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Abstract: Glaucoma is a progressive age-related disease of the visual system and the leading cause of
irreversible blindness worldwide. Currently, intraocular pressure (IOP) is the only modifiable risk
factor for the disease, but even as IOP is lowered, the pathology of the disease often progresses. Hence,
effective clinical targets for the treatment of glaucoma remain elusive. Glaucoma shares comorbidities
with a multitude of vascular diseases, and evidence in humans and animal models demonstrates
an association between vascular dysfunction of the retina and glaucoma pathology. Integral to the
survival of retinal ganglion cells (RGCs) is functional neurovascular coupling (NVC), providing
RGCs with metabolic support in response to neuronal activity. NVC is mediated by cells of the
neurovascular unit (NVU), which include vascular cells, glial cells, and neurons. Nitric oxide-cyclic
guanosine monophosphate (NO-cGMP) signaling is a prime mediator of NVC between endothelial
cells and neurons, but emerging evidence suggests that cGMP signaling is also important in the
physiology of other cells of the NVU. NO-cGMP signaling has been implicated in glaucomatous
neurodegeneration in humans and mice. In this review, we explore the role of cGMP signaling in
the different cell types of the NVU and investigate the potential links between cGMP signaling,
breakdown of neurovascular function, and glaucoma pathology.

Keywords: glaucoma; neurovascular coupling; neurodegeneration; glia; endothelial cell; retina;
neurovascular unit

1. Introduction

Glaucoma is the leading cause of irreversible blindness worldwide, with global preva-
lence of the disease estimated to surpass 100 million cases by 2040 [1,2]. Glaucoma de-
scribes an umbrella of optic neuropathies that lead to the progressive degeneration of
retinal ganglion cells (RGCs) and their axons that form the optic projection [3]. The disease
is characterized by the increased sensitivity of RGCs and their axons to intraocular pressure
(IOP), with degeneration of RGCs occurring sectorially over time; i.e., from one retinotopic
sector to the next [4,5]. Current therapies aim to lower IOP using topical medication or
surgical intervention; however, this is not effective for all patients and many progress to
permanent vision loss. Moreover, a proportion of patients are normotensive, with IOPs
within the typical range, and RGC axon degeneration still persists [6]. These observations
suggest that the etiology of the disease is much more complex and alternative mechanisms
of pathophysiology warrant further investigation.

Glaucoma shares comorbidities with a number of systemic vascular diseases, includ-
ing diastolic hypotension, diabetes, ischemic cardiac disease, peripheral vasospasm, and
arterial hypertension [7,8]. Advances in vascular imaging technology have provided evi-
dence of a link between vascular dysfunction and glaucoma in both animal models and in
the clinic [9]. In normotensive glaucoma patients, vascular changes in the retina occur, the
most prominent being obstruction of ocular blood flow, resulting in glaucomatous optic
neuropathy [10]. Adverse changes in blood vessel morphology that result in impaired
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ocular blood flow are also observed in glaucomatous retinas, irrespective of IOP level [9–11].
Nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling is a primary mediator
of vascular responses and has been implicated in glaucoma pathophysiology. In this review,
we explore the role of cGMP signaling within the cells of the NVU and emphasize how
dysfunctional cGMP signaling may lead to the breakdown of NVC evident in glaucoma.
Using online literature databases such as PubMed and Web of Science, we searched combi-
nations of terms such as “cGMP signaling”, “neurovascular”, “retina”, “retinal ganglion
cell”, and “glia”, to conduct a comprehensive literature search. Initial inclusion criteria for
publication date included articles from 2015 to the current date. However, highly cited
earlier publications were also included if deemed an original publication of research in
the field. The review herein will increase understanding of the vascular mechanisms of
glaucoma and the potential role of NO-cGMP signaling, to facilitate the development of
novel treatments for the disease.

2. The Retinal Neurovascular Unit and Glaucoma

The visual system has developed intricate regulatory mechanisms to fulfill the high
metabolic demand of the retina. One such mechanism is neurovascular coupling (NVC),
whereby an increased neuronal activity promotes signaling between cells of the neurovascu-
lar unit (NVU), resulting in increased supply of metabolites and removal of waste products
by the vasculature [12]. The retinal NVU consists of three main cell types: neurons, glial
cells (including astrocytes, microglia, and oligodendrocytes), and vascular cells (endothe-
lial cells, vascular smooth muscle cells, and pericytes; Figure 1) [13]. Dysfunction in the
NVU is evident in the pathophysiology of many neurodegenerative diseases of the central
nervous system (CNS), including Alzheimer’s Disease and Parkinson’s Disease [3]. Such
neurodegenerative diseases share many common pathophysiologies with glaucoma, and
thus dysfunction in the NVU may also be a relevant mechanism of neurodegeneration of
the visual system [3,13].

