

Clb-switch more difficult, and its OFF state would extend

to higher Cln-levels. The Cln-switch, in turn, now lacking

the negative feedback from the Clb-switch, would be more

likely to reside in the ON state. In this way, an additional

stable steady state is created at high Cln2 and low Clb2

activity, which might explain the arrest after genome
duplication observed in a sub-population of Ste5-8A cells in

response to pheromone. Importantly, the original stable

steady state that corresponds to a G1 arrest is still present

in these cells, which would explain why some cells arrest in

G1 and some cells arrest in later stages of the cell cycle.

In summary, we make the testable prediction that the pro-

portion of Ste5-8A cells that shows an abnormal arrest in

response to pheromone has high Cln2 activity, but low

Clb2 activity.
4. Discussion
Mathematical models of biological systems often have a

limited scope, because the datasets required to sufficiently

constrain larger models are not available at the time of

model conception. Despite its potential to overcome this

problem, the frequently cited ‘virtuous cycle’ between exper-

imentation and modelling usually ceases once a model is

published, and only a few models seem to benefit from

being tested against new experimental datasets as new infor-

mation becomes available. This is surprising, given the broad

consensus that models should be continuously challenged

with novel datasets and updated accordingly in order to

grow both in scope and in accuracy. Here, we use Chen’s

model [19] to showcase that a published model can indeed

be used to analyse novel experimental findings and to gain

insight into problems that were not originally considered

during model conception. As an additional benefit of this

approach, the mathematical model itself is increased in

scope, applicability and accuracy. Only by continuous devel-

opment can models remain up-to-date tools to further our

understanding of biological systems.

Charvin et al. [13] have shown experimentally that transient

expression of exogenous Cln2 triggers sustained expression

of endogenous Cln2. When queried accordingly, Chen’s



Table 1. Model equations for Far1 activation by pheromone and its interaction with the cell cycle engine. Subscripts ‘T’ and ‘M’ indicate ‘total amounts’ and
‘membrane-bound’, respectively. All rate constants k are given in min21. See figure 3a for a cartoon representation of the interactions.

expansion of Chen’s model

differential equations

d½STE5�
dt
¼ kste5

i ½STE5�M þ kste5
dp ½STE5p� � ðkste5

a ½PHE� þ vste5
p Þ½STE5�

d½STE5�M
dt

¼ kste5
a ½PHE�½STE5� þ kste5

dp ½STE5p�M � ðkste5
i þ vste5

p Þ½STE5�M

d½STE5p�M
dt

¼ vste5
a ½STE5�M � ðkste5

dp þ kste5
i Þ½STE5p�M

d½FAR1�T
dt
¼ kp

sfar1 þ k pp
sfar1½STE5�M � vfar1

d ½FAR1�T

d½FAR1 : CLN3�
dt

¼ kasfe½FAR1�½CLN3� � ðkdisfe þ vfar1
d Þ½FAR1 : CLN3�

d½CLN2�T
dt
¼ massðkp

sn2 þ kpp
sn2Þ½SBF�Þ � kdn2ð½CLN2�ÞT

d½CLN2�
dt
¼ massðkp

sn2 þ kpp
sn2½SBF�Þ � kdn2½CLN2� � kasfe½FAR1�½CLN2� þ ðkdisfe þ vfar1

d Þ½FAR1 : CLN2�

algebraic equations

[FAR1] ¼ [FAR1]T2[FAR1:CLN2]2[FAR1:CLN3] ½CLN3�T ¼ Co
mass dn3

jn3þ mass dn3
[FAR1:CLN2] ¼ [CLN2]T2[CLN2] vste5

p ¼ kp5bk þ kp5n½CLN2�
[CLN3] ¼ [CLN3]T2[FAR1:CLN3] vfar1

d ¼ kp
dfar1 þ kpp

dfar1½CLN2�
[STE5p] ¼ [STE5]T2[STE5]2[STE5]M2[STE5p]M

parameters

kasfe ¼ 50 Kdisfe ¼ 0.05 kp
sfar1 ¼ 0:001 k pp

sfar1 ¼ 0:06

kp
dfar1 ¼ 0:01 kpp

dfar1 ¼ 0:03 kste5
dp ¼ 0:3 kp5bk ¼ 0.01

kp5n ¼ 0.5 Kiste5 ¼ 0.5 Kaste5 ¼ 1 [STE5]T ¼ 1
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model readily predicts this result, which was unknown at the

