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ABSTRACT
Ovarian cancer (OV) is characterized by high incidence and poor prognosis. Increasing evidence 
indicates that aberrant alternative splicing (AS) events are associated with the pathogenesis of cancer. 
We examined prognosis-related alternative splicing events and constructed a clinically applicable model 
to predict patients’ outcomes. Public database including The Cancer Genome Atlas (TCGA), TCGA 
SpliceSeq, and the Genomics of Drug Sensitivity in Cancer databases were used to detect the AS 
expression, immune cell infiltration and IC50. The prognosis-related AS model was constructed and 
validated by using Cox regression, LASSO regression, C-index, calibration plots, and ROC curves. A total 
of eight AS events (including FLT3LG|50942|AP) were selected to establish the prognosis-related AS 
model. Compared with high-risk group, low-risk group had a better outcome (P = 1.794e-06), was more 
sensitive to paclitaxel (P = 0.022), and higher proportions of plasma cells. We explored the upstream 
regulatory mechanisms of prognosis-related AS and found that two splicing factor and 156 tag single 
nucleotide polymorphisms may be involved in the regulation of prognosis-related AS. In order to assess 
patient prognosis more comprehensively, we constructed a clinically applicable model combining risk 
score and clinicopathological features, and the 1 -, and 3-year AUCs of the clinically applicable model 
were 0.812, and 0.726, which were 7.5% and 3.3% higher than that of the risk score. We constructed 
a prognostic signature for OV patients and comprehensively analysed the regulatory characteristics of 
the prognostic AS events in OV.
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1 Introduction

Ovarian cancer (OV) has the highest mortality rate 
among gynaecological malignancies, posing a serious 
threat to female health [1]. It is estimated that 60–70% 
of OV patients have been diagnosed at stage III/IV, due 
to the lack of typical symptoms and early screening meth-
ods [2]. Despite significant advances in the treatment of 
OV, especially emerging immunotherapies, more than 
75% of patients with advanced OV eventually die from 
the disease [3,4]. Features currently used for prognosis are 
histological subtypes, tumour stage, and patient’s age. 
Nevertheless, OV is clinically heterogeneous. Patients 
with similar clinicopathological may display different clin-
ical outcomes. Given the genetic heterogeneity of patients, 
building reliable prognostic prediction models may 
improve patient outcomes.

To date, several studies have attempted to establish 
molecular signatures models based on gene expression 
data to predict patients’ survival and prognosis, including 
gene expression levels based on mRNA, miRNA, and 
lncRNA [5–7]. Although these models played an impor-
tant role in predicting the survival of OV patients, they 

focused on changes in gene expression levels and ignored 
the diversity of RNA subtypes with different alternative 
splicing (AS) regulations. In a recent study, PCAT19-long 
was found to interact with HNRNPAB to activate a subset 
of cell-cycle genes, thus promoting prostate cancer (PCa) 
tumour growth and metastasis. In contrast, the PCAT19- 
short isoform reduced PCa risk [8]. Nuclear SRSF1 pro-
moted the synthesis of MKNK2b and inhibited the expres-
sion of MKNK2a, contributing to the poor prognosis of 
colon adenocarcinoma patients [9]. Similarly, it was also 
found in OV that patients with high expression of the 
ECM1a subtype had a poor prognosis, whereas high 
expression of the ECM1b had a better prognosis [10]. 
These results supported that the different isoforms had 
divergent functional roles. Therefore, changes in gene sub-
type expression levels also need to be incorporated into 
studies when constructing predictive models.