Vascular autoregulation and NVC mechanisms are severely compromised in glaucoma
patients [14]. Dysfunction of the NVC response to light flicker was perturbed in patients
with early-stage glaucoma progression, with only moderate IOP increases [14]. The direct
effect of IOP on light-flicker-induced NVC was further tested using patients exposed to
short-term induced IOP [15]; however, no changes in NVC response were observed. The
change in NVC evident in early-stage glaucoma patients could be due to reduced function
of RGCs or due to the dysfunction of cells in the NVU, which remains undetectable in
the clinic. Rodent models of glaucoma have been a valuable resource in trying to better
understand neurovascular mechanisms of the disease. In a murine model of elevated
IOP, NVC responses were perturbed at the microvascular level and involved pericyte
cell networks in the retina [16]. Specifically, elevation in IOP reduced pericyte-pericyte
communication and perturbed NVC responses, suggesting that elevation in IOP directly
impacts microcirculation in the retina [16]. Local reduction of microcirculation may have
a profound impact on the health of RGCs across the retina. Detection of microcirculatory
changes in humans, however, remains a challenge, due to the lack of equipment with the
ability to image at microcapillary resolution. Animal models of glaucoma are therefore
invaluable in identifying underlying mechanisms of NVC dysfunction and may be critical
in exploring vascular dysfunction in glaucoma pathology.
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Figure 1. The retinal neurovascular unit. The retinal NVU consists of three main cell types: neurons 
(retinal ganglion cells; RGCs), glial cells (including astrocytes and microglia), and vascular cells (in-
cluding endothelial cells, vascular smooth muscle cells, and pericytes). 
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[9]. NO is produced by nitric oxide synthase enzymes in cells of the NVU in both physio-
logical and pathophysiological conditions [17]. NO is lipophilic and can freely traverse 
cellular membranes, where it binds to its primary receptor, soluble guanylate cyclase 
(GC1; [18,19]). GC1 binding of NO stimulates the production of cGMP, a second messen-
ger capable of binding to multiple cellular protein targets such as cyclic nucleotide phos-
phodiesterases (PDEs), cGMP-dependent protein kinases, and cGMP-gated ion channels 
[20–23]. cGMP signaling is multifaceted, with the potential to exert broad effects on cellu-
lar physiology, depending upon the cellular target that it binds. 

Dysfunction in cGMP signaling has been implicated in glaucoma pathophysiology in 
human patients and in animal models of the disease. Levels of NO and cGMP in aqueous 
humor and plasma are reduced in glaucoma patients [24,25]. Furthermore, in a genome-
wide association study (GWAS) of patients with primary open angle glaucoma (POAG), 
a single nucleotide polymorphism (rs11722059) located in the GUCY1A3/GUCY1B3 gene 
locus was significantly associated with paracentral visual field loss in female glaucoma 
patients [26]. GUCY1A3/GUCY1B3 encode the alpha and beta subunits of GC1, respec-
tively [26]. Identification of a risk variant in the GC1 gene and expression of GC1 in human 
and rodent ocular tissues including RGCs [26] suggests that GC1 may have a role in the 
pathogenesis of glaucoma.  

The role of cGMP signaling in RGC physiology and pathophysiology has been 
demonstrated in animal studies. In a mouse model of induced ocular hypertension (i.e., 
the microbead model of occlusion [27]), increasing cGMP signaling through administra-
tion of tadalafil, a PDE inhibitor, prevented the degeneration of RGCs over time [28]. The 
effects of tadalafil on RGCs were IOP-independent; i.e., tadalafil did not reduce the ele-
vated pressure of the model, and further in vitro experiments demonstrated that cGMP 
was able to reduce apoptotic signaling in RGCs [28]. Mice lacking the alpha catalytic sub-
unit of guanylate cyclase (GC1−/−) were considered a novel murine model of POAG; the 
mice exhibit degeneration of RGCs with age, without large increases in IOP and an open 
irideocorneal angle [26]. GC1−/− mice also develop retinal vascular dysfunction and aber-
rant retinal vascular morphology with age, and astrocyte morphology alterations precede 
vascular abnormalities [29]. These results suggest that NO-cGMP signaling functions to 

Figure 1. The retinal neurovascular unit. The retinal NVU consists of three main cell types: neurons
(retinal ganglion cells; RGCs), glial cells (including astrocytes and microglia), and vascular cells
(including endothelial cells, vascular smooth muscle cells, and pericytes).