time the model was created. This is despite the fact that

Chen’s model does not explicitly account for Whi5, but

models the Cln-switch as a direct positive feedback between

Cln2 and SBF, illustrating that, from a network perspective,

this approximation can substitute for the exact molecular

details. A minor expansion of the original model (Far1 s
Cln2 s Far1) provided significant insight into a related (yet

distinct) problem, namely pheromone resistance and cell

cycle commitment. A yeast cell responds to pheromone

with arrest if (i) the pheromone signal is generated and trans-

mitted and (ii) the cell cycle engine is susceptible to the effects

of such signalling. Both conditions together are required, and

also sufficient, for arrest in response to pheromone. Thus, cell

cycle commitment (i.e. resistance to pheromone signalling in

cell cycle phases other than G1) indicates either that phero-

mone signals are no longer transmitted, or that the driver
of the cell cycle engine that is targeted by pheromone signal-

ling has become dispensable for cell cycle progression. Our

results strongly suggest that both scenarios are realized and

contribute to cell cycle commitment, albeit at different

stages of the cell cycle: shortly after the START transition,

the cell is resistant to pheromone because pheromone signal-

ling is actively repressed by the cell cycle engine, Cln2

inhibiting Far1 synthesis and facilitating its degradation. At

later stages, Cln2 activity is no longer sufficient to repress

the Far1-switch. Pheromone signalling is active at this stage,

but the cell remains committed to division, because the

target of pheromone signalling, Cln2 activity, is now no

longer required for cell cycle progression, which at this

stage is driven by Clb2.

Our model describes the interaction of Far1 and Cln2

by redundant double-negative feedbacks via stoichiometric

complex formation. The model predicts a novel bistable
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Figure 7. Model prediction. Hand-drawn sketch illustrating our proposed
explanation for aberrant cell cycle arrest in Ste5-8A. This qualitative sketch
shows how we would expect figure 4a to change if constitutively active Ste5
inhibited Clb2 activity independently of Far1. In such a scenario, a third stable
steady state would be generated at high Cln2 activity and low Clb2 activity,
corresponding to an aberrant cell cycle arrest after genome duplication, which
is observed in a proportion of Ste5-8A cells treated with pheromone.
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Far1-switch, which cooperates with the Cln-switch in order to

create a robust decision-making process at START. Introduc-

tion of this hypothetical switch allows our model to preserve

a bistable response, even if the Cln-switch is compromised, as

is the case, for instance, in whi5D mutants. The uniform G1

arrest of whi5D mutants at high pheromone concentration

[30] provides strong evidence for the postulated bistable

Far1-switch of our model, which is not present in previous

models [14].

In summary, the incorporation of the mutual antagonism

between Far1 and Cln2 into Chen’s model strongly suggests a

contribution of Clb2 in conferring pheromone resistance (and

thus cell cycle commitment) at late stages of the cell cycle.

Our analysis of a comprehensive cell cycle model provides

evidence that cell cycle progression and robust commitment

in early and late post-START cells are controlled by multiple

interconnected bistable switches, both in the cell cycle control

network itself, and in the way pheromone signalling interacts

with this network. As an extended value, we hope this work

will encourage the application, adaptation and expansion of

published models, to keep these models alive and up to

date. We believe this would greatly accelerate the progress

towards the ultimate aim of developing comprehensive, rea-

listic descriptions of functional modules of the cellular

protein interaction network.
5. Methods
5.1. Ordinary differential equation-based modelling
In our approach, the dynamics of a molecular regulatory

network is described by a system of ordinary differential

equations (ODEs). ODEs describe the rate of change of com-

ponents that characterize the state of the biochemical system

(state variables). The right-hand side of each ODE contains

positive (synthesis and activation) and negative (degradation

and inactivation) terms for each of the reactions in which a

biochemical species participates as a product or a reactant.

To calculate how fast each component changes with time,
the system of ODEs is integrated numerically. Such inte-

gration requires prior knowledge of the numerical values of

every single kinetic parameter in the model.