As an important post-transcriptional regulatory mechan-
ism, AS regulates gene expression and protein diversity from 
a limited number of loci [11]. Under pathological condi-
tions, splicing pattern changes lead to the loss or gain of 
critical protein domains, resulting in alteration function, 
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stability, and subcellular localization [12–14]. Recent trends 
in different types of cancer research revealed that AS altera-
tions might play important roles in the proliferation, metas-
tasis, and apoptosis of cancer cell [10,15,16]. More 
importantly, there was increasing evidence that AS could 
also have a great impact on the microenvironment forma-
tion by regulating tumour-associated immune cell infiltra-
tion [17]. Therefore, AS-related genes might have new 
potential in cancer therapy. Emerging evidence had shown 
that genetic variation, especially single nucleotide poly-
morphisms (SNPs), could influence the regulation of AS 
[18,19]. For example, Guo et al. discovered that SNP 
rs4383 could regulate the AS events of MAFF and was 
associated with bladder cancer risk [19]. Furthermore, accu-
mulating studies demonstrated that AS events might be 
intricately regulated by key splicing factors (SFs) [20]. 
Aberrant expression of SFs leaded to subversive changes in 
tumour-specific AS events, which influenced carcinogenesis 
and progression [21]. Therefore, it was of great significance 
to study the potential prognostic manifestations and regula-
tory mechanisms of AS in OV.

To date, few studies have comprehensively analysed the 
clinical significance of AS in OV and its regulatory 
mechanisms. We integrated AS events and clinical informa-
tion from TCGA OVs, discerned AS events associated with 
prognosis in OV, and constructed and validated prognostic 
risk models. Furthermore, we identified distinct OV clus-
ters based on prognostic risk models, investigated the asso-
ciation between clusters and immune cell infiltration, and 
screened chemotherapeutic drugs for OV. Finally, the 
development of SF-AS and SNP-AS regulatory networks 
revealed potential regulatory mechanisms involved in the 
prognosis of OV patients.

2 Materials and methods

2.1 Data resources from public databases

The mRNA data and the AS data of OV were obtained from 
TCGA (https://tcga-data.nci.nih.gov/) data portal and TCGA 
SpliceSeq (https ://bioinformatics .mdanderson.org/  
TCGASpliceSeq) database, respectively. The 356 OV patients 
were selected for further analysis, using PSI (percent splicing) 
values > 75% as filter values and excluding AS data with more 
than 30% missing values. The corresponding clinical data were 
retrieved from the UCSC Xena database (https://Xena.UCSC. 
edu/).

2.2 Identification of prognosis-related AS events

To identify prognosis-related AS events, the univariate Cox 
regression analysis was performed to determine the relationship 
between AS events and OS. The prognosis-related AS events 
based on the seven types of AS events were presented using 
UpSet plot and volcano plot. In addition, bubble plots were 
displayed to summarize the top 10 AS events for seven types. AS 
events with a significant P < 0.05 were selected as prognosis- 
related AS.

2.3 AS prognostic risk model establishment and 
validation

First, all the 356 OV patients were randomly assigned in 
a ratio of 2:3 to two data sets, including training set 
(n = 142) and internal validation set 1 (n = 214). Besides, 
the entire TCGA set constituted validation set 2. Second, the 
top 20 prognosis-related AS were screened through LASSO 
Cox analysis and multivariate Cox regression analysis to 
build a prognostic risk model. The formula of the risk 
score was calculated as follows: Riskscore ¼

Pn

i¼1
Coefi � xi. 

All patients were divided into a high-risk group and a low- 
risk group based on the median risk score. The difference in 
prognosis between the two groups was compared using 
Kaplan Meier (K-M) curve. Receiver operating characteristic 
curves (ROC) and the area under the curve (AUC) were 
performed to evaluate the discriminative power of the prog-
nostic risk model. Finally, the AS prognostic risk model was 
applied to the validation sets.

2.4 Nomograms

To enhance the predictive ability of the model, risk score, age, 
grade, and tumour stage were integrated into the clinical 
nomogram. The concordance index (C-index) and calibration 
curves were applied to evaluate the prediction accuracy 
between the actual results and the predicted model. 
Nomogram and calibration plots were drawn through the 
‘rms’ package of R software.