3. NO-cGMP Signaling in Glaucoma

The nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway is in-
tegral to NVC mechanisms and is the prime mediator of vasodilation in endothelial cells [9].
NO is produced by nitric oxide synthase enzymes in cells of the NVU in both physiological
and pathophysiological conditions [17]. NO is lipophilic and can freely traverse cellular
membranes, where it binds to its primary receptor, soluble guanylate cyclase (GC1; [18,19]).
GC1 binding of NO stimulates the production of cGMP, a second messenger capable of
binding to multiple cellular protein targets such as cyclic nucleotide phosphodiesterases
(PDEs), cGMP-dependent protein kinases, and cGMP-gated ion channels [20–23]. cGMP
signaling is multifaceted, with the potential to exert broad effects on cellular physiology,
depending upon the cellular target that it binds.

Dysfunction in cGMP signaling has been implicated in glaucoma pathophysiology in
human patients and in animal models of the disease. Levels of NO and cGMP in aqueous
humor and plasma are reduced in glaucoma patients [24,25]. Furthermore, in a genome-
wide association study (GWAS) of patients with primary open angle glaucoma (POAG),
a single nucleotide polymorphism (rs11722059) located in the GUCY1A3/GUCY1B3 gene
locus was significantly associated with paracentral visual field loss in female glaucoma
patients [26]. GUCY1A3/GUCY1B3 encode the alpha and beta subunits of GC1, respec-
tively [26]. Identification of a risk variant in the GC1 gene and expression of GC1 in human
and rodent ocular tissues including RGCs [26] suggests that GC1 may have a role in the
pathogenesis of glaucoma.

The role of cGMP signaling in RGC physiology and pathophysiology has been demon-
strated in animal studies. In a mouse model of induced ocular hypertension (i.e., the
microbead model of occlusion [27]), increasing cGMP signaling through administration of
tadalafil, a PDE inhibitor, prevented the degeneration of RGCs over time [28]. The effects of
tadalafil on RGCs were IOP-independent; i.e., tadalafil did not reduce the elevated pressure
of the model, and further in vitro experiments demonstrated that cGMP was able to reduce
apoptotic signaling in RGCs [28]. Mice lacking the alpha catalytic subunit of guanylate
cyclase (GC1−/−) were considered a novel murine model of POAG; the mice exhibit de-
generation of RGCs with age, without large increases in IOP and an open irideocorneal
angle [26]. GC1−/− mice also develop retinal vascular dysfunction and aberrant retinal
vascular morphology with age, and astrocyte morphology alterations precede vascular
abnormalities [29]. These results suggest that NO-cGMP signaling functions to maintain
homeostasis in cells of the NVU, and thus the NO-cGMP pathway remains an attractive
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area of investigation for glaucoma. Although activation of GC and increases in cGMP
signaling have been successful in experimentally lowering IOP via interaction with the
trabecular meshwork and ciliary muscles [30–32], lowering IOP is not always effective in
preventing glaucoma pathology, especially in glaucoma patients with IOPs in the normal
range. Understanding the potential roles of cGMP signaling within the NVU will give a
better understanding of how cGMP signaling can be leveraged as a novel IOP-independent
therapeutic for glaucoma.

4. NO-cGMP Signaling in Vascular Cells

The vascular cells of the NVU in the brain consist of the endothelial cells, vascular
smooth muscle cells, and pericytes. Nestled between the blood vessel lumen and the
smooth muscle cells, the endothelium is responsible for modulation of vascular tone,
thrombus formation, cell adhesion, smooth muscle proliferation, and sequestration of
inflammatory factors [33]. Within the retinal NVU, the function is similar; endothelial cells
line retinal vessels responsible for RGC blood supply and smooth muscle cells control
vascular tone [9,34]. Critical to endothelial function is cGMP signaling; outside of the
CNS, cGMP signaling plays a major role in decreasing endothelial cell permeability and is
responsible for smooth muscle cell relaxation and subsequent vasodilation [35,36].