5.2. Dynamical systems theory: rate plots and
bifurcation diagrams

Because these parameter values are rarely measured by direct

experimentation, we use dynamical systems theory (DST) as a

method to qualitatively determine the dynamic properties of

a molecular regulatory system before we know (or estimate)

the values of the kinetic parameter. Essentially, DST is a

toolkit for dynamic network analysis. For simple networks,

a useful first step is to plot the rates of production and

removal of a particular component, X, as functions of its con-

centration, [X]. Wherever the two curves intersect, [X]

assumes a steady-state value (figure 5). For networks with

feedback loops, there can be more than one intersection,

corresponding to stable and unstable steady states, as is the

case, for instance, in figure 5b. By computing these steady-

state values as functions of a ‘signalling’ parameter, we plot

a signal–response curve. In the DST terminology, the

signal–response curve is called a one-parameter bifurcation

diagram, and the ‘signal’ is called bifurcation parameter or

control parameter.

5.3. Dynamical systems theory: phase-plane analysis
A signal–response curve can also be thought of as a balance

curve for a dynamic variable, indicating at which signal

levels the response variable is in steady state, because its pro-

duction is exactly balanced by its consumption. In cases

where the response variable feeds back on the signalling

system, it is natural to reverse the roles of ‘signal’ and

‘response’. Plotting the two bifurcation curves on the same

coordinate systems generates a phase plane. The two curves

on the phase plane are called nullclines, because along

these curves one of the dynamical variables is not changing

in time (its time-derivative is zero). For multidimensional sys-

tems, a phase plane can be calculated by assuming that all,

except two, dynamic variables are in (pseudo) steady state.

This is a useful way to project a multidimensional control

system onto a two-dimensional plane. Pseudo-phase planes

can be useful in interpreting the origins of multiple steady

states and limit cycle oscillations.

5.4. Chen’s model
Chen’s model [19] can be downloaded from the model

website at http://mpf.biol.vt.edu/research/budding_yeast_

model/pp/ or simulated online. The webpage also contains

detailed information on the simulations for wild-type cells

and a wide range of mutants. All simulations were performed

using the originally published parameter set [19], which suc-

cessfully captures the qualitative behaviour of more than 130

mutant strains.

5.5. Simulation software
Simulations and bifurcation analyses were performed with

the open access software packages OSCILL8 (http://oscill8.

sourceforge.net/) and XPPAUT (http://www.math.pitt.

http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
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edu/~bard/xpp/xpp.html). Discrete events were removed

from Chen’s model in all bifurcation computation. Cell

mass was set to mass ¼ 2, corresponding to a big mother cell.

5.6. Computation of the figures
To simulate Charvin’s experiment (figure 2a), Chen’s model

was modified to match the experimental strain and conditions.

Expression of GAL1-SIC1-4A was modelled by setting k0sc1 ¼

0.12, MDT ¼ 150, Vkp,c1 ¼ 0 and kpp,c1 ¼ 0. The Dcln3Dbck2
background was accounted for (Bck2 ¼ 0 and Cln3 ¼ 0). For

ectopic Cln2, we added an additional equation with a binary

production rate and a degradation rate matching the rate of

endogenous Cln2. Figure 2b is simulated using the original

Chen model and parameters. In figure 2c, the black Clb-bifur-

cation curve was calculated at constant Cdc20 to remove the

Clb2-Cdc20 negative feedback loop (cdc20 ¼ 0.3). This is

required to reveal the bistable switch. The red Cln-bifurcation

curves in figure 2c,d are identical and were calculated using

the equations for Cln2, SBF, Bck2 and Cln3. The black

curve in figure 2d is computed with Bck2 ¼ 0 and Cln3 ¼ 0

(figure 4). Figure 4a was computed as for figure 2c, but includ-

ing pheromone signalling in the calculation of the Cln2

bifurcation curve. The additional equations are shown in
table 1. Figure 4b–d were all computed with the compre-

hensive model (i.e. Chen’s model expanded to include the

Far1-Cln2 mutual antagonism). Figures 5 and 6 were com-

puted with the pheromone signalling pathway isolated from

the comprehensive model (i.e. using the equations and par-

ameters given in table 1). Pheromone was present in the

simulation. To focus on the interplay between Cln2 and Far1,

Cln3 was removed (dn3 ¼ 0), and Cln2 levels were set constant

([CLN2]T ¼ 1.8). Ste5-8A and Far1-S87P were mimicked by

zeroing their phosphorylation rates (kp5n ¼ 0 and kdfar1pp ¼ 0,

respectively). The two-parameter bifurcation diagrams were

computed by tracing the saddle-node bifurcations shown in

the one-parameter bifurcation diagram.
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