2.5 Regulatory networks of splicing factor AS events 
(SF-AS) and genetic variants AS events (SNP-AS)

Splicing factor (SF) is a protein factor that contributed to the 
splicing process of RNA precursor, which is closely asso-
ciated with the tumour occurrence and treatment. 
Therefore, the SF data was obtained from the spliceaid2 
database and then the correlation between the expression 
levels of SF and PSI values of prognosis-related AS events 
was analysed using Spearman correlation analysis [22]. |R| > 
0.3 and P < 0.001 were considered statistically significant. 
Finally, the SF-AS regulatory network was constructed and 
visualized by Cytoscape software. SNPs were also involved in 
the AS of genes. Therefore, we screened SNPs associated with 
prognosis-related AS events from the CancerSplicingQTL 
database (http://www.cancersplicingqtl-hust.com/#/) with 
the same filtering criteria [23]. Finally, we identified tag 
SNPs through the SNPinfo database (https://manticore. 
niehs.nih.gov/) and constructed the SNP-AS regulatory net-
work [24].

2.6 CIBERSORT

CIBERSORT, a versatile computational method, could accu-
rately estimate immune infiltration by RNA-seq, using LM22 
data as a reference [25]. CIBERSORT was run according to 
code (https://rdrr. io/github/singha53/amritr/src/R/ 
supportFunc_cibersort. R).
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2.7 chemotherapeutic drugs prediction

The public pharmacogenomics database Genomics of Drug 
Sensitivity in Cancer (GDSC) was employed to predict the 
response to chemotherapeutic medicine [26]. The halfmaxi-
mal inhibitory concentration (IC50) was calculated by the 
‘pRRophetic’ package in R.

2.8 Statistics

All statistical analyses were performed by R 3.5.3 and 
GraphPad prism 8.0.2. The threshold of significance was set 
at P < 0.05.

3 Results

3.1 Overview of AS events in the OV set

After integrating AS data, gene expression and clinical data, 
a total of 356 OV patients were included in the analysis. The 
detected AS events consisted of seven types: alternative accep-
tor site (AA), alternative donor site (AD), alternative promo-
ter (AP), alternative terminator (AT), exon skip (ES), 
mutually exclusive exons (ME), and retained intron (RI). 
From the total AS event types, the most frequent events 
were ES events. In the current study, 48,049 AS events from 
10,582 genes were identified, revealing that AS was a common 
process in the development of OV. Specifically, there were 
19,251 ES events in 6931 genes, 9689 AP events in 3901 genes, 
8453 AT events in 3691 genes, 4006 AA events in 2777 genes, 
3497 AT events in 2389 genes, 2946 RI events in 1951 genes, 
207 ME events in 201 genes (Figure 1A).

By univariate Cox analysis, 547 AS events of 422 genes 
were identified to be related to the OS of OV patients 
(Figure 1B, Supplementary Table S1). The 547 AS events 
comprised a total of 277 high-risk events and 270 low-risk 
events. The distribution of prognosis-related AS events was 
displayed in a volcano plot (Figure 1C). The top 20 ranked 
seven AS events associated with OS were shown in Figure 2.

3.2 AS prognostic risk model construction and validation

The top 20 prognosis-related AS events were selected as 
candidates. To avoid overfitting, the LASSO regression was 
employed to determine 12 AS events (Figure 3A-B). 
Subsequently, eight AS events (KBTBD3|18,560|ES, OFD1| 
88,522|ES, TMEM241|44,802|ES, MRPS25|63,542|ES, 
FLT3LG|50942|AP, DMKN|49184|ES, AP2B1|40,327|AD and 
BCL2L14|20,493|AP) were screened to construct a AS prog-
nostic risk model via multivariate Cox regression analysis 
(Supplementary Table S2). The formula of risk score was 
calculated as follows: risk score = (2.80 * expression level of 
KBTBD3|18,560|ES) + (1.68 * expression level of OFD1| 
88,522|ES) + (−1.66 * expression level of TMEM241|44,802| 
ES) + (1.05 * expression level of MRPS25|63,542|ES) + (1.97 * 
expression level of FLT3LG|50942|AP) + (1.28 * expression 
level of DMKN|49184|ES) + (−1.91 * expression level of 
AP2B1|40,327|AD) + (1.90 * expression level of BCL2L14| 
20,493|AP). Then, patients were assigned into high-risk and 
low-risk groups based on the median risk score (training set 

and validation set). For candidate AS events, the detailed 
information of corresponding splicing pattern, living status 
as well as survival time ranked by the distribution of risk score 
was displayed in Figure 3C-K.