Within the NVU, NO-cGMP signaling plays a similar role in modulating vascular tone;
NO produced in the endothelium acts on GC1 in smooth muscle cells, to induce vasodila-
tion via smooth muscle relaxation (Figure 2) [34]. Moreover, cGMP is also implicated in
decreasing the permeability of the endothelium of the NVU. Experimental treatment with
the cGMP agonist 8-Br-cGMP decreased the permeability of an in vitro blood–brain barrier
(BBB) model [37]. Inhibition of GC1 by ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one)
increased permeability, and inhibition of the cGMP-dependent protein kinase prevented
the cGMP-mediated decrease in permeability [37]. Hence, NO-cGMP signaling is critical
to the vasodilation of blood vessels and in maintaining the integrity of the endothelial
cell monolayer. Endothelial cell dysfunction is observed in patients with POAG [9,38–41];
in both normotensive glaucoma (NTG) and hypertensive glaucoma patients, impairment
of endothelial-cell mediated vasodilation in response to intravenous acetylcholine was
evident [42–44]. Taking into consideration the evident endothelial dysfunction in glaucoma
and the role of NO-cGMP in endothelial permeability and function, it is possible that
breakdown of NO-cGMP signaling may lead to dysfunction of endothelial cells, which may
underlie vasculature-related glaucoma pathophysiology. Further studies are needed, to
explore the potential link between dysfunctional NO-cGMP signaling in endothelium and
glaucomatous degeneration.

The vascular cells of the NVU also include pericytes; however, exploration of their
role within the retinal NVU in glaucoma pathology is in its infancy compared to other
cells of the retinal vasculature [9]. Pericytes are situated in the basement membrane
of microvessels and are responsible for a multitude of functions, including maintaining
vascular stability, providing structural support for the blood vessels, mediating vasodilation
and vasoconstriction, and BBB maintenance [13,45–49]. The tone of pericyte-containing
microvessels is largely controlled by the balance between Ca2+-mediated contractility and
NO-mediated relaxation [50]. Recently, a key role for pericytes in retinal NVC and glaucoma
pathology was uncovered [16]. The identification of inter-pericyte tunneling nanotubes
(IP-TNTs) between pericyte cells in the retina led to the discovery that pericytes use IP-TNTs
to coordinate vascular responses to neuronal activity across the retina [51]. Damage to IP-
TNTs in glaucoma impairs light-evoked neurovascular coupling via persistent Ca2+ influx,
causing vasoconstriction [16]. Similarly to smooth muscle cells, pericytes contract and relax
to control vessel tone; however, they are also directly influenced by oxygen tension in the
retina; in ischemic conditions, they become dysfunctional and fail to relax after constriction,
exacerbating the lack of blood supply [9,49,52,53]. Interestingly, in aged rat retinas, there is
less pericyte-endothelial cell contact [54]. Since age is a prominent risk factor for glaucoma,
reduced pericyte-endothelial cell contact may predispose aged retinas to glaucomatous
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damage through weakened NVC. There is increasing evidence that vascular supply of blood
is impaired in glaucoma [55]. It is therefore plausible that glaucomatous RGC degeneration
may be exacerbated by impaired pericyte activity, reducing blood supply and metabolic
support to the cells [16].

The role of cGMP signaling in pericytes located outside of the CNS has been explored
extensively and may provide a mechanistic link between retinal pericyte dysfunction
(specifically pericyte-associated vasoconstriction and NVC breakdown) and the vascular-
associated glaucomatous pathology observed in patients. In liver pericytes, exogenous NO
supplementation and inhibition of cGMP breakdown via PDE inhibitor sildenafil citrate di-
minished the extent of endothelial dysfunction caused by contraction of active pericytes [56].
Moreover, in the mouse brain, the GC1 inhibitor ODQ blunts the NO-induced relaxation of
pericytes, decreases pericyte Ca2+ levels, and decreases whisker-pad stimulation-induced
vasodilator responses in capillaries [57]. This is consistent with the findings that pericytes
mediate capillary dilation in the brain [58], and that pericyte-deficient mice exhibit neu-
rovascular uncoupling, reduced oxygen supply to the brain, and metabolic stress [59].
In retinal pericytes, Ca2+ influx, which causes pericyte contraction, can be inhibited via
8-Br-cGMP (a cGMP agonist), as well as SNP (a NO donor) [60]. It is therefore likely that
NO-cGMP-mediated control of pericyte Ca2+ is related to changes in pericyte contractility
and may impact retinal microvascular function. Across the vascular cells of the NVU, break-
down of NO-cGMP signaling may contribute to dysfunction in endothelial and smooth
muscle-cell mediated vasodilation, endothelial monolayer permeability, and pericyte va-
soactivity, all of which are pertinent to the vascular component of glaucomatous damage
(Figure 2). However, further studies must refine the link between defective NO-cGMP
signaling in these cells and the alterations in NVC present in glaucoma.
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Figure 2. The effects of cGMP on vascular cells of the retinal NVU. cGMP increases smooth muscle
cell relaxation. In pericytes, cGMP has been shown to reduce intracellular Ca2+, decrease contractility,
and increase NVC mechanisms. In endothelial cells, cGMP has been shown to increase vasodilation,
while reducing endothelial cell permeability.
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5. NO-cGMP Signaling in Glial Cells