We further validated the relationship between risk score 
and prognosis by K-M survival analysis. The result suggested 
that the OV patients with low-risk score had a better prog-
nosis than those with a high-risk score in the training set 
(P = 1.794e-06, Figure. 4A). Consistent with the training set 
results, patients with high-risk score tended to have poor 
prognosis (validation set 1, P = 1.615e-04, Figure 4B; valida-
tion set 2, P = 1.026e-08, Figure 4C). In addition, the pre-
dictive accuracy of the model was measured by the AUC. In 
the training set, the AUC at 1, 3, and 5 years were 0.637, 
0.756, and 0.784, respectively (Figure 4D). In validation set 1, 
the AUCs of the prognostic risk model were 0.776, 0.655, and 
0.745, respectively (Figure 4E). We found that the risk score 
also predicted the patient’s survival rate in the validation set 2, 
and the AUCs were 0.737, 0.693, and 0.760 (Figure 4F). Using 
the ROC curve, we further evaluated the predictive accuracy 
by computing the AUC of risk score, age, stage, and grade. 
Not only in the training set (Figure 4G), the AUC of risk score 
in the validation set (Figure 4H-I) was also much higher than 
that of other factors (age, stage, and grade). The above data 
demonstrated the powerful ability of the prognosis-related AS 
risk model for predicting prognosis.

The univariate and multivariate Cox regression analyses 
were performed to further assess whether the AS prognostic 
risk model was independent of other clinicopathological char-
acteristics (age, stage, and grade). As expected, the risk score 
was a significant prognostic factor independent of other clin-
icopathological characteristics in the training (Figure 5A, 
Figure 5D) and validation set (Figure 5B-C, Figure 5E-F). As 
it is well known that the clinicopathological characteristics are 
important factors affecting the prognosis and treatment of 
patients with OV. Therefore, we reconstructed the clinically 
applicable model by integrating clinical variables and risk 
score through multivariate Cox regression [27]. 
Subsequently, we developed a nomogram model to predict 
the clinical outcome of OV patients and validated the pre-
dictive power using C-index, calibration plots, and ROC 
curves. These results demonstrated that the nomogram 
(C = 0.692) had a more accurate prediction than that of 
a single factor (Figure 6A, Figure 6B, Supplementary Table 
S3). Moreover, the calibration curves of 1-, 3-, and 5-year OS 
were very close to the ideal curve, showing good concordance 
between the nomogram predicted outcomes and the actual 
outcomes, suggesting appreciable reliability of the nomograms 
(Figure 6C). Similarly, the 1-, and 3-year AUCs of the clini-
cally applicable model were 0.812, and 0.726, respectively, 
which were 7.5% and 3.3% higher than that of the risk score 
(Figure 6D). However, in the clinically applicable model, the 
5-year AUC was slightly lower than the risk score (0.737 vs 
0.760). Consistent with our previous results, OV patients with 
a high nomogram score had an extremely poor prognosis 
compared with patients with a low nomogram score 
(Figure 6E). Taken together, the clinically applicable model 
demonstrated a stable and robust ability to evaluate the prog-
nosis of OV patients.
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Figure 1. Overview of alternative splicing (AS) and prognosis-related AS events in ovarian cancer (OV).
AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron. (a) The 
upset plot displayed seven types of AS events in OV. (b) The upset plot of prognosis-related AS events. (c) Volcano plot of prognosis-related AS events.
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3.3 The SF-AS regulatory network and SNP-AS regulatory 
network

To explore the regulatory mechanism of AS events and SF, we 
analysed the correlation between SF expression and PSI values 
of 547 prognosis-related AS events. We identified a total of 
two key SF, of which, IGF2BP3 was associated with two AS 
events and MSI1 with 20 AS events (|R| > 0.3, P < 0.001, 
Figure 6F, Supplementary Table S4). It had been reported that 
SNPs were also participate in the AS of genes, so we con-
structed the SNPs and prognostic AS events regulatory net-
work. Using the same screening criteria, we screened a total of 

1247 SNPs associated with 32 AS events, and further obtained 
156 tag SNPs through SNPinfo (https://manticore.niehs.nih. 
gov/) database (Supplementary Table S5).

3.4 Characteristics of high- and low-risk patients

In order to estimate immune cell abundance between high- 
and low-risk groups, the CIBERSORT algorithm was used to 
estimate immune cell infiltration in TCGA-OV patients using 
gene expression data. We also analysed the relationship 
between the infiltrating of each cell type and OS via the K– 

Figure 2. The top 20 most significant prognosis-related AS events in seven types of AS. (a) AA, (b) AD, (c) AP, (d)AT, (e)ES, (f)ME, (g) RI.
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M method. As shown in Figure 7D-F, patients with high 
plasma cells infiltration, T cells follicular helper infiltration, 
and Macrophages M0 infiltration had a better prognosis; 
However, high infiltration of monocytes, neutrophils, and 
T cells CD4 memory resting often predicted poor prognosis 
(Figure 7A-C, Supplementary Table S6). In addition, we noted 
significant differences in the proportion of immune cells 

between low- and high-risk OV samples. As revealed in 
Figure 7G, poor prognosis-related immune cells (including 
monocytes and T cells CD4 memory resting) in the high- 
risk group were more abundant than in the low-risk group. 
On the contrary, high proportions of immune cells associated 
with a good prognosis (including plasma cells and T cells 
follicular helper) were observed in the low-risk group. These 

Figure 3. Construction and validation of AS prognostic risk model.
(a-b) LASSO Cox regression analysis of top 20 most significant prognostic AS events. (c-d) The distribution of risk score, overall survival (OS) and life status for the OV 
patients in the training set. (i) The expression heatmap of the most eight significant prognosis-related AS events in the training set. (e-f, j) Survival time, risk score 
distribution, and expression heatmap of AS events in validation set 1; (g-h, k) Validation set 2.

1012 S. WANG ET AL.



results reflected multidimensional factors in tumour and 
immune microenvironment formation, which may provide 
new insights into poor prognosis in high-risk populations.

3.5 Sensitivity of Chemotherapy Drugs Between groups

Radical surgery combined with adjuvant chemotherapy is the 
basic strategy for the treatment of ovarian cancer. Therefore, 
predicting the sensitivity of the two subgroups to chemother-
apeutic agents might assist clinicians to formulate the optimal 
treatment plan. The response to chemotherapeutic drugs of OV 
patients was assessed based on the GDSC database. The results 
suggested that patients in the high-risk group were more 

sensitive to Bexarotene (P = 0.0057), Embelin (P = 0.0032) 
and Nilotinib (P < 0.001) than the low-risk group (Figure 7K- 
M). As revealed in Figure 7H-J, low-risk patients were more 
sensitive to clinical treatment (P = 0.0057 for Mitomycin C, 
P = 0.0016 for Nutlin 3a, P = 0.022 for Paclitaxel).