The retinal glia, including astrocytes, Müller glia, and microglia, were thought to be
relatively passive elements in the CNS; however, recently, it has become clear that they play
a critical intermediary role between the neurons and vascular cells of the NVU [13,61,62].
The predominant glial cells in the retina are the Müller glia (MG), which span the retinal
layers, from the inner border with the vitreous humor, to the photoreceptor layer. Astrocytes
are present in the superficial layer of the retina and make intimate connections between
RGCs and blood vessels. Astrocytes and MG together form the blood–retinal barrier
(BRB) and are integral to retinal NVC [13,63,64]. Astrocytes play a critical role in shuttling
energy resources to neurons, responding to glutamatergic activity by producing lactate
and releasing it into the extracellular space, which neurons then utilize for metabolic
demands [65–67]. Astrocytes also regulate neurotransmitter release and re-uptake, to help
maintain neuronal homeostasis [13,68–71]. In humans, regarding glial cells, the fovea
contains only MG subtypes, indicating that these cells alone are sufficient to supply the
metabolic needs of the RGCs [13,71]. Microglia are also resident glial cells that span
multiple layers of the retina, yet their exact role in the basal NVU function of the retina
is less understood compared to other glial cell types [72]. Recently, it has been shown in
the brain that microglia directly and dynamically contact endothelial, smooth muscle cells,
pericytes, and astrocytes, and are able to regulate cerebral blood flow via vasoactive agents,
including NO and cGMP [73]. These results suggest that microglia, along with MG and
astrocytes are important for NVC in the retina.

In glaucoma, glial dysfunction and/or activation may contribute to breakdown in
NVC, rendering RGCs more susceptible to degeneration. Given their localization in the
RGC layer and role in metabolic support, changes in astrocyte physiology may have a
large impact on the health and physiology of RGCs. During pathological conditions in the
retina, astrocytes respond robustly with gross morphological and physiological changes,
which may prompt the dysfunction and degeneration of RGC axons [9,67,74,75]. Important
to astrocytic cellular networks is the intercellular communication via connexin proteins,
which form gap junctions between astrocytes and other cells of the NVU [9,67]. Changes in
astrocyte morphology and connexin expression in the NVU have been demonstrated in
early stages of glaucoma in animal models [9,76–79]. Furthermore, astrocytic connexin-43
(Cx43), the most abundant connexin in astrocytes, was shown to facilitate the movement of
energetic resources in the optic projection in response to injury [80]. The role of MG and
microglia in neurovascular function is less clear; however, MG undergo reactive gliosis
in glaucoma, and increasing evidence supports a critical role of MG in maintenance of
RGC physiology [81,82]. Finally, reactive microglia in glaucoma release pro-inflammatory
cytokines, triggering RGC degradation [83].

Examining the role of NO-cGMP signaling in the NVU may help to elucidate the rela-
tionship between glia, vascular function, and glaucoma pathology. In the CNS, decreased
GC1 expression is detected in the reactive glia of post-mortem patients with neurodegener-
ative diseases such Alzheimer’s disease and multiple sclerosis [84–86]. In cultured retinal
MG, addition of cGMP analogues activates a calcium permeable, non-selective cation
current via the opening of cGMP-gated channels, indicating that cGMP signaling, in part,
regulates MG physiology [87]. In the microglia, cGMP signaling pathways are involved
in inflammatory gene expression [84,88–94]. Pharmacological inhibition of GC1 prevents
activation and migration of microglia to injured or inflamed sites in the CNS; recruitment
can be rescued with the addition of a cGMP analog, suggesting that microglial recruitment
is, at least in part, mediated by cGMP signaling [95,96].