4 Discussion

OV is one of the most common malignancies of the female 
reproductive system. As the ovary is located deep in the pelvic 
cavity, the early lesions are not easy to be detected, which 
leads to that about 70% of OV patients being already in the 
advanced stage when diagnosed, making OV the leading cause 

Figure 4. The risk score was closely related to the OV prognosis.
Kaplan–Meier (K-M) curve (a), receiver-operating characteristic (ROC) analysis (d) and multiROC (g) of the risk score in the training set. (b, e, h) validaion set 1. (c, f, i) 
validaion set 2.
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of death from the gynaecological malignant tumour [28]. 
Currently, the treatment of OV is mostly limited to radical 
surgery and chemotherapy, which will prolong the recurrence 
interval but not be conducive to OS [29]. Therefore, establish-
ing an effective prognostic prediction model is essential to 
guide the treatment of patients. AS, as one of the post- 
transcriptional regulatory mechanisms, removes introns 
from pre mRNA and joins exons to produce mature mRNA, 
which in turn increases protein complexity [20]. Previous 
studies have shown that AS plays an important role in reg-
ulating the growth, metastasis, drug resistance, recurrence of 
various tumours, including OV [15,30–33]. This study com-
prehensively explored the characteristics of the relationships 
among ovarian prognosis, AS, SF, SNPs, and tumour micro-
environment, providing an important basis for further 

development of novel therapeutic strategies to improve the 
outcomes of patients with OV.

In this study, a total of 48,049 AS events involving 10,582 
genes were identified, among which ES events were the most. 
Next, through univariate Cox regression analysis, prognosis- 
related AS events in OV samples were identified and 547 
prognosis-related AS events were found in 422 genes. The 
top 20 genes most associated with survival were selected to 
construct the prognostic model, and eight AS events were 
identified by LASSO regression and multivariate COX regres-
sion analysis. The risk score of the samples was calculated 
according to the formula. Patients were divided into low-risk 
and high-risk groups based on the median risk score. The 
K-M plot showed that patients in the high-risk group tended 
to have a poor prognosis compared with those in the low-risk 

Figure 5. The risk score was an independent predictor of overall survival.
Univariate (a) and multivariate (d) Cox regression analysis of clinical features and risk score in the training set. (b, e) validaion set 1. (c, f) validaion set 2.

1014 S. WANG ET AL.



group (P = 1.794e-6). The ROC results also showed that the 
predictive ability of 1, 3, 5 years were 0.637, 0.756, 0.784, 
respectively, which belonged to the moderate strength of pre-
diction. In addition, the predictive power of the risk score was 
also higher than that of age (AUC = 0.764), stage 
(AUC = 0.511), and grade (AUC = 0.590), indicating that 
risk score had important predictive significance for survival 
outcome of OV. Consistent with the training set, the same 
results were obtained in validation set 1 and validation set 2. 
In addition, we found that the model incorporating clinical 

variables improved the ability to predict prognosis compared 
with a single risk score.

AS events are closely related to TME, and immune cells, 
as an important component of TME, are key prognostic 
factors in patients with OV [34]. As in many other cancer 
types, the patients with good prognosis had plasma cell 
infiltration according to our findings [35]. Unlike other 
cancers, tumours rich in macrophage M0 suggested 
a better prognosis, which might be related to the direction 
of macrophage M0 differentiation and tumour heterogeneity 

Figure 6. Establishment of OS nomogram.
(a) Nomogram for predicting OS of OV. Concordance index (b) and calibration curve (c) of the nomogram. The ROC curve (d) analysis and K-M plot (e) of the clinically 
applicable model. (f) The interaction network between SF and AS events.
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Figure 7. Immune cell infiltration and chemosensitivity of OV patients.
The K-M plot of immune cell in OV patients. Patients with high infiltration of monocytes (a), neutrophils (b), and T cells CD4 memory resting (c) often predicted poor 
prognosis. Patients with high plasma cells infiltration (d), T cells follicular helper (e) infiltration, and macrophages M0 (f) infiltration had a better prognosis. (g) 
Comparison of 22 immune cell infiltration between the high-risk group and low-risk group. (h-m) IC50 of chemotherapy drugs (including Mitomycin C, Nutlin 3a, 
Paclitaxel, Bexarotene, Embelin, and Nilotinib) in different groups.
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[36]. In contrast, infiltration of monocytes and T cell CD4 
memory suggested a poor prognosis. As expected, high-risk 
patients had higher abundances of monocytes and T cell 
CD4 memory, but lower abundances of plasma cells and 
macrophage M0. From this, we speculated that the different 
infiltration of immune cells in the AS prognostic risk model 
may result in the different prognosis of patients. 
Furthermore, according to the results of the GDSC database, 
patients in the low-risk group might benefit from che-
motherapy drugs including Mitomycin C, Nutlin 3a and 
Paclitaxel. The difference is that patients in the high-risk 
group were more sensitive to Bexarotene, Embelin and 
Nilotinib.