To date, the role of NO-cGMP signaling in astrocyte function has been explored
in many contexts, both within the CNS and systemically, and has been summarized in
Figure 3. In cultured rat cerebellar astrocytes, cGMP directly affects the motility and
morphology of cells and expression of glial fibrillary acidic protein (GFAP), suggesting
that cGMP signaling directly modulates astrocyte physiology [97,98]. In focal brain injury,
inhibiting PDE increased cGMP and altered the glial inflammatory response, decreased



Biomolecules 2022, 12, 1671 7 of 13

oxidative stress and cell death, and increased angiogenesis (Figure 3) [84]. A potential
role for cGMP signaling in retinal astrocyte physiology has been reported in a study
using a germline GC1 alpha subunit knockout mouse [29]. In the study, GC1−/− mice
that developed RGC degeneration with age [26,28] were shown to have an altered retinal
vascular phenotype; blood vessels in the peripheral retinal vasculature were dilated and
exhibited shorter capillary branching [9,29]. Interestingly, vascular changes were preceded
by an increase in glial fibrillary acidic protein (GFAP) expression in astrocytes and changes
in astrocyte morphology, specifically astrocytic matting around blood vessels and enlarged
bulbous astrocytic endfeet [29]. The effects in astrocytes may be due to reduced cGMP
signaling in the astrocytes themselves; in human and rat cultured astrocytes, cGMP-PKG
activity directly increases GFAP expression and RhoA inhibition, which are responsible
for astrocyte morphological changes [97,99]. Moreover, changes in astrocyte connexin
expression have also been observed in GC1−/− mice [29]. Cx43 is the most prevalent
connexin in astrocytes, and GC1−/− mice exhibit a greater decrease in connexin-43 levels
with age [29,67]. Connexins are crucial in astrocyte cell communication in the NVU, and
increases in pressure in vitro cause a decrease in gap-junction communication via alterations
in connexin activity [77]. cGMP/PKG activity has been shown to alter connexin activity,
specifically through phosphorylation, hinting at a link between cGMP activity, connexins,
and astrocyte function in the NVU [100]. Given the aforementioned link between connexin
expression and glaucoma, and the effect of cGMP levels on astrocyte connexin physiology,
cGMP could be relevant to the dysfunction of the NVU observed in glaucoma.
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Figure 3. The known effects of cGMP on glial cells. Red arrows represent downregulation, or negative
activity, green arrows represent increased expression, or positive activity. (A) cGMP upregulates
inflammatory gene expression and cell migration in microglia, (B) increases cation current within
Müller cells via opening of cGMP-gated channels, and (C) decreases oxidative stress, differentially
affects GFAP and Cx43 expression, and decreases Cx43 phosphorylation in astrocytes.

In cell types outside of the CNS, Cx43 expression and function is mediated by cGMP
signaling. Rat mesangial cells treated with the NO donor S-nitroso-N-acetylpenicillamine
(SNAP) or 8-Br-cGMP increased expression of Cx43 [101]. Additionally, GC1−/− mice
exhibit Cx43 phosphorylation in the intercalated disc of cardiac tissue, resulting in dys-
functional gap junction electrical conductivity [102]. Finally, in rodent vascular smooth
muscular cells, Cx43 expression increases in response to either 8-Br-cGMP treatment or BAY
41-2272, a GC1 stimulator, and PKG inhibition reverses this increase [103]. The potential
role of cGMP in astrocyte communication and gap junction function is intriguing; however,
future investigations between NO-cGMP signaling and Cx43 expression in the retinal NVU
are warranted.

Besides connexins, cGMP-gated channels also impart changes in astrocyte physiol-
ogy that may perturb vascular function in glaucoma. cGMP-gated Ca2+ channels have
been confirmed to populate the astrocytes of the rat forebrain, midbrain, and hindbrain,
and are important for astrocyte function [104]. MG also likely possess cGMP-gated Ca2+

channels [87]. Within the endfeet of astrocytes in the NVU, Ca2+ signaling plays a critical
role in maintaining the integrity of the BBB [105]; yet, it is unknown if the cGMP-gated
Ca2+ channels specifically contribute to the abnormal vascular function of astrocytes in the
glaucomatous NVU. cGMP-gated Ca2+ channels in astrocytes have been investigated as a
potential therapeutic target for vascular dysfunction in Alzheimer’s disease [106]. Given
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that glaucoma shares many pathological commonalities with Alzheimer’s disease [3], in-
vestigating the putative role of cGMP-gated Ca2+ channels in retinal astrocytes in glaucoma
may uncover a novel therapeutic target.