To investigate the effect of upstream factors on AS, we 
analysed the correlation between 404 known SF and AS 
events. With P < 0.05, |R| > 0.3 as the threshold, this study 
found that MSI1 and IGF2BP3 were associated with multiple 
AS events. Previous studies had shown that RNA binding 
protein MSI1 was highly expressed in a variety of tumour 
tissues [37–39]. In OV, MSI1 acted as an oncogene, inducing 
phosphorylation of ERK protein, activating the expression of 
anti-apoptotic protein Bcl-2, and promoting migration and 
invasion of cancer cells [40]. Similar to previous studies, it was 
found in our study that MSI1 might regulate the variable 
splicing of multiple genes, or even have opposite regulation 
modes for the variable splicing of the same gene [9]. For 
example, MSI1 positively regulated PLEKHG2-49,822-AP, 
while negatively regulated PLEKHG2-49,821-AP. These 
results suggested that future studies should focus more on 
the expression of gene subtypes or different transcripts rather 
than the overall expression level of genes. As a member of the 
IGF2BPs family, a series of studies have shown that IGF2BP3 
is associated with the proliferation and metastasis of colon 
cancer [41], bladder cancer [42], gastric cancer [43], and other 
malignant tumours [44,45]. In addition, IGF2BP3 can also 
participate in the regulation of mRNA stability and translation 
through the recognition of m6A sites, such as MYC, CDK6, or 
Cyclin D1 [41,46,47]. Liu and his team found that high 
expression of IGF2BP3 in clear cell ovarian carcinoma was 
associated with poor prognosis, and IGF2BP3 was also con-
firmed to promote the occurrence of clear cell ovarian carci-
noma in vivo and in vitro [48]. Our study found that 
IGF2BP3 positively regulated ULK2-39,776-AT and negatively 
regulated ULK2-39,775-AT events. However, the specific 
mechanisms need to be further explored.

Regulation of AS can be controlled by genetic variants that 
can directly alter the splice site sequence. Guo et al found that 
SNP rs4383 was related to the splicing rate of exon 1.2 in 
MAFF, and compared with the C allele, SNP rs4384 G allele 
showed a higher splicing rate of exon 1.2 in MAFF [19]. 
A total of 1247 SNPs were identified to be involved in the 
regulation of 32 gene splicing. Snpinfo database (https://man 
ticore.niehs.nih.gov/) was used to screen LD tag SNPs. 
Ultimately, a total of 156 SNPs were constructed to participate 
in the regulation of AS.

Although our study identified some important AS events, 
SF, and SNPs for the prognosis of OV, there were still some 
limitations in our study. The study was based on bioinfor-
matics methods, which required experimental confirmation of 

research conclusions. In addition, model building and valida-
tion were based on TCGA data, and it would have been better 
to have another external validation dataset. Therefore, more 
work was warranted to further explore this molecular 
mechanism.

5 Conclusion

The study constructed and validated a prognosis-related AS 
risk model, and analysed the immune microenvironment and 
chemotherapeutic drug sensitivity in different groups. The 
upstream regulatory mechanisms of AS were explored from 
both splicing factors and genetic variation, which may provide 
new insights into the underlying mechanisms of OV develop-
ment. However, the roles of AS events, SF, SNP, and the 
immune microenvironment in the tumorigenesis and progres-
sion of OV require further study to fully elucidate.
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