6. NO-cGMP Signaling in Retinal Neurons

In glaucoma, the degeneration of RGCs and their axons in the optic projection results
in irreversible vision loss. The role of NO-cGMP signaling in RGCs appears to be multi-
faceted. In CNS neurons, NO-cGMP signaling is important in NVC, synaptic plasticity, and
synaptic transmission [107]. GC1 is expressed in pre- and post-synaptic terminals and in
neuronal soma and spines [107,108]. GC1 is also evident in RGC soma in the retina [26].
The depolarization of neuronal membranes stimulates Ca2+ influx into RGCs, which acti-
vates neuronal nitric oxide synthase, leading to NO production and release, stimulating
vasodilation in its target vascular cells via cGMP [62]. Interestingly, GC1−/− mice [26]
develop RGC degeneration with age, and increasing availability of cGMP has a neuropro-
tective effect in murine glaucoma models [28]. Furthermore, primary RGC cultures and
mouse retinal explants exhibit decreased apoptotic signaling when supplemented with
cGMP [109]. Within the neuron itself, cGMP and its downstream effector PKG are key
mediators for the neuroprotective effects of NO [110], and multiple studies have confirmed
the neuroprotective effect of stimulating the NO-cGMP-PKG pathway in RGCs [28,111–113]
and in other neurons of the CNS [110,114]. However, it is worth noting that activation
of PKG has shown neurotoxicity, rather than neuroprotective effects, in RGCs [115,116],
suggesting that alternative downstream effectors of cGMP, such as cGMP-gated channels
and transcription factors, such as cAMP response element binding protein (CREB), may
underpin the neuroprotective capacity of cGMP. cGMP-gated channels have been identified
in RGCs and are responsible for modulation of neuron excitability [117,118]. The transcrip-
tion factor CREB is responsible for neuroprotective functions and is phosphorylated and
activated by PKG in CNS neurons [110,119–121]. Alternatively, cGMP, via PKG, can also
modulate intracellular calcium signaling in RGCs [122] and therefore may be responsible
for limiting the neurotoxic effects to neurons of high intracellular Ca2+ levels. Since cGMP
has multiple downstream effectors that may contribute to the neuroprotective effects ob-
served in RGCs, further research is needed to distinguish the apparent neuroprotective and
neurodegenerative arms of the cGMP signaling cascade.

7. Conclusions and Future Directions

Glaucoma is a devastating optic neuropathy afflicting millions worldwide, and yet
the complex etiology of the disease results in the ensuing neurodegeneration not receiving
effective treatment for many individuals. While the past understanding and treatment of
the disease has focused on controlling IOP, the only current modifiable risk factor, recent
research has elucidated a substantial contribution of retinal vasculature dysfunction to
disease progression [3,7,9,34]. Whether vascular dysfunction occurs early in glaucoma
triggering neurodegenerative events, or whether RGC degeneration leads to the disruption
of NVC remains challenging to determine.

It is clear that NO-cGMP signaling is integral to NVC between retinal neurons and
the retinal vasculature and that proper cGMP signaling helps to maintain the integrity of
the BRB. Interestingly, NO-cGMP signaling has additional roles in glial cell physiology
and homeostasis. While we have highlighted the importance of NO-cGMP signaling
in multiple cell types of the NVU and have provided evidence of dysfunctional cGMP
signaling in glaucoma, a number of questions remain. Specifically, in glaucoma, how
might dysfunctional NO-cGMP signaling in cells of the NVU directly contribute to RGC
degeneration? Given the ubiquity of cGMP in cells of the NVU, answering this question
will not be facile. Future studies implementing cell-specific knockouts or knockdowns of
GC1, combined with animal models of neurodegeneration will be critical in elucidating
the relationship between NO-cGMP signaling in the NVU, vascular dysfunction, and
glaucoma pathology. Disentangling the specific role of NO-cGMP in cells of the NVU
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and the relationship to glaucomatous degradation would be indispensable in providing a
more comprehensive understanding of the vascular mechanisms of the disease and help to
provide effective novel therapeutic targets.